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Purpose:Todevelopandassess adeep learning system that automatically detects angle
closure and quantitatively measures angle parameters from ultrasound biomicroscopy
(UBM) images using a deep learning algorithm.

Methods: A total of 3788 UBM images (2146 open angle and 1642 angle closure) from
1483 patients were collected. We developed a convolutional neural network (CNN)
basedon the InceptionV3network for automatic classificationof angle closure andopen
angle. For nonclosed images,wedevelopedaCNNbasedon the EfficienttNetB3network
for the automatic localization of the scleral spur and the angle recess; then, the Unet
network was used to segment the anterior chamber angle (ACA) tissue automatically.
Based on the results of the latter two processes, we developed an algorithm to automat-
ically measure the trabecular-iris angle (TIA500 and TIA750), angle-opening distance
(AOD500 and AOD750), and angle recess area (ARA500 and ARA750) for quantitative
evaluation of angle width.

Results: Using manual labeling as the reference standard, the ACA classification
network’s accuracy reached 98.18%, and the sensitivity and specificity for angle closure
reached 98.74% and 97.44%, respectively. The deep learning system realized the
automatic measurement of the angle parameters, and the mean of differences was
generally small between automatic measurement and manual measurement. The
coefficients of variation of TIA500, TIA750, AOD500, AOD750, ARA500, and ARA750
measured by the deep learning system were 5.77%, 4.67%, 10.76%, 7.71%, 16.77%, and
12.70%, respectively. Thewithin-subject standarddeviationsof TIA500, TIA750,AOD500,
AOD750, ARA500, and ARA750 were 5.77 degrees, 4.56 degrees, 155.92 μm, 147.51 μm,
0.10 mm2, and 0.12 mm2, respectively. The intraclass correlation coefficients of all the
angle parameters were greater than 0.935.

Conclusions: The deep learning system can effectively and accurately evaluate the ACA
automatically based on fully automated analysis of a UBM image.

Translational Relevance: The present work suggests that the deep learning system
described here could automatically detect angle closure and quantitatively measure
angle parameters from UBM images and enhancing the intelligent diagnosis and
management of primary angle-closure glaucoma.

Introduction

Primary angle-closure glaucoma (PACG) is the
most common cause of irreversible blindness in

Asians.1,2 It is estimated that there will be about
34 million people with PACG in the world by 2040, an
increase of 58.4% compared with 2013.3 This blinding
disease with increasing incidence warrants the atten-
tion of the global ophthalmic research community.
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Angle closure can cause the aqueous humor outflow
resistance to increase and lead to elevated intraocu-
lar pressure, which is a significant risk factor for optic
nerve damage.4–6 The early detection of angle closure
is an efficient measure to prevent permanent loss of
vision, and determining the anterior chamber angle
(ACA) is essential for detecting the angle closure and
assessing the risk of closure.

The diagnosis of PACG depends on the morphol-
ogy of the ACA. Gonioscopy is the gold standard
for evaluating ACA and detecting angle closure.7–10
However, gonioscopy is subjective and qualitative
and depends on the examiner’s clinical experience.8,11
Ultrasound biomicroscopy (UBM) allows observa-
tion of the peripheral ACA, iris, and ciliary body,
so it can be used for the real-time, quantitative, and
objective evaluation of ACA.12,13 Trabecular-iris angle
(TIA), angle-opening distance (AOD), angle recess
area (ARA), and other angle parameters measurable
in UBM images have been proposed for quantita-
tive assessment of ACA.12,14,15 The main limitation
of UBM imaging is the need for specialized equip-
ment, the need for highly trained personnel, the need
for an immersion bath for imaging, and associated
patient discomfort. Additionally, manual evaluation of
UBM images requires experienced ophthalmologists
and is also time-intensive. Due to the mass production
of medical images in clinical practice, it is challeng-
ing to accurately and time-effectively mark specific
anatomic structures and measure the angle parameters
in each UBM image. Therefore, deep learning–based
automatic assessment of ACA in UBM images may be
an effective alternative tool to help screen patients with
narrow angle or angle closure and then refer them to
experienced specialists for further examination.

