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Abstract: The fusion glycoproteins that decorate the surface of enveloped viruses undergo dramatic
conformational changes in the course of engaging with target cells through receptor interactions and
during cell entry. These refolding events ultimately drive the fusion of viral and cellular membranes
leading to delivery of the genetic cargo. While well-established methods for structure determination
such as X-ray crystallography have provided detailed structures of fusion proteins in the pre- and
post-fusion fusion states, to understand mechanistically how these fusion glycoproteins perform
their structural calisthenics and drive membrane fusion requires new analytical approaches that
enable dynamic intermediate states to be probed. Methods including structural mass spectrometry,
small-angle X-ray scattering, and electron microscopy have begun to provide new insight into
pathways of conformational change and fusion protein function. In combination, the approaches
provide a significantly richer portrait of viral fusion glycoprotein structural variation and fusion
activation as well as inhibition by neutralizing agents. Here recent studies that highlight the utility of
these complementary approaches will be reviewed with a focus on the well-characterized influenza
virus hemagglutinin fusion glycoprotein system.

Keywords: viral membrane fusion glycoprotein; structural mass spectrometry; electron microscopy;
small-angle X-ray scattering; hydrogen-deuterium

1. Introduction

Enveloped viruses bear a host-derived lipid membrane that encapsulates and protects the viral
genetic material. To infect new cells and deliver the viral genome into the host cell cytoplasm, the
virus must open a conduit across the membrane barrier by merging its lipid envelope with a host cell
membrane. Fusion glycoproteins (abbreviated gp or GP depending on virus type) anchored to the
virus membrane and displayed on the virus surface mediate this essential process. To understand the
function of these cell entry machines requires detailed structural characterization and elucidation of
the conformational transitions and intermediate states that are populated during the fusion process.
In addition, many of the viruses, particularly those with RNA genomes, exhibit significant variation
due to mutational drift and selection. The differences in amino acid sequence impact glycoprotein
structure, antigenicity and fusion protein function during cell entry. Yet our understanding of the link
between sequence, structural variation, phenotype and function are still in their infancy.

Viral fusion glycoproteins are often challenging targets for high-resolution structural
characterization due to their decoration with flexible and heterogeneous glycans, intrinsic structural
dynamics, and instability of the native, metastable pre-fusion states. In recent years, a diverse array
of biophysical methods have been applied that: (i) provide complementary insights into the nature
of conformational changes during fusion activation and neutralizing antibody engagement [1–13];
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(ii) reveal the flickering, transient conformational sampling exhibited by glycoproteins on the surface
of virions [12,14]; and (iii) illuminate variations in structural dynamics that impact the antigenicity
and receptor reactivity of viral glycoprotein components [15–17]. In this review, we will describe a set
of biophysical methods that have recently provided new perspectives on viral fusion protein structure
and function, and present the influenza hemagglutinin (HA) system as a prime example of how the
various methods can combine to give a more complete understanding of this dynamic fusion machine.
We also highlight developing areas that may benefit from application of these new approaches.

Influenza HA is the best characterized type-I fusion protein, with high-resolution structures of
pre- and post-fusion conformations [18,19], a multitude of neutralizing antibody fragment antigen
binding (Fab) domains that have been characterized in complex with the glycoprotein antigen [20–29],
a detailed 3-dimensional understanding of virus ultrastructure [30–34], and decades of biophysical
characterization [1,11,13,35–47]. Despite this wealth of information, until recently we have lacked
structural information describing the sequence of changes exhibited by hemagglutinin during
fusion, and even basic information for the nature of target and virus membrane deformations that
hemagglutinin induces in order to drive membrane fusion is unclear.

Like other type-I fusion proteins, HA is a homo-trimer of hetero-dimeric protomers [18]. One
subunit in the protomer, HA1, is responsible for receptor binding, and a second, HA2, is the primary
fusion machinery. In analogous fusion systems such as the human immunodeficiency virus (HIV)
envelope glycoprotein (Env), receptor binding induces major conformation changes in the receptor
binding subunit [48–53], which are transduced to the fusion subunit leading to its priming and
activation [2]. HA attachment to extracellular sialic acids on glycoproteins and glycolipids on the cell
surface initiates the influenza virus infection cycle (Figure 1) [54–57]; however, no evidence has been
found to indicate that sialic acid receptor binding induces a structural change or activation of the HA
fusion machinery. The low, ~mM affinity of sialic acid for the receptor binding site suggests that high
avidity binding of three sialic acid binding sites per trimer, multiplied over several trimeric spikes
on a virus-host membrane contact surface is needed to adsorb the virus to the cell surface [58–60].
300–500 of the trimeric HA spikes are present on typical influenza virus particles, in ~5-fold copy
number excess over the other surface protein, neuraminidase, which has an essential sialidase activity
needed to release newly budded virions from the cell surface [30,61,62]. Multivalent sialic acid receptor
engagement through HA appears to trigger endocytosis of the virus, rather than entry occurring at
pre-existing endocytosis hotspots [46,47].

