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Trdmt1 3'-untranslated region functions as a
competing endogenous RNA in leukemia HL-60 cell
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Abstract

Severe blockage in myeloid differentiation is the hallmark of acute myeloid leukemia (AML). Trdmt1 plays an important role in
hematopoiesis. However, little is known about the function of Trdmt1 in AML cell differentiation. In the present study, Trdmt1 was
up-regulated and miR-181a was down-regulated significantly during human leukemia HL-60 cell differentiation after TAT-CT3
fusion protein treatment. Accordingly, miR-181a overexpression in HL-60 cells inhibited granulocytic maturation. In addition,
our “rescue” assay demonstrated that Trdmt1 3’-untranslated region promoted myeloid differentiation of HL-60 cells by
sequestering miR-181a and up-regulating C/EBPu« (a critical factor for normal myelopoiesis) via its competing endogenous RNA
(ceRNA) activity on miR-181a. These findings revealed an unrecognized role of Trdmt1 as a potential ceRNA for therapeutic

targets in AML.
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Introduction

Acute myeloid leukemia (AML) is a myeloproliferative
disorder characterized by maturation arrest within the
myeloid lineage. Multiple factors including genomic muta-
tions, epigenetic changes, or gene expression disorders
contribute to the development of AML. Studies have re-
vealed that blockage in myeloid differentiation is the
hallmark of AML (1). Therefore, finding the key regulators
that promote human AML cell differentiation may be the
potential approach to the treatment of AML.

MicroRNAs (miRNAs) regulate gene expression by
pairing with miRNA response elements (MREs) generally
located in the 3’ untranslated region (UTR) of target
mRNAs and participate in the development of diseases
including AML (2). In recent years, some studies have
reported a type of miRNA underlying post-transcriptional
regulation, known as competitive endogenous RNA
(ceRNA). The ceRNA hypothesis proposes that protein-
coding messenger RNA and non-coding RNA transcripts
compete for binding to common miRNAs through cross-
talking with and co-regulating each other by using MREs
(3). Pseudogene, IncRNA, circRNA, and mRNA can all

function as ceRNAs to sponge miRNAs, consequently
modulating the de-repression of miRNA targets. Com-
pared with the non-coding RNAs, only a few mRNAs that
act as ceRNAs have been mechanically and functionally
characterized in the context of AML-associated aberrant
gene networks (4-6).

Trdmt1 is also known as Dnmt2, the most conserved
member of the DNA methyltransferase family, which has
been shown to methylate tRNAs (7). Bone marrow trans-
plantation experiments (8) demonstrated a cell-autono-
mous defect in hematopoietic stem and progenitor cell
differentiation in newborn Trdmt1-deficient mice, suggest-
ing that Trdmt1 is required for cell-autonomous differentia-
tion during hematopoiesis. Although Trdmt1 plays an
important role in hematopoiesis, little is known about its
action mechanism in AML. miRNA target prediction indi-
cates that Trdmt1 is a putative target gene of miR-181a.
Additionally, miR-181a has been reported to be involved in
the regulation of myeloid differentiation in AML cells
(9,10). Of note, C/EBPu has been validated as a down-
stream target of miR-181a (11). In our previous study, we
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Trdmt1 3'UTR as ceRNA in HL-60 cell differentiation

have confirmed that a TAT-mediated LIFRx-CT3 prokar-
yotic expression fusion protein (TAT-CT3) can remarkably
induce differentiation in HL-60 cells (12). Based on the
above knowledge, we explored the possible ceRNA activ-
ity of Trdmt1 mRNA in HL-60 cells and the functional
implications of this activity.

Material and Methods

Cell culture

The human myeloid leukemia HL-60 cell lines were
purchased from the Cell Bank of the Chinese Academy of
Sciences (China) and cultured as described previously (13).

RNA extraction and real-time PCR

Total RNA was isolated from HL-60 cells using Trizol
reagent (Takara, China) according to the manufacturer’s
instructions. For miRNA detection, reverse transcription
was performed using miRNA specific stem-loop primers.
miR-181a primer, which was purchased from Invitrogen
(China), was performed in a real-time PCR detection
system. U6 RNA was used as a miRNA internal control.
For mRNA detection, the first-strand cDNA was generated
using the Reverse Transcription System kit (Takara) with
random primers and real-time PCR was performed using a
standard SYBR-Green PCR kit protocol in a QuantStudio

Table 1. Sequences of primers used in this study.
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6 and 7 Flex Real-Time PCR System (Applied Biosys-
tems, USA). B-actin was used as an endogenous control
to normalize the amount of total mRNA in each sample.
PCR amplification conditions were 20 s denaturation at
94°C, 20 s annealing at 55°C, and 20 s extension at 72°C
for all genes. The oligonucleotide primers are presented in
Table 1.