In recent years, several studies have reported
the automatic detection of angle closure with high
accuracy.16–20 However, the studies of automated
measurement of angle parameters such as TIA, AOD,
and ARA in UBM images are quite scarce. The
automatic localization of the scleral spur and the
automatic segmentation of ACA tissue is the basis
of the automatic quantitative measurement of angle
parameters. In the current study, we developed an
artificial intelligence system composed of multilevel
convolutional neural networks (CNNs) for automatic
measurement of ACA dimensions. First, we developed
a CNN for automatic detection of angle closure in
UBM images; for nonclosed images, we developed a
CNN based on the EfficienttNetB3 network for the
automatic localization of the scleral spur and the angle
recess; then, the Unet network was used to segment
the ACA tissue automatically. Based on the results of
the latter two processes, we developed an automatic

measurement algorithm for angle parameters. This
study aims to achieve automatic detection of angle
closure and quantitative measurement of angle param-
eters for enhancing the diagnosis and management of
PACG.

Methods

UBMData Set

UBM images were collected from patients who
underwent UBM examinations at the Tianjin Medical
University Eye Hospital from May 2014 to Febru-
ary 2021. The UBM equipment was an MD-300L
produced by MEDA Co. Ltd. (Tianjin, China), and
the ultrasonic probe frequency used was 50 MHz, with
a scan depth of 5.5 mm and width of 8.25 mm. It
requires patients to be in a reclined position so that
a water bath can be placed on the ocular surface for
immersion of the probe. Images were excluded due to
ACA structural abnormalities caused by iridodialysis,
motion artifacts, or incompleteness. A total of 3788
UBM images from 1483 patients were selected from
the database consecutively, and each image contained
only one ACA. All UBM images were desensitized to
personal privacy information before being obtained by
researchers. This study was conducted following the
World Medical Association Declaration of Helsinki
principles and was approved by the Ethics Committee
of Tianjin Medical University Eye Hospital (2019KY-
24). Since the study was a retrospective study and
used desensitized UBM images, informed consent was
exempted.

The labeling process of the UBM image was divided
into two steps: (1) ophthalmologists classified each
UBM image into angle closure or open angle. If the
trabecular meshwork touched the iris, it was defined
as angle closure. Labeling an image as angle closure
did not require identification of the scleral spur since
the boundary between the cornea-scleral tissue and
the iris was blurred in closed angles. Figure 1 shows
the representative image of open angle and angle
closure. (2) For open-angle images, ophthalmologists
used LabelMe (Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA) to mark the scleral spur
coordinates, angle recess coordinates, and ACA tissue
segmentation. Figure 2 shows the labeling process.

The training of deep learning systems requires
robust reference standards. Two ophthalmologists
(each with more than 8 years of clinical experience)
classified all images as angle closure or open angle. If
their results were the same, this result was accepted
as the final result. Otherwise, a senior ophthalmologist
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Figure 1. Open-angle and angle-closure images captured by UBM. (A) Open angle. (B) Angle closure. If the trabecular meshwork touched
the iris, it was defined as angle closure.

Figure 2. The labeling process of the UBM image. TheUBMdata set included 3788 images of 1483 patients. Each imagewas independently
labeled by two experienced ophthalmologists (each with more than 8 years of clinical experience), and a third ophthalmologist (with more
than 15 years of clinical experience) made the quality check on all marked data.

withmore than 15 years of clinical experiencemade the
final decision. For open-angle images, two ophthalmol-
ogists independently marked the scleral spur and the
angle recess. The average value of the marked coordi-
nates was used as the reference standard, and the senior
ophthalmologist checked and corrected it. Likewise,
the two ophthalmologists marked the ACA tissue for
the open-angle image, and the senior ophthalmologist
checked and corrected it.