Influenza HA activation is triggered by exposure to the acidic pH within maturing
endosomes (pH~6.0–5.0), resulting in the complete structural rearrangement of the fusion
protein [18,19,46,57,63,64]. Early differential scanning calorimetry experiments indicated that HA
is kinetically trapped in a metastable conformation, which upon conversion to the post-fusion state,
releases conformational energy to help drive membrane apposition and fusion [35–39,57,64–66]. Carr
and Kim first described the mechanism as a “spring-loaded” change [35] in which a loop in pre-fusion
HA irreversibly becomes helical at low pH in order to extend the central helical bundle and relocate
the fusion peptide at the N-terminus of HA2 from close to the base of the trimer ~100 Å towards
the viral membrane. The structure of a post-fusion HA soluble fragment (TBHA2) where BHA was
treated with low pH and proteolyzed to remove HA1 and the fusion peptide also revealed that HA2
refolding involved a helical break that permits the C-terminal portion of the subunit to repack along
the newly extended core [19]. In a related study of HIV gp41 by Weisenhorn et al. [67], it was proposed
that this refolding of the C-terminal segment of the fusion subunit along the central helical bundle
drives membrane fusion. Indeed in the post-fusion state, the N-terminal fusion peptide and C-terminal
membrane anchor region are colocalized, consistent with their role in juxtaposing the two membranes
to induce their fusion. When HA2 was expressed recombinantly in E. coli the fold observed in the
post-fusion TBHA2 structure was found to be the low energy conformation for the HA2 polypeptide
sequence [68]. Subsequent analysis suggests that prior to the adoption of the ultimate post-fusion state,
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reversible stages of conformational change exist and these appear to play important roles in initiating
engagement of the target membranes [32,38,40,41,64,69–71].
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Figure 1. Influenza virus structure and infectious cycle. Viral attachment is mediated by Hemagglutinin 
(HA), which bind through multi-valent, high avidity interactions to host cell surface glycans, 
triggering endocytosis of the virus particle. Following acidification of the endosomal lumen, M1 
dissociates from the inner surface of the viral membrane, and HA undergoes large structural changes 
to drive membrane fusion ultimately releasing the nucleoprotein-coated genome segments into the 
cytosol, which is transported to the nucleus for genome transcription and replication. Viral proteins 
are synthesized and post-translationally modified via the endoplasmic reticulum and trans-golgi 
network. Progeny viruses are assembled at the cell surface, where Neuraminidase (NA) cleaves 
neighboring sialic acid for release of newly formed virus into the extracellular milieu. 

In addition to influenza HA, high-resolution structures have been determined for other type-I 
fusion glycoproteins in their pre-fusion states including paramyxovirus F proteins [72–74], major 
portions of the Ebola glycoprotein (GP) [75,76], and the HIV Env glycoprotein in an engineered, 
mutation stabilized form, allowing identification of receptor binding sites and organization of the 
receptor binding and fusion subunit [7,8,14,77]. This information has proved exceptionally 
informative for understanding the viral spike structures and disposition of epitopes for neutralizing 
antibodies, which most frequently target the pre-fusion conformation of the glycoprotein antigens on 
the virus surface. 

Structures of fragments of the proteins in the low-energy, post-fusion conformations have  
also been reported. The post-fusion “hairpin” structures of type-I fusion proteins such as HIV Env 
gp41 and Ebola GP2 revealed commonality of presumed fusion mechanisms, highlighting the  
end-stage colocalization of N and C-terminal, membrane-active subdomains in the post-fusion 
conformation [19,67,68,78–81]. Metastability of the pre-fusion conformation and the low energy, 
ground state character of the post-fusion conformation are believed to be common traits for type-I 
fusion proteins. What remains for all of these systems is to understand the pathways of 
conformational change that link the beginning and end states, and that in fact actively manipulate 

Figure 1. Influenza virus structure and infectious cycle. Viral attachment is mediated by Hemagglutinin
(HA), which bind through multi-valent, high avidity interactions to host cell surface glycans, triggering
endocytosis of the virus particle. Following acidification of the endosomal lumen, M1 dissociates
from the inner surface of the viral membrane, and HA undergoes large structural changes to drive
membrane fusion ultimately releasing the nucleoprotein-coated genome segments into the cytosol,
which is transported to the nucleus for genome transcription and replication. Viral proteins are
synthesized and post-translationally modified via the endoplasmic reticulum and trans-golgi network.
Progeny viruses are assembled at the cell surface, where Neuraminidase (NA) cleaves neighboring
sialic acid for release of newly formed virus into the extracellular milieu.

In addition to influenza HA, high-resolution structures have been determined for other type-I
fusion glycoproteins in their pre-fusion states including paramyxovirus F proteins [72–74], major
portions of the Ebola glycoprotein (GP) [75,76], and the HIV Env glycoprotein in an engineered,
mutation stabilized form, allowing identification of receptor binding sites and organization of
the receptor binding and fusion subunit [7,8,14,77]. This information has proved exceptionally
informative for understanding the viral spike structures and disposition of epitopes for neutralizing
antibodies, which most frequently target the pre-fusion conformation of the glycoprotein antigens on
the virus surface.

Structures of fragments of the proteins in the low-energy, post-fusion conformations have also been
reported. The post-fusion “hairpin” structures of type-I fusion proteins such as HIV Env gp41 and Ebola
GP2 revealed commonality of presumed fusion mechanisms, highlighting the end-stage colocalization
of N and C-terminal, membrane-active subdomains in the post-fusion conformation [19,67,68,78–81].
Metastability of the pre-fusion conformation and the low energy, ground state character of the
post-fusion conformation are believed to be common traits for type-I fusion proteins. What remains for
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all of these systems is to understand the pathways of conformational change that link the beginning
and end states, and that in fact actively manipulate membranes and drive the fusion reactions to
completion. Such a challenging task is becoming tractable through the development of biophysical
methods that enable proteins in dynamic, transient states to be analyzed under a broad range of
solution conditions.