Western blot analysis

Total cell lysates were prepared in 1X SDS buffer.
Proteins were separated by SDS-PAGE and transferred to
PVDF membranes, which were then blotted with antibodies
specific for Trdmt1 (Abcam, UK), C/EBPa (Abcam), and
a-tubulin (Sigma, USA). Antigen complexes were visual-
ized using chemiluminescence (Thermo, USA).

Flow cytometry analysis

HL-60 cells were washed with PBS, resuspended in
PBS and incubated with a monoclonal mouse anti-human
PE-conjugated anti-CD11b antibody (a granulocytic differ-
entiation marker) for 30 min at 37°C. The fluorescence
intensity of stained cells was analyzed by flow cytometry.
The results were analyzed by FlowJo software (Treestar,
USA), and the positive rate was calculated by subtracting
the signals of isotype controls. All the flow cytometry
assays were carried out in triplicate.

Primers

Sequences

Primers for real-time PCR of target genes and miRNAs
B-actin
Forward
Reverse
C/EBPa
Forward
Reverse
Trdmt1-CDS
Forward
Reverse
Trdmt1-3'UTR
Forward
Reverse
ué
Forward
Reverse
miR-181a
Forward
miR
Reverse
Primers for reverse transcription of miRNAs
U6 — RT
miR-181a - RT

5'-CTGGCACCACACCTTCTACA-3'
5-AGCACAGCCTGGATAGCAAC-3'

5-AGACGTCCATCGACATCAGC-3'
5-TTGGCCTTCTCCTGCTGC-3

5'-TAGAAGGGACAGGGTCTGTGT-3
5-TCTTCTCAGGAAATCCGAACTCT-3

5-GCTGGTTCCTTACACAAGTCC-3
5'-TCAGATCGTAACAGCTATTCAGC-3

5'-CTCGCTTCGGCAGCACATATACT-3
5-ACGCTTCACGAATTTGCGTGTC-3

5'-CTAGTGAACATTCAACGCTGTC-3'

5'-GTGCAGGGTCCGAGGT-3'

5'-AAAATATGGAACGCTTCACGAATTTG-3

5'-GTCGTATCCAGTGCAGGGTCCGAGGT
ATTCGCACTGGATACGACACTCACC-3
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Plasmid constructs, oligonucleotides, and cell
transfection

For gain-of-function analysis of Trdmt1, coding sequence
(CDS) and 3'UTR segments containing the predicted
target site of miR-181a of Trdmt1 were amplified by
PCR from human cDNA and inserted into pcDNA3.1 and
psiCHECK2 luciferase reporter vectors, respectively.
For loss-of-function analysis of Trdmt1, siRNA targeting
human Trdmt1 and non-targeting negative control were
purchased from GenePharma (China). For miR-181a target
analysis, site-directed mutagenesis plasmid of the miR-
181a target sites in the 3UTR of Trdmt1 was purchased
from Genechem (China). miR-181a mimic and mimic
control were purchased from GenePharma and used at a
final concentration of 100 nmol/L in transfection following
the instructions of the Lipofectamine 3000 kit (Invitrogen).
HL-60 cells were transfected with different Trdmt1 con-
structs at a final concentration of 2.5 ng/mL using the
Lipofectamine 3000 kit. For the “rescue” assay, the psi
CHECK2-3'UTR constructs or empty vectors at a final
concentration of 2.5 ug/mL was co-transfected with the
miR-181a mimic or mimic control at a final concentration
of 100 nmol/L using the Lipofectamine 3000 kit into HL-60
cells.

Luciferase reporter assay

HEK-293T cells were co-transfected with psiCHECK2
constructs containing the wild type Trdmt1 or mutant
Trdmt1 at a final concentration of 0.2 pg/mL, along with
the control vector at a final concentration of 0.2 pg/mL,
and miR-181a mimic or mimic control at a final concentra-
tion of 0.8 ug/mL, using the Lipofectamine 3000 kit in
24-well plates. The plasmid containing firefly luciferase
was used as an internal control. Cells were harvested
48-h post-transfection and assayed with Dual Luciferase
Assay (Promega, USA). Data were obtained by normal-
ization of renilla luciferase activity to firefly luciferase activ-
ity. All transfection assays were performed in triplicate.