Deep Learning Model Development

Classification of Open-Angle and Angle-Closure
Images

As shown in Figure 3, the automatic classifica-
tion model of angle-closure and open-angle UBM
images was developed using the Inceptionv3 (Google
Inc, Mountain View, CA, USA) classifier with the last
layer modified to one output. Our revised Inceptionv3
model included many-layer parameters to optimize the
learning process. We used transfer learning and image
augmentation to optimize model parameters. We used
transfer learning to initialize the revised Inceptionv3
model using the model parameters pretrained on the
ImageNet,21 and then we fine-tuned model weights on
our UBM data set. We used randomly shifting with
0.2 scales, randomly rotatingwith 20 degrees, randomly

zooming with 0.2 scales, and randomly horizontally
flipping as image augmentation.

Localization of the Scleral Spur and the Angle Recess
For open-angle images, the quantitative assessment

of ACA is helpful to the assessment of closure risk.
In UBM images, the scleral spur is a critical anatomic
structure for quantitative assessment of the ACA. The
localization of the scleral spur is also a challenge in the
development of the automatic ACA analysis system. In
this study, we designed a CNN, EfficientNetB3-Unet,
based on the Unet network for the automatic localiza-
tion of the scleral spur. The network consisted of an
encodingmodule and a decodingmodule. To satisfy the
need for semantic information extraction of sclera spur
location, we used EfficientNetB3 as the main structure
to construct the encoding module, removed the final
pooling layer and fully connected layer, and used a 3
× 3 convolutional layer for further semantic informa-
tion extraction. As shown in Figure 3, we generated
the corresponding two-dimensional Gaussian heatmap
H(u, v) from the scleral spur coordinates (u0,v0) marked
by the ophthalmologist. The formula for generating the
Gaussian heatmap H(u, v) is as follows:

H (u, v) = exp

{
− (u − u0)2 + (v − v0)2

δ2

}
, (1)
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Figure 3. Deep learning models development. UBM images accompanied by classification labels, localization labels, and segmentation
labels were used to train the deep learning models.

where δ is a hyperparameter that controls the heatmap
radius. We used UBM images and the corresponding
Gaussian heatmap to train the EfficientNetB3-Unet
network to obtain the scleral spur localization model.
The output of the localization model was a heatmap
containing the position information of the scleral spur.
We used the maximum likelihood algorithm to extract
the scleral spur coordinates from the heatmap.

Although some researchers use the scleral spur as
the apex of the angle when using UBM images to
measure TIA, most ophthalmologists and researchers
still use the angle recess as the apex of the angle.14,22–25
We used the same methodology for localization angle
recess as we did for localization scleral spur.

ACA Boundary Identification
ACA tissue segmentation aims to obtain the medial

border of the angle used for the quantitative measure-
ment of angle parameters. Because the boundaries
between the cornea, sclera, iris, and ciliary body are
fuzzy, the cornea, sclera, iris, and ciliary body are
often marked as one category in the UBM image when
human resources are limited. This reduces the difficulty
of labeling and automatic segmentation of the ACA
tissue without affecting the measurement of angle
parameters. Because the Unet network can achieve
better segmentation performance on small data sets,
it has many successful applications in medical image
segmentation.26 Therefore, this study used the Unet
network to automatically segment the ACA tissue, as
shown in Figure 3. After ACA tissue segmentation, the
image-processing method was used to extract the angle
boundary automatically.