2. Solution-Based Biophysical Approaches

Solution-phase protein labeling experiments in conjunction with mass spectrometry (MS) is a
growing field in structural biology (Figure 2A,B), providing sequence-specific information about
native protein conformational dynamics and structural organization. These approaches, including
hydrogen/deuterium-exchange mass spectrometry (HDX-MS) and oxidative radical footprinting
followed by MS analysis, can be applied to a broad range of proteins, glycoproteins, membrane-bound
proteins and even proteins in the context of whole virus particles [1,82–87]. Protein size is less of a
limiting factor than for example with nuclear magnetic resonance (NMR) spectroscopy, which also can
be used to probe structural dynamics of smaller macromolecules but is less suitable for analysis of
objects in the size range of viral glycoproteins. With the advent of more advanced mass spectrometers
such as those employing ion mobility separation for enhanced identification of peptide fragments,
it is becoming possible to analyze even more complex targets [88]. The mass spectrometry-based
methods are particularly powerful when applied to compare differences resulting from changes
in solution conditions, or between two related variants such as mutant and wild-type proteins, or
proteins in ligand-bound and free states, where for example one can map antibody epitopes within an
antibody-antigen complexes [89–92].
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Exchange Mass Spectrometry (HDX-MS). Exchange of backbone amide protons for deuterons is 
initiation by incubating a protein in deuterated buffer for various amounts of time, reaction is 
quenched at pH 2.5 and on ice, samples are denatured and digested, and mass shifts are analyzed by 
mass spectrometry; (B) Oxidative Labeling MS. Biological macromolecules in solution are exposed to 
hydroxyl radicals for various periods of time, which covalently modify solvent accessible surface area 
(SASA) via amino acid side chains. Radicals can be rapidly generated by radiolysis of water or 
photolysis of hydrogen peroxide, or slowly generated using Fenton’s reagents. The reaction is 
quenched using radical scavengers and the samples are proteolyzed and analyzed by mass 
spectrometry; (C) Small Angle X-ray Scattering (SAXS). Biological macromolecules in solution are 
irradiated with a monochromatic X-ray beam, which generate a characteristic scattering pattern. 
Computational methods such as all-atom modeling can be used to compare high-resolution structures 
to the solution-phase data, or ab initio shape reconstruction can be used to generate low-resolution 
morphological information. 

Figure 2. Solution Based Approaches for Protein Characterization (A) Hydrogen-Deuterium Exchange
Mass Spectrometry (HDX-MS). Exchange of backbone amide protons for deuterons is initiation by
incubating a protein in deuterated buffer for various amounts of time, reaction is quenched at pH 2.5
and on ice, samples are denatured and digested, and mass shifts are analyzed by mass spectrometry;
(B) Oxidative Labeling MS. Biological macromolecules in solution are exposed to hydroxyl radicals for
various periods of time, which covalently modify solvent accessible surface area (SASA) via amino acid
side chains. Radicals can be rapidly generated by radiolysis of water or photolysis of hydrogen peroxide,
or slowly generated using Fenton’s reagents. The reaction is quenched using radical scavengers and
the samples are proteolyzed and analyzed by mass spectrometry; (C) Small Angle X-ray Scattering
(SAXS). Biological macromolecules in solution are irradiated with a monochromatic X-ray beam, which
generate a characteristic scattering pattern. Computational methods such as all-atom modeling can be
used to compare high-resolution structures to the solution-phase data, or ab initio shape reconstruction
can be used to generate low-resolution morphological information.
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3. Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS)

HDX-MS (Figure 2A) probes local structural dynamics in native proteins and glycoproteins
yielding a “fingerprint” of structural dynamics with sensitivity necessary to identify isolate-specific
differences in structure and the ability to identify ligand-induced structural changes [15–17,93]. By
itself this approach does not provide 3-dimensional structural information; rather one obtains a
measurement of structural dynamics or flexibility of segments of the protein as they exist under native
conditions in the folded protein. In combination with other available structural information, HDX-MS
can be a powerful method for mapping conformational changes and characterizing structures that
may be too dynamic and flexible to characterize by crystallography or electron microscopy (EM).

HDX-MS measures the rate of deuterium incorporation at the backbone amides, which is
dependent upon fluctuations in local structural order. The apparent deuterium exchange rates of each
amide in the protein polypeptide backbone is predominately influenced by hydrogen bonding, such
as in secondary structure formation, while solvent occlusion plays less dominate role [89,93]. The
protein is incubated in D2O-based buffer under native conditions for a range of times, after which,
the solution is acidified to pH 2.5 to slow deuterium exchange at the amides. Structural analysis of
the protein requires proteolytic digestion of the partially deuterated protein under quench conditions
using acid-active proteases such as pepsin. The peptic fragments are resolved chromatographically
and analyzed by mass spectrometry. The extent of deuterium up-take for each peptide is interpreted
by the mass shift as a function of deuteration time.

The reliance upon the acid-active protease, pepsin, imposes one major limitation in HDX-MS
analysis in the form of non-uniform sequence resolution. Pepsin reproducibly cleaves the polypeptide
into a range of segments of varying length [94]. As a result, one obtains peptides that range from a few
to tens of residues in length. Addition of methods such as electron transfer dissociation (ETD) for the
further fragmentation of peptides in the mass spectrometer can in some cases increase resolution down
to individual residues [95]. Thus far, ETD has only been applied for a few studies, but with increasing
availability of appropriate instrumentation and software development it is becoming of greater utility
for HDX-MS [96,97]. The use of acid-active protease that cleave with different specificities to pepsin
may offer a way of providing complementary peptide coverage and generating an overlapping mosaic
of exchange profiles based on the two separate or combined proteolytic activities [98,99].