Statistical analysis

All studies were performed a minimum of three times,
and the data are reported as means + SD. The results
were considered statistically significant if the P-value was
<0.05 as determined by one-way ANOVA or t-test.

Results

Trdmt1 improved TAT-CT3-induced granulocytic
differentiation

Knowing that fusion protein TAT-CT3 could induce
myeloid differentiation in HL-60 cells (12), we first assayed
the expression of Trdmt1 in HL-60 cells after 2 days of
treatment with TAT-CT3 to observe changes in the
expression of Trdmt1 during TAT-CT3-induced differen-
tiation. Trdmt1 was increased markedly in response to
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TAT-CT3 treatment compared with the relative control
(Figure 1A and B). To further confirm whether Trdmt1
played an important role in HL-60 cell differentiation,
siRNA specific to Trdmt1 (si-Trdmt1) was transfected into
HL-60 cells and the efficiency of Trdmt1 knockdown was
subsequently confirmed by qPCR analysis and western
blot (Figure 1C and D). Flow cytometry data demonstrated
that Trdmt1 knockdown resulted in lower CD11b+ popu-
lation than the control group after 2 days of TAT-CT3
treatment (Figure 1E). These results suggested that
Trdmt1 played a potential role in myeloid differentiation.

Given the change in the expression of Trdmt1 follow-
ing TAT-CT3 treatment, we postulated whether Trdmt1
was correlated directly with the induction of HL-60 cell
differentiation. We therefore transiently transfected HL-60
cells with Trdmt1 3'UTR, CDS, or with the empty vector as
control. After 2 days of transfection, cells were harvested
and the expression levels of granulocytic differentiation
marker CD11b were detected. The over-expression of
both Trdmt1 3'UTR and CDS (Figure 2A) increased the
percentage of CD11b+ HL-60 cells after TAT-CT3 treat-
ment compared with the corresponding control groups. In
addition, flow cytometry results revealed more CD11b-
positive cells in the Trdmt1 3'UTR group (Figure 2B).
These data suggested that Trdmt1 3’'UTR had a greater
impact on myeloid differentiation than Trdmt1 CDS. So we
focused our attention on the mechanism of Trdmt1 3’UTR
in the subsequent experiments.

MiR-181a negatively regulated Trdmt1 expression in
HL-60 cells

According to the ceRNA theory, mRNAs can regulate
one another through their ability to compete for miRNA
binding sites (3). To confirm whether Trdmt1 could act as
a ceRNA in HL-60 cell differentiation, we searched
predicted targets of human miR-181a through miRBase
(University of Manchester, UK) and found that the 3’'UTR
of Trdmt1 gene contained a potential miR-181a binding
site (Figure 3A), suggesting its ceRNA potential for miR-
181a. Subsequently, we conducted luciferase reporter
assays to construct a series of luciferase reporters
containing the wild type Trdmt1 including 5705-5711bp
positions of Trdmt1 3'UTR (psiCHECK2-3'UTR) or a
mutant Trdmt1 (psiCHECK2-MUT), and co-transfected it
with control or miR-181a mimic. miR-181a overexpression
significantly reduced the luciferase activity of psiCHECK2-
3'UTR reporter vector in HEK-293T cells, but had no
significant inhibitory effect on psiCHECK2-MUT reporter
vector (Figure 3B). Next, we examined whether the endog-
enous Trdmt1 level was affected by miR-181a. Consistent
with the luciferase result, overexpression of miR-181a in
HL-60 cells resulted in a significant reduction in Trdmt1
mRNA and protein levels (Figure 3C and D). These data
suggested that miR-181a could directly bind to Trdmt1
3'UTR and then repress Trdmt1 in HL-60 cells.
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Figure 1. A, gPCR analysis of Trdmt1 mRNA in HL-60 cells following 2 days of TAT-CT3 treatment at a concentration of 50 pg/mL. B,
Western blot analysis and corresponding densitometry analysis of Trdmt1 protein in HL-60 cells treated as described in panel A. C,
gPCR analysis of Trdmt1 mRNA in HL-60 cells transfected with Trdmt1 siRNAs (si-Trdmt1) and control (si-NC) following 2 days of TAT-
CT3 treatment at a concentration of 50 ng/mL. D, Western blot analysis and corresponding densitometry analysis of Trdmt1 protein in
HL-60 cells transfected with Trdmt1 siRNAs (si-Trdmt1) and control (si-NC) following treatment as described in panel C. E, Flow
cytometry analysis of the granulocytic differentiation marker CD11b in HL-60 cells transfected with si-Trdmt1 and control, and the
percentage of CD11b-positive cells are indicated. Data are reported as means + SD. *P <0.05; **P<0.01; ***P<0.001 (ANOVA or
Student’s t-test).
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Figure 2. A, The expression levels of Trdmt1 3’ untranslated region (UTR) and coding sequence (CDS) in HL-60 cells transfected with a
construct expressing Trdmt1 3'UTR (psiCHECK2-3'UTR), Trdmt1 CDS (pcDNA3.1-CDS), and control (psiCHECK2 and pcDNA3.1).
B, Flow cytometry analysis of CD11b expression in HL-60 cells transfected with a construct expressing Trdmt1 3'UTR (psiCHECK2-
3'UTR), Trdmt1 CDS (pcDNA3.1-CDS), and control (psiCHECK2 and pcDNA3.1). Data are reported as means = SD. *P <0.05;
***P <0.001 (ANOVA or Student’s t-test).
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***P <0.001 (ANOVA or Student’s t-test).
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+SD. *P<0.05; ***P<0.001 (ANOVA or Student’s t-test).
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MiR-181a participated in TAT-CT3-induced
granulocytic differentiation by acting as a negative
regulator