Quantification of Angle Parameters

The main parameters used to quantitatively evalu-
ate the ACA in UBM images are TIA, AOD, and
ARA. After obtaining the scleral spur and angle recess
coordinates and the boundary of the ACA tissue in the
UBM image throughmanual annotation or deep learn-
ing algorithms, we wrote a Python program to calcu-
late angle parameters. Since the trabecular meshwork
is located about 500 μm anterior to the scleral spur,
it is essential to determine the ACA morphology near
the trabecular meshwork (500 μm) and slightly anterior
(750 μm) for the evaluation of the ACA.27–29 In UBM
image analysis, the measurement of the angle parame-
ters based on the 500-μm and 750-μm anterior scleral
spur has been extensively used in clinical practice. The
Python program calculates angle parameters based on
circles with both radii. It determines the intersection
point of the circle and the cornea inner surface, draws
a line through the intersection that is perpendicular
to the cornea inner surface, determines an intersection
point of the perpendicular and anterior surface of the
iris, and then automatically calculates the angle param-
eters according to their definitions.

Statistical Analysis

Usingmanual labeling as the reference standard, the
performance of the classification model was assessed
by accuracy, sensitivity, and specificity; the perfor-
mance of the localization model was assessed by
calculating the Euclidean distance between the model-
predicted coordinates and the labeled coordinates; the
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performance of the segmentation model was assessed
by pixel accuracy (PA; indicates the proportion of
correct segmentation pixels to the total number of
pixels) and mean intersection over union (mIOU;
indicates the intersection of predicted ACA tissue and
manual annotationACA tissue divided by their union).

To assess the consistency of the measure-
ments between the ophthalmologists and the deep
learning system, we calculated the interobserver
reproducibility (within-subject standard deviation),
coefficient of variation (CV; within-subject standard
deviation divided by the overall mean), intraclass
correlation coefficient (ICC), and limits of agree-
ment based on the angle parameters measured by the
ophthalmologists and automatically measured by the
deep learning system. In the assessment, P values less
than or equal to 0.05 were considered significant.

Results

Deep Learning Model’s Performance

In total, 185 images were excluded due to ACA
structural abnormalities caused by iridodialysis (65
images), motion artifacts (18 images), or incomplete-
ness (102 images). The final data set contained 3788
UBM images with 2146 open-angle and 1642 angle-
closure images from 1483 patients. The training set,

validation set, and testing set were split randomly
at the patient’s level so that images from a single
patient were only included in the testing or train-
ing/validation sets (sample size, training set/validation
set/testing set = 6:2:2). This operation is essential to
prevent data leakage. During the ACA classification
task, 2267 images (1285 open-angle and 982 angle-
closure images) were assigned to the training set, 760
images (434 open-angle and 326 angle-closure images)
were assigned to the validation set, and 761 images
(427 open-angle and 334 angle-closure images) were
assigned to the testing set. Using the manual classifica-
tion as the reference standard, we found that the classi-
fication accuracy reached 98.18%, and the sensitivity
and specificity reached 98.74% and 97.44% for angle
closure.

During the scleral spur and angle recess localiza-
tion task and ACA tissue segmentation task, 1285
open-angle images were assigned to the training set,
434 open-angle images were assigned to the validation
set, and 427 open-angle images were assigned to the
testing set. Using coordinates marked by the ophthal-
mologists as the reference standard, we found that
the mean Euclidian distance of the scleral spur local-
ization model was 65.19 ± 51.47 μm. The Euclidean
distance distribution of the model was 5.62% within
10 μm, 50.82% within 50 μm, 80.80% within 100 μm,
and 92.74% within 150 μm. Figure 4 shows represen-
tative images of various Euclidean distances between
the scleral spur locations marked by ophthalmologists

Figure 4. Representative images of various Euclidean distances (10, 50, 100, and 150 μm) between the scleral spur locations marked by
ophthalmologists (green cross) and predicted by the deep learning model (red cross).
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Figure 5. Themeasurement results of themanual annotation and deep learning system.∠CRI (represents the angle composed of point C,
point R and point I) is TIA500, the length of CI (represents the distance from point C to point I) is AOD500, and the area of the purple area is
ARA500. (A) Themeasurement results of themanual annotation. The red contour is themanual segmentation result. Points S and R represent
the manually marked scleral spur and angle recess, respectively. The yellow circle is centered at point S with a radius of 500 μm. Point C
represents the intersection point of the circle and the cornea inner surface, and point I is the intersection of a straight line perpendicular to
the cornea inner surface and passing through point C and the anterior surface of the iris. (B) The measurement results of the deep learning
system. The red contour is the deep learning segmentation result. Points S and R represent the scleral spur and angle recess predicted by the
deep learning model.