In the analysis of glycoproteins, resistance to proteolysis and poor signal for glycopeptides
complicates analysis [100,101]. Hyperglycosylated regions within a protein typically generate large
peptic fragments that may contain multiple glycans per peptide. In some cases the highly glycosylated
peptides bind poorly to the reverse-phase columns implemented during liquid chromatography.
Microheterogeneity of glycoforms at each N or O-linked glycosylation site results in the signal for a
glycosylated peptide to be distributed among several glycoform variants, and in the case of poorly
ionizable peptides, can significantly hamper detection.

While the vast majority of structural information for influenza HA as well as other viral
glycoproteins has come from high-resolution structural analysis of soluble constructs produced either
recombinantly or by proteolytically cleaving the proteins from intact virus, it is important to confirm
that the soluble form of the protein retains the native structure found on the intact virion. For influenza
HA this has been now demonstrated at low-resolution using cryo-electron tomography [30,31,34] as
well as in greater, sequence-specific detail by HDX-MS in which soluble, bromelain-released HA (BHA)
from A/Aichi/68/H3N2 was shown to exhibit a nearly superimposable HDX profile as HA on intact
virus particles at neutral pH [1].

The ability to vary solution conditions and analyze structure by HDX-MS enabled mechanisms
of influenza HA activation to be investigated by comparing the structure of HA under pre-fusion
and post-fusion conditions and under pH conditions approaching the threshold for activation [1].
This has helped to provide a more complete understanding of the post-fusion organization of the
full HA ectodomain. High-resolution structural characterization of post-fusion HA is limited to the
HA2 ectodomain and does not provide information about the post-fusion HA1 conformation. HA1
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monomers proteolyzed from acid-treated viral HA, complexed with an antibody Fab domain and
crystallized at pH 6.0 indicated that the overall morphology of HA1 remains similar to that seen in
the pre-fusion trimer [23]. HDX-MS analysis of HA1 in the context of the BHA trimer ectodomain,
however, exhibited much greater levels of structural dynamics than observed in the pre-fusion state
suggesting the HA1 receptor binding subunit loses much of its integrity following conversion to the
post-fusion state.

HDX-MS analysis of BHA also demonstrated that at pH values approaching fusion activation
for this isolate (pH 5.5), major increases in local conformational flexibility were observed at the
fusion peptide and HA1 hinge proximal to the HA1-HA2 interface (Figure 3) [1]. The use of
an internal standard peptide containing a single exchangeable site along with incubation time
adjustments was necessary to account for the pH-dependence of the intrinsic exchange rates during
labeling [1,102]. Previous structures obtained from HA mutants crystallized at conditions approaching
fusion, suggested that rotations within the B-loop and adjacent HA1 residues may, in part, initiate HA
activation [69,103]. Some of the local structural changes detected by HDX-MS echoed these results,
however, the solution-phase analysis of the H3 Aichi/68 BHA demonstrated that the fusion peptide and
associated structural regions become highly dynamic as the pH of fusion is approached, which was not
observed by crystallography [69,103]. Furthermore, the HDX-MS data revealed moderate stabilization
of the HA1-HA1 trimeric interface under fusion-activation conditions, in apparent contradiction of
HA1 domain dissociation or “uncaging” of the HA2 fusion subunit, which is often implicitly assumed
to initiate the fusion process (Figure 3). Instead, the recent data suggests that HA activation is initiated
by fusion peptide release and reorganization, which does not require a large-scale opening of the
trimeric spike. This pathway would appear to allow fusion peptides to bind target membranes prior to
unleashing the full HA2 “spring-loaded” transition.

Recent cryo-electron tomograms of influenza virus acidified to pH 4.9 and frozen after 5 min at
room temperature provided a low-resolution glimpse of an HA intermediate that is consistent with
HDX-MS data, displaying a narrowing of the HA2 stalk region while density for the globular head
remained intact [32]. As with all low-resolution methods, validation by orthogonal methods and
testing for consistency against available biochemical data is desirable. Investigations characterizing
HA activation intermediates by White and Wilson in 1987 used antibodies that recognize specific
conformational epitopes on HA [104]. The experiments showed that the fusion peptide release from
the fusion peptide pocket precedes exposure of epitopes at the HA1 globular head domain interfaces
that are occluded in the pre-fusion structure. In a follow-up study by Kemble et al. [105], it was
reported that fusion peptide exposure was concurrent with minor changes in the membrane distal
apex of the trimer that occurred prior to HA1 dissociation (Figure 3). This antibody mapping data is
thus consistent with the model suggested by HDX-MS for changes in HA during acid-induced fusion
activation at least for the A/Aichi/68 H3 HA that has been most intensively examined. It remains to
be determined whether HA from other subtypes exhibits similar changes upon activation. We note
that crystallography was performed with two “group 1” HA trimers, from H2 and H5 isolates, while
the HDX-MS analysis examined a “group 2” HA from an H3 virus. Given the different propensities to
inactivation that have been reported for different viral isolates [13,41,42,71], it may be the case that the
HA stability, fusion activation and transience of intermediate conformations vary between isolates.
Further studies assessing the isolate-specific dynamics during fusion activation are needed to truly
answer these remaining questions.