MiR-181a has been reported to be up-regulated in
HL-60 cells derived from AML-M2 patients (14,15). We
observed changes in miR-181a expression in HL-60 cells
with or without TAT-CT3 treatment. qPCR showed that
miR-181a was decreased after 2 days of TAT-CT3 treat-
ment compared with the control (Figure 4A), which was
opposite to Trdmt1 expression. Then, we analyzed the
effect of miR-181a on granulocytic differentiation by trans-
fecting miR-181a mimic into TAT-CT3-treated HL-60 cells.
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The flow cytometry data revealed a lower percentage of
CD11b positive cells in the HL-60 cells transfected with
miR-181a mimic (Figure 4B). These data indicated that
miR-181a negatively regulated TAT-CT3-induced granu-
locytic differentiation.

To further determine whether the functional relevance
of miR-181a in AML was regulated by Trdmt1 ceRNA activ-
ityy, we performed a “rescue” assay by co-transfecting
psiCHECK2-3'UTR and miR-181a mimic into HL-60 cells
following TAT-CT3 treatment, and found that reintroduction
of Trdmt1 3'UTR could rescue the miR-181a-mediated
blockage on cell differentiation (Figure 4C). These data
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Figure 5. Regulation of C/EBP« by Trdmt. A, gPCR analysis of C/EBPa mRNA in HL-60 cells transfected with miR-181 mimic and mimic
control. B, Western blot analysis and corresponding densitometry analysis of C/EBPa. protein in HL-60 cells transfected with miR-181a
mimic or mimic control. C, qPCR analysis of C/EBPq« in HL-60 cells transfected with Trdmt1 3’ untranslated region (UTR) (psiCHECK2-
3'UTR) and control (psiCHECK2). D, Western blot analysis and corresponding densitometry analysis of C/EBP« protein in HL-60 cells
treated as described in panel C. E, gPCR analysis of C/EBPa and Trdmt1 mRNA in HL-60 cells transfected with Trdmt1 siRNAs
(si-Trdmt1) and control (si-control). F, Western blot analysis and corresponding densitometry analysis of C/EBP« and Trdmt1 protein in
HL-60 cells treated as described in panel E. G, qPCR analysis of C/EBPa mRNA in HL-60 cells transfected with control, Trdmt1-3'UTR,
or Trdmt1-3'UTR plus miR-181a mimic. H, Western blot analysis and corresponding densitometry analysis of C/EBPq protein in HL-60
cells treated as described in panel G. Data are reported as means + SD. *P <0.05; **P <0.01; ***P <0.001 (ANOVA or Student’s t-test).
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indicated that Trdmt1 could function as a ceRNA in leuke-
mia cell differentiation.

ceRNA activity of Trdmt1 3'UTR affected C/EBPa in
HL-60 cells

C/EBPu is a potential target of miR-181a, a validated
gene for granulocytic maturation. MiR-181a can directly
regulate C/EBPa expression in macrophages (11). To
identify whether miR-181a could also target C/EBP« in
AML cells, we investigated the expression of C/EBP« in
HL-60 cells. qRT-PCR analysis and western blot analysis
showed that both C/EBPa mRNA and protein levels were
decreased in HL-60 cells transfected with miR-181a mimic
compared with the control (Figure 5A and B).