and predicted by the deep learning model. Similarly,
we found that the mean Euclidian distance of the
angle recess localization model was 43.32 ± 41.23 μm.
The Euclidean distance distribution of the model was
9.13% within 10 μm, 74.00% within 50 μm, 94.38%
within 100 μm, and 97.19% within 150 μm. There
were no statistically significant differences in the local-
ization error distributions of scleral spur and angle
recess at different angle widths (Mann–WhitneyU test,
P > 0.05), and no association was found between
angle width and localization error. Using the manual
segmentation as the standard, we found that the PA
and mIOU of the deep learning segmentation model
reached 98.94% and 97.11%, respectively.

Quantitative Measurement of Angle
Parameters

After obtaining the scleral spur and angle recess
coordinates and the boundary of the ACA in the

UBM image throughmanual annotation or deep learn-
ing algorithms, we used the automatic measurement
algorithm to calculate angle parameters. Figure 5
and Figure 6 present the measurement results of the
angle parameters at 500 μm anterior to the scleral spur
with different angle widths. We printed the measure-
ment results of TIA, AOD, and ARA on the UBM
image.

Themean of differenceswas generally small between
measurement results of the manual annotation and
deep learning system. The CVs of TIA500, TIA750,
AOD500, AOD750, ARA500, and ARA750 measured
by the deep learning system were 5.77%, 4.67%,
10.76%, 7.71%, 16.77%, and 12.70%, respectively.
The reproducibility of TIA500, TIA750, AOD500,
AOD750, ARA500, and ARA750 was 5.77 degrees,
4.56 degrees, 155.92 μm, 147.51 μm, 0.10 mm2, and
0.12 mm2, respectively. ICC values of all the angle
parameters were greater than 0.935, indicating that
measurement results of the deep learning system and
the manual annotation had good consistency, and the
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Figure 6. The measurement results of the manual annotation and deep learning system. ∠CRI is TIA500, the length of CI is AOD500, and
the area of the purple area is ARA500. (A) The measurement results of the manual annotation. The red contour is the manual segmentation
result. Points S and R represent the manually marked scleral spur and angle recess, respectively. The yellow circle is centered at point S with
a radius of 500 μm. Point C represents the intersection point of the circle and the cornea inner surface, and point I is the intersection of a
straight line perpendicular to the cornea inner surface and passing through point C and the anterior surface of the iris. (B) Themeasurement
results of the deep learning system. The red contour is the deep learning segmentation result. Points S and R represent the scleral spur and
angle recess predicted by the deep learning model.

consistency of TIA was better than that of AOD and
ARA (Table 1). Figure 7 shows the Bland–Altman
plots of TIA500 andTIA750.Most TIAmeasurements
fell within ±1.96 SD and were clinically acceptable in
both cases.

Impact of Scleral Spur Location on Angle
Parameters

The accurate measurement of angle parameters
heavily depends on the accurate localization of the

Table 1. Consistency Between the Manual and Automated Angle Parameters Measurement

Angle Parameters Difference (LOA) CV (%) Reproducibility ICC (95% CI)