Indeed in the case of highly variable viruses such as HIV and influenza, it is desirable to
understand the structural basis that governs the functional and antigenic properties for each isolates,
in hopes to find a common therapeutic target [13,42,106,107]. The ability to analyze protein structure
under native solution conditions for glycoproteins by HDX-MS has made it possible to perform
comparisons of glycoprotein constructs from highly divergent viral isolates [2,15]. The structural
differences that are evident when glycoproteins such as HA and HIV Env are studied under native
solution conditions are often suppressed by removal of variable elements, partial deglycosylation,
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complex formation with stabilizing ligands such as Fabs and the constraints of crystallization
itself [15,53,108].Viruses 2016, 8, 0000 
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Figure 3. Influenza Hemagglutinin pH-Activation Models. Pre-fusion HA is composed of the two 
subunits, HA1 (grey) and HA2 fusion domain with the fusion peptide and proximal regions (red), the 
short helix (blue), the B-loop (black), the long helix (green and purple), and the C-terminal regions 
(orange), colored identically on 3HMG crystal structure below. The pH-dependent membrane fusion 
is hypothesized to commence either by the uncaging of HA1 (top pathway) from the HA2 fusion 
machinery, or by the release of the fusion peptide from the core of the trimer (bottom pathway). Once 
the fusion peptide is released, it binds the target membrane and the subsequent refolding of the B-loop 
and long helix (purple), drives the fusion of the viral membrane with the target membrane. 
Membrane fusion ends in the post-fusion conformation depicted in the bottom panel where HA1 
lobes are modeled onto the 1QU1 crystal structure. Recent solution-based techniques such as HDX-
MS and cryo-electron tomography have provided evidence for the fusion peptide release model for 
H3 HA isolate fusion activation. The HDX dynamic changes are illustrated as regions more flexible 
at low pH (red) colors and more ordered regions at low pH (blue). In the cryo-electron tomogram, 
acid-activated influenza virus is shown at early stages of membrane fusion with a synthetic liposome. 

HDX-MS has also provided significant new information about the initial stages of HIV Env 
activation upon CD4 receptor binding [2,15,52,53], which had previously been inferred at low-
resolution from EM studies [4–6,109] or crystal structures of truncated subunit constructs [49,50]. 
HDX-MS was used to compare native-like Env trimers (SOSIP.664 constructs [10]) in an unliganded 
and in CD4-bound forms (using a soluble, 2-domain form of CD4) [2]. Illustrating the specificity of 
structural perturbations that can be detected by this method, two distinct allosteric networks were 
found to be engaged by CD4 binding: one leading to opening of the trimer apex and coreceptor 
binding site exposure, and a second involving priming of the gp41 fusion subunit. HDX-MS has also 
distinguished the distinct binding modes for two CD4 binding site-targeted broadly neutralizing 
antibodies (bNAbs), VRC01 and b12. These comparisons revealed the trimer stabilizing effect in the 
case of VRC01 and the apparent destabilizing effects of b12 [3]. The HDX-MS observations of the 
soluble trimeric Env constructs in complex with highly potent bNAb and CD4 are consistent with 
recent studies using single-molecule Förster resonance energy transfer (sm-FRET) to monitor the 
dynamic conformational sampling of HIV Env on the surface of virus particles in complex with CD4 
and a panel of bNAbs including VRC01 [12]. 

Figure 3. Influenza Hemagglutinin pH-Activation Models. Pre-fusion HA is composed of the two
subunits, HA1 (grey) and HA2 fusion domain with the fusion peptide and proximal regions (red), the
short helix (blue), the B-loop (black), the long helix (green and purple), and the C-terminal regions
(orange), colored identically on 3HMG crystal structure below. The pH-dependent membrane fusion
is hypothesized to commence either by the uncaging of HA1 (top pathway) from the HA2 fusion
machinery, or by the release of the fusion peptide from the core of the trimer (bottom pathway). Once
the fusion peptide is released, it binds the target membrane and the subsequent refolding of the B-loop
and long helix (purple), drives the fusion of the viral membrane with the target membrane. Membrane
fusion ends in the post-fusion conformation depicted in the bottom panel where HA1 lobes are modeled
onto the 1QU1 crystal structure. Recent solution-based techniques such as HDX-MS and cryo-electron
tomography have provided evidence for the fusion peptide release model for H3 HA isolate fusion
activation. The HDX dynamic changes are illustrated as regions more flexible at low pH (red) colors
and more ordered regions at low pH (blue). In the cryo-electron tomogram, acid-activated influenza
virus is shown at early stages of membrane fusion with a synthetic liposome.

HDX-MS has also provided significant new information about the initial stages of HIV
Env activation upon CD4 receptor binding [2,15,52,53], which had previously been inferred at
low-resolution from EM studies [4–6,109] or crystal structures of truncated subunit constructs [49,50].
HDX-MS was used to compare native-like Env trimers (SOSIP.664 constructs [10]) in an unliganded
and in CD4-bound forms (using a soluble, 2-domain form of CD4) [2]. Illustrating the specificity of
structural perturbations that can be detected by this method, two distinct allosteric networks were
found to be engaged by CD4 binding: one leading to opening of the trimer apex and coreceptor
binding site exposure, and a second involving priming of the gp41 fusion subunit. HDX-MS has
also distinguished the distinct binding modes for two CD4 binding site-targeted broadly neutralizing
antibodies (bNAbs), VRC01 and b12. These comparisons revealed the trimer stabilizing effect in the
case of VRC01 and the apparent destabilizing effects of b12 [3]. The HDX-MS observations of the
soluble trimeric Env constructs in complex with highly potent bNAb and CD4 are consistent with
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recent studies using single-molecule Förster resonance energy transfer (sm-FRET) to monitor the
dynamic conformational sampling of HIV Env on the surface of virus particles in complex with CD4
and a panel of bNAbs including VRC01 [12].