To determine whether Trdmt1 could act as a ceRNA
to affect C/EBPa, we first detected the mRNA and pro-
tein levels of C/EBPa. As expected, overexpression of
Trdmt1 3'UTR increased both mRNA and protein levels of
C/EBPa (Figure 5C and D), while Trdmt1 knockdown
decreased the expression of C/EBPa (Figure 5E and F). In
addition, transfection of Trdmt1 3'UTR alone or together
with miR-181a mimic into HL-60 cells was performed to
assay ceRNA activity of Trdmt1. As shown in Figure 5G
and H, miR-181a restoration upon psiCHECK2-3'UTR
abrogated this increase. The above data confirmed the
hypothesis that Trdmt1 modulated C/EBPa by competi-
tively recruiting endogenous miR-181a in HL-60 cells. The
illustration for the mechanism of Trdmt1 on ceRNA is
summarized in Figure 6.

Discussion

The prevalent view is that protein-coding genes must
be translated into a protein to exert function. Recent
studies indicated exogenous expression of the 3'UTR
constructs such as uPAR, RUNX1T1, and C-Myc partici-
pate in leukemia cells migration and differentiation by
regulating gene expression (4-6). As the most con-
served member of the DNA methyltransferase family (7),
Trdmt1 is found to be crucial for differentiation both in the
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hematopoietic system and bone marrow mesenchymal
stem cells (8). In the present study, our data showed that
overexpression of Trdmt1 3'UTR promoted TAT-CT3-in-
duced granulocytic differentiation in HL-60 cells. It provided
evidence for the hypothesis that protein-coding genes play
roles through the 3'UTR of their mRNA in leukemia.

ceRNAs are implicated in many biological processes.
Disruption of the equilibrium between ceRNAs and
miRNAs is critical for tumorigenesis. As a transcript
encoding gene, most mMRNAs have binding regions to
the seed sequences of some miRNAs, especially at the
3'UTR (16). Therefore, 3'UTRs are the essential elements
of the ceRNA cross-talk. Ample evidence has shown that
non-coding RNAs such as IncRNAs and circRNAs can
function as ceRNAs to modulate proliferation, apoptosis,
differentiation, and chemoresistance of AML cells through
competing for the binding of mMiRNAs (17-24). Here, we
used ceRNA hypothesis to explain the regulatory function
of Trdmt1 3'UTR based on our experimental results. We
found that Trdmt1 3'UTR acts in trans to modulate
C/EBPu levels and it can function as a ceRNA of C/EBPa.
by competitively binding to miR-181a in HL-60 cells. C/
EBPa is a transcription factor specific for myeloid cell
differentiation. It plays a key role in the differentiation and
maturation of myeloid cells (25). Our research proved that
Trdmt1 3'UTR promoted granulocytic differentiation of HL-
60 cells by up-regulating the expression of C/EBPa.

In our current study, we constructed Trdmt1 3'UTR
segments that only contained miR-181a binding site.
Furthermore, bioinformatics analysis of the Trdmt1 3'UTR
has shown that miR-101 and miR-26 can also interact with
Trdmt1 3’'UTR. Some studies have reported that miR-101
and miR-26 are considered to be a tumor suppressor in
leukemia (26,27). We suppose the long sequence of the
3'UTR containing these miRNAs binding sites may exert
complex biological functions. We predict the effectiveness
of 3'UTR will depend on the number of miRNAs that it can
sponge.

Moreover, of particular note, mMRNA exhibited effects
on gene expression via protein-coding function in addition
to its ceRNA activity. It is known that protein and mRNA
derived from an identical gene may exert the same or
different biological effects. Hmga2 promoted lung carcin-
ogenesis both as a protein-coding gene and as a ceRNA
dependent upon the presence of let-7 sites (28,29). ZEB2
protein was recognized as an activator of epithelial-
mesenchymal transition (EMT) (30). Later study validated
ZEB2 mRNA as a bonafide ceRNA for PTEN (31). Herein,
we confirmed that Trdmt1-coded protein has an effect on
HL-60 cells differentiation as well, suggesting that Trdmt1
might have a role of pro-differentiation in some leukemia
cells. These discoveries may change the way we look at
the coding transcriptome.

In summary, this study provided evidence for the first
time that Trdmt1 3'UTR acted as a natural sponge to bind
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miR-181a and inhibit its function, which may help gain
a better understanding about the molecular mechanism
underlying AML cell differentiation. The Trdmt1/miR-181a/
C/EBPa axis may provide a clue for better therapeutic
strategy in the future treatment of AML.
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