TIA500 (degrees) 0.37 (−5.36 to 6.11) 5.67 5.77 0.985 (0.982 to 0.988)
TIA750 (degrees) 0.04 (−4.53 to 4.61) 4.67 4.56 0.989 (0.987 to 0.991)
AOD500 (μm) 1.23 (−158.50 to 160.90) 10.76 155.92 0.971 (0.965 to 0.976)
AOD750 (μm) 5.60 (−153.00 to 141.80) 7.71 147.51 0.982 (0.979 to 0.985)
ARA500 (mm2) −0.003 (−0.1020 to 0.0963) 16.77 0.10 0.939 (0.926 to 0.949)
ARA750 (mm2) −0.005 (−0.1306 to 0.1207) 12.70 0.12 0.960 (0.952 to 0.967)

AOD500, angle-opening distance 500; AOD750, angle-opening distance 750; ARA500, angle recess area 500; ARA750, angle
recess area 750; CI, confidence interval; CV, coefficient of variation; ICC, intraclass correlation coefficient; LOA, limit of agree-
ment; TIA500, trabecular-iris angle 500; TIA750, trabecular-iris angle 750.
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Figure 7. Bland–Altman plots of TIA500 and TIA750. (A) Difference in TIA500 between ophthalmologists and deep learning system against
the average of the two. (B) Difference in TIA750 between ophthalmologists and deep learning system against the average of the two.

Table 2. Linear Regression Between Change in Spur
Placement and Change in Angle Parameters

Angle Parameter R2 P Value

TIA500 (degrees) 0.112 <0.0001
TIA750 (degrees) 0.125 <0.0001
AOD500 (μm) 0.185 <0.0001
AOD750 (μm) 0.274 <0.0001
ARA500 (mm2) 0.381 <0.0001
ARA750 (mm2) 0.446 <0.0001

AOD500, angle-opening distance 500; AOD750, angle-
opening distance 750; ARA500, angle recess area 500;
ARA750, angle recess area 750;

TIA500, trabecular-iris angle 500; TIA750, trabecular-iris
angle 750.

scleral spur. The linear regression analysis between
the scleral spur localization error and the absolute
error in angle parameters showed a positive linear
association. The error in the automatic localization
of the scleral spur largely explained the variance in
the automatic measurement of the angle parameters
(Table 2).

Discussion

In this study, we developed and assessed a deep
learning system composed of multilevel CNNs for
automatic assessment of ACA. The results suggested
that the artificial intelligence system can automatically
classify UBM images into angle closure (iridotrabecu-
lar contact) and open angle with high accuracy (ACC
= 98.18%). This deep learning system’s automatic
measurement of angle parameters such as TIA, AOD,
and ARA is in good agreement with the manual
measurement of open-angle images. We believe that

this automatic ACA assessment system will facilitate
the development of intelligent diagnostic systems for
PACG and enhance the application of UBM imaging
in clinical care and scientific research in PACG.

Several studies have reported automated ACA
assessment. UBM Pro 2000 (ParadigmMedical Indus-
tries, Salt Lake City, UT, USA) is a program for ACA
quantization based on UBM images.30 However, this
program requires the user to recognize the ACA and
adjust the image contrast, which may increase the
measurement differences between different observers.
The Zhongshan Angle Assessment Program proposed
a quantitative assessment method of ACA based on
anterior segment optical coherence tomography (AS-
OCT) images,31 but this method requires the operator
to determine the location of the scleral spur. Lin et
al.32 developed software for measuring angle parame-
ters and iris parameters based onUBM images, but this
method requires the operator to locate the scleral spur
and other anatomic reference points. In these studies,
users must manually identify specific anatomic struc-
tures as reference points for automatic ACA assess-
ment. These semiautomated methods introduce user
subjectivity. Manual identification of anatomic struc-
tures depends on the clinical experience of the user.
Different operators may use different criteria to locate
the reference points. Even under the same localiza-
tion criteria, there will be some localization errors due
to image resolution and contrast limitation. Image
analysis based on computer vision and deep learning
may be an effective solution for automatic quantita-
tive assessment of ACA in these instances. We realized
the automatic location of scleral spur and angle recess
and the automatic segmentation of the ACA tissue
based on a deep learning algorithm. The deep learning–
based ACA automatic assessment system we proposed
is fully automatic without anymanual intervention. For
the same input image, this deep learning system can
always output the same angle parameters. Although
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the deep learning system eliminates interobserver and
intraobserver errors in measuring a single UBM image,
factors such as the experience of the UBM operator
and the scanning position of the ultrasonic probe on
the eyeball will still affect the reproducibility of the
angle parameters measurement. Because the objective
of this study was to design a deep learning system for
automatic assessment of ACA in UBM images, clinical
information about whether patients with prior surgery
or laser treatment and whether they had secondary
angle closure was not recorded.