Analysis of conformational dynamics and structural order by HDX-MS of viral glycoproteins from
other enveloped viruses has been reported recently as well. HDX-MS was used to examine the impact
of proteolytic processing of the Ebola virus GP and dynamic changes within antigenically distinct
GPs [16,17]. Identification of flexible residues within the hypervariable regions of a deglycosylated
ectodomain construct of the E2 glycoprotein from hepatitis C virus (HCV) was made possible with
the aid of HDX-MS [110]. This highlights another useful application of HDX-MS in identification
of highly flexible, dynamic regions that can be truncated to facilitate crystallization. The synergy
between HDX-MS and electron microscopy was also useful for identifying the architecture of the
human cytomegalovirus (HCMV) glycoprotein entry complexes and for identifying the discontinuous
conformational epitope of a neutralizing antibody [111]. Investigations of temperature-dependent
changes in global and local structure as probed by cryo-EM and HDX-MS in the context of an intact
dengue virus particles have also been reported [84]. These varied studies highlight the versatility of
HDX-MS for structural and functional analysis of diverse viral glycoproteins under a broad spectrum
of solution conditions.

Lastly, HDX-MS has utility in validating whether proteins are natively folded. This is an important
consideration in the development of subunit-based immunogens for viral vaccines. The ability
for a protein-subunit vaccine construct to elicit an antibody-immune response is likely contingent
upon having properly folded immunogens that present authentic epitopes to the immune system.
HDX-MS can provide rigorous assessment of whether proteins are natively folded and in the expected
conformation and organization [112,113]. Such approaches have been gaining utility in the analysis
of protein biologics with respects to storage and formulation conditions, which may become a
gold-standard required by the Food and Drug Administration [101,114–116].

4. Oxidative Labeling With Mass Spectrometry

Complementary to HDX-MS, which is highly influenced by secondary structure, oxidative labeling
analyzed by mass spectrometry (Figure 2B) utilizes hydroxyl radicals generated rapidly by either
synchrotron X-ray radiolysis of water or ultraviolet laser photolysis of hydrogen peroxide to covalently
modify solvent accessible amino acid side chains in proteins and in complexes [82,90,117–119].
By probing side-chain reactivity to radicals in bulk solvent, oxidative radical labeling allows
solvent-accessible protein surfaces to be mapped [85,87,118–121]. In addition, the versatility of the
both methods to be performed under a broad range of solution conditions enables the analysis of large
dynamic protein systems that require atypical environments (e.g., detergents, low pH) [82,86].

The oxidative labeling approach has revealed conformational changes in viral antigens such as
in a domain from the HIV gp120 receptor binding subunit [122]. It has been used to map interaction
interfaces with neutralizing antibodies, as well as to probe the structural changes in trimeric HIV Env
in response to CD4 binding [2,123]. More recently, a study combining temperature-activation and
oxidative labeling of the fusion protein from parainfluenza virus 5, identified differences in solvent
accessibility and structural reorganization between pre-fusion and post-fusion conformations [124].

A limitation of the oxidative labeling approach is that different amino acid side chains have
different intrinsic reactivities with radicals. The residues one can monitor may be unevenly
and infrequently distributed throughout the protein sequence and structure, giving rise to
relatively sparse sampling of solvent accessibility throughout the folded protein. The ability for
other solution components to react and scavenge the radicals should also be considered during
experimentation [90,125,126]. Proteins are also susceptible to oxidative damage, and rapid generation
and labeling times are necessary to prevent denaturation during labeling, which may convolute
interpretation [87,121].
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5. Small Angle X-Ray Scattering (SAXS)

SAXS (Figure 2C) is useful technique that involves the measurement of elastic X-ray scattering
from macromolecules in solution. The SAXS pattern one obtains is directly related to the 3-dimensional
organization of atoms in the scattering object, hence one can extract structural information from the
measured SAXS data [127,128]. In the most elementary application, SAXS can be used to determine
accurate protein and glycoprotein molecular weights [15,52,113,129–133]. Radii of gyration and
maximum point-to-point dimensions of the scattering object can also be readily obtained. With ab
initio shape reconstruction programs, the scattering pattern can yield low-resolution morphologies of
proteins and protein complexes in solution (Figure 2C) [128,134–136].

A particularly powerful approach has come into use more recently in which one builds upon
sometimes fragmentary high-resolution structural information by modeling in missing features and
iteratively changing and selecting models that produce optimal agreement with experimentally
measured SAXS data [137–141]. It is important to note that the solution scattering profile results from
the entirety of scattering correlations of atoms in the object of interest, hence it is essential to model
in not just missing protein loops but to include glycans and other post-translational modifications as
well [132,133]. With the experimental SAXS pattern as a constraint, in simpler cases, it is possible to
identify ensembles of models with glycan orientations that show a better agreement with the measured
data, allowing the spatial occupancy of the glycans to be estimated [132]. In ab initio modeling, due to
averaging effects and limitations on resolution, glycans tend to not be well resolved [52,132].