The ICC values between manual measurement and
automatic measurement of TIA, AOD, and ARAwere
all greater than 0.935, and the ICC value of TIA
was greater than 0.985. The CV values of AOD500,
AOD750, and ARA750 were 10.76%, 7.71%, and
12.70%, respectively. The CV values of TIA500 and
TIA750 were 5.67% and 4.67%, respectively, and
the reproducibility of TIA500 and TIA750 was 5.77
degrees and 4.56 degrees, respectively. For compar-
ison, the CV values of AOD500, AOD750, and
ARA750 achieved by the Zhongshan Angle Assess-
ment Program were 17.6%, 12.8%, and 14.9%, respec-
tively.31 Lin et al.32 described automatic measurement
of angle parameters using UBM images and reported
that the ICC ranges of TIA, AOD, and ARA were
0.60 to 0.92, 0.52 to 0.89, and 0.64 to 0.92, respec-
tively. Li et al.33 only realized the automatic predic-
tion of TIA, with an ICC of 0.95, a CV of 6.8%,
and a reproducibility of 6.1 degrees. Compared to
the abovementioned systems, our deep learning system
achieved better consistency with the manual measure-
ment results.

By analyzing the angle parameters, we found that
the consistency of TIA measured by the deep learn-
ing system was better than AOD and ARA. Accurate
measurement of angle parameters relies on precise
localization of the scleral spur. Table 2 summarizes the
relationship between the angle parametermeasurement
error and the scleral spur localization error. Compared
with the measurement errors of TIA and AOD, the
ARA measurement error had the most significant
correlationwith the scleral spur localization error (R2 =
0.446, P < 0.0001), which may have been because the
ARA measurement was greatly affected by the scleral
spur localization error but was insensitive to irregular
iris anterior surfaces. The TIA measurement error and
the scleral spur localization error were the least signifi-
cant because the TIA measurement was affected by the
scleral spur position, the irregular iris anterior surface,
and the angle recess position. The relationship between
angle parameter measurement error and scleral spur
location error largely explains the better consistency of
TIA thanAODandARA. Thewithin-subject standard

deviation for AOD 500 and AOD 750 may be relatively
large in the angle region. The reason for this may be
due to changes in the morphology of the iris.

Our proposed deep learning system can automat-
ically detect the angle closure and quantitatively
measure angle width in UBM images. Studies have
shown that some patients with PACG are not aware of
their condition before the onset of the disease, which
may produce critical visual damage to the patients.34
Therefore, using UBM imaging and the deep learning
system can help screen people at high risk for PACG
to enable intervention protecting against vision loss.
The deep learning system can also dynamicallymeasure
the angle parameters of the patient and monitor the
changing trend of the angle parameters. The angle
parameters before and after the treatment automati-
cally measured by the deep learning system can assist
ophthalmologists in evaluating the treatment effect.
Because people in underdeveloped areas have limited
access toUBMexperts with rich clinical experience, the
system can also be combined with telemedicine to help
to decide who should be referred for further evaluation
and treatment.

Our study also presents some limitations. The first
limitation is the lack of absolute ground truth in UBM
image annotation. Since the UBM image labeling
process is subjective, human errors may be introduced
in the labeling process. When the deep learning model
learns according to the labeling results of ophthal-
mologists, it will inevitably learn from human errors.