When applied to examine structural integrity and changes in conformation during acid-induced
activation of bromelain-released HA, SAXS demonstrated that at pH 5.25, the spike ectodomain largely
retained its pre-fusion-like organization, i.e., without HA1 domain dissociation and HA2 springing to
the helical bundle post-fusion state, though subtle structural changes that were consistent with the more
detailed HDX-MS results were observed [1]. SAXS has been applied to analyze glycosylated HIV Env
gp120 subunits, which at ~110 kDa including 50% glycans by mass are generally too small for detailed
EM analysis and too large for NMR [15,52,142]. SAXS revealed the orientation of the large V1/V2
hypervariable loops relative to the gp120 core and showed that V1/V2 shift in position following
CD4 binding [52]. SAXS also demonstrated that while they may exhibit significant differences in
local structural order, divergent gp120s retain similar global organizations [15]. SAXS thus fills an
important niche in providing structural characterization, albeit at low-resolution, of even relatively
small glycoprotein constructs, and is considerably less limited on the other end of the spectrum for
analysis of large proteins and complexes including even whole icosahedral capsids [143–149].

SAXS has also been used to map the position of a neutralizing antibody Fabs bound to a
trimeric form of HIV Env, showing good agreement with a low-resolution negative stain EM
reconstruction [150]. The implementation of SAXS was also useful for identifying different binding
modes of a cross-reactive neutralizing human antibody to the heavily glycosylated filovirus GP
glycoprotein from Marburg and Ebola, which were refractory to crystallography [149]. In examination
of receptor binding interactions with HCV E2 glycosylated ectodomain and core constructs, SAXS
proved useful in interpretation of possible binding models [110].

6. Electron Microscopy (EM)

EM is experiencing major advances in both attainable resolution and an increasingly powerful
ability to grapple with heterogeneous, conformationally variable samples over a range of sizes from
~200 kDa to megadalton structures [151,152]. Because the specimens do not require crystallization,
they can be examined under a range of solution conditions and complexed with a range of ligands.
By single-particle analysis, starting with relatively pure samples, a 3-dimensional reconstruction
of viral glycoproteins alone or in complex with antibody Fab fragments can be obtained [153].
By electron tomography (ET), complex, asymmetric and heterogeneous specimens can be imaged
to characterize virus ultrastructure [154–156]; this is useful for example in imaging glycoprotein
distribution, orientation and interaction with other ligands or receptors.
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Much like an X-ray CAT (computer assisted tomography) scans, ET enables 3D reconstructions to
be built from 2D projections gathered at different specimen tilt angles. Cryo-ET has also been used to
probe the structure of diverse enveloped viruses [30,34,157–167]. The method is also a powerful means
for imaging biological processes such as virus undergoing membrane fusion with vesicles [31,168,169],
virus entry into intact cells grown on EM grids [170], virus budding from cells [171–173], and virus
maturation [174–177], to name just a few fundamental aspects of enveloped virus biology. With cryo-ET,
resolution is typically limited to ~10–20 Å, and due to the incomplete sampling of angular orientations
(mechanical constraints limit tilt angles to ~˘70˝), information for the top and bottom of objects tend
to be poorly represented in the final reconstructions. However, in many cases, density in reconstructed
electron tomograms corresponding to surface glycoproteins can be clearly resolved and is often found
to be in excellent agreement with available high-resolution crystal structures [4,30,31,162,178].

In imaging influenza HA under fusogenic conditions, cryo-ET has proven to be a uniquely
well-suited approach that enables virus-liposome complexes to be imaged with resolution of membrane
leaflets, coordinated HA spikes and other viral components such as the M1 matrix layer that plays
a critical role in virion assembly as well as during fusion [31–33]. Intriguingly, at many of the sites
of nascent pore formation, when the target membrane is being drawn as a dimple towards the virus
envelope by a localized cluster of HA, distinct “V” or “Y” shaped densities are observed coordinating
the dimple [31]. This suggests an intermediate state of HA undergoing the refolding process with
the central HA2 helical bundle being extended but the C-terminal “leash” parts of the subunit that
are anchored to the viral membrane only partially docked into the grooves of the bundle [31,179].
Observation of such intermediate structures is likely only feasible when full-length HA natively
presented on a membrane is grappling with the target membrane.

Sub-tomogram averaging can be applied to enhance definition of glycoprotein density. This
method involves “boxing” out sub-volumes from larger 3D reconstructed fields of view and averaging
the individual boxed structures to increase signal-to-noise of common density features while
suppressing density for conformationally variable elements [180]. Cryo-ET with sub-tomogram
averaging has addressed important controversies in HIV Env structure [4,181–185], and been used to
map the binding of neutralizing antibodies to viral glycoproteins on intact virions [4,5,186] for example.
Using cryo-ET to study filovirus glycoprotein ultrastucture, the large, heavily glycosylated mucin
domain, which typically is truncated from constructs used in crystallization, could be localized [187],
and glycoprotein organization on the surface of virus particles was readily apparent from reconstructed
density maps [162]. Recent reconstructions of Gag structures on the inside of retrovirus particles have
yielded striking clarity at ~8 Å resolution, revealing for example helical sub-structures in portions of
the Gag lattices [188,189]. Gag adopts a repeated lattice organization inside of particles, which helps
constrain the individual protein copies while facilitating averaging [180]. While it may be challenging
to achieve such resolutions for the more dynamic, heterogeneous surface glycoproteins, the Gag
studies highlight what is achievable with sub-tomogram averaging under optimal circumstances with
rigorous and thorough processing and analysis.

Single particle analysis, that is typically performed on purified proteins and complexes is now
enabling structural biologists to achieve near-atomic resolution of protein assemblies without requiring
crystallization of the glycoprotein of interest [7,77,190,191]. This approach does not require proteins
to be deglycosylated or to have loops truncated, which often are necessary to produce constructs
amenable to crystallization. One images fields of proteins flash-frozen in vitreous ice, and reconstructs
a 3-dimensional image based upon the individual projection images of the individual particles. Ideally
the particles are randomly oriented, providing a thorough sampling of views of the 3-dimensional
proteins. In the reconstruction process, it is necessary to determine how the different views relate
to each other and to the 3-dimensional model. Fabs bound to proteins in the size range of common
viral antigens (~200–400 kDa) can provide prominent features that aid in the determination of particle
orientations from relatively noisy micrographs [192]. Remarkably, by single-particle analysis it is
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becoming possible to resolve significant portions of glycan chain density with the use of state-of-the-art
imaging and analysis approaches [7,191].

In some cases, samples may not be amenable to cryo-EM preparation, or one may not require the
detailed insights offered by high-resolution structure determination. In these cases, negative-stain
EM with single particle analysis can provide valuable information. Here, samples are adsorbed to
carbon-coated EM grids and a thin layer of a heavy metal stain coats the specimens. The samples
are no longer under native conditions as in cryo-EM, but staining often helps to fix the specimens,
providing a high-contrast cast of their structure. When imaging flexible proteins using negative
stain EM, adsorption to the carbon substrate, sample dehydration, and stain-protein interactions can
potentially deform the objects of interest. Thus, it is useful to validate the negative stain EM models
against all available structural information gathered by other methods such as X-ray crystallography.

Nonetheless, negative stain EM with single particle reconstruction has been useful for example in
identifying the organization of Ebola GP-antibody complexes from a panel of antibodies comprising
the ZMapp antibody cocktail, which is being used to treat the 2014 West Africa outbreak [193]. Epitope
surfaces could be localized and general Fab orientations and approach angles were clearly evident
in the low-resolution structures. Likewise in numerous studies of influenza HA, HCV, Marburg, and
Ebola glycoproteins as well as soluble, engineered forms of HIV Env trimers, negative-stain EM has
provided valuable models that reveal the epitope surfaces recognized by antibody Fabs as well as the
relative orientation of Fab and antigen in the complex [10,149,150,153,193–200].

It is useful to hold some notable caveats in mind when using electron microscopy reconstructions
for interpretation of biological data: the beautiful 3-dimensional models are constructed from images of
a subset of the total number of particles in a given population, sometimes a small minority of the total
particles. Species bias may be present in terms of the particle types or species that favorably position
themselves in the EM grid holes or that adsorb to carbon substrates in the case of negative stain EM
imaging. In the process of optimizing single particle EM reconstructions, selection of particles that
are more similar to each other and improve the resulting reconstruction also winnows the population
of particles that are used in composing the final model. Here it is useful to avoid assuming that
the end model one obtains necessarily is representative of the population that one started with in a
specimen. As classification methods improve, and sense can be made of heterogeneous samples, the
strength of cryo-EM in imaging individual particles opens new windows into studying conformational
variability and structural dynamics [152]. The reader is also referred to recent discussions that describe
the pitfalls and challenges in EM image analysis both in single-particle cryo-EM analysis [201–203]
and in cryo-electron tomography [4,181–185].

Cryo-EM has been useful for resolving the internal and external architecture of complex, enveloped
viruses, revealing how the many components—glycoproteins, matrix proteins, ribonucleoprotein
complexes, and membranes—are integrated into an infectious particle [30–33,204–208]. For some
icosahedrally symmetrical particles, such as many of the flaviviruses, cryo-EM is providing resolution
to rival crystallography. A 4.4 Å resolution structure of the Venezuela equine encephalitis virus
was able to identify novel structural features not observed by crystallography and validate de novo
models of the E1, E2 fusion protein complex in an infectious particle [209]. Different serotypes of
dengue viruses have also been solved to near-atomic resolution, which were capable of distinguishing
isolate specific differences, and identifying structural modifications necessary for viral maturation and
pH-dependent fusion [205,206,208].

7. Conclusions

Taken together, these reports highlight the diverse application of solution-phase techniques for
structural analysis and structure determination, which in combination with known high-resolution
data can be used to investigate viral glycoproteins in multiple functional states. HDX-MS, oxidative
labeling, SAXS and EM will continue to provide unprecedented insight into the most dynamic stages
of the infectious cycles of viruses as few other techniques are capable of probing these states in such
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detail. Additionally, approaches such as single-molecule fluorescence with structure-specific Förster
resonance energy transfer labels, while low in specific structural information content offer tremendous
insight into dynamics of conformational sampling and enable protein function to be directly observed
as has been demonstrated for HIV Env on the surface virus particles [12,14]. In addition, synergy is
gained between these and classical methods when information from multiple sources can be combined
to generate a far richer, more complete picture of the structure and function of these dynamic, variable
and complex viral glycoproteins than any single method alone can provide [210]. Integrative structural
biology of viral glycoproteins is thus poised to move from the realm of providing static snapshots
of beginning and end states towards shedding light on the dynamic processes and conformational
changes that drive their function.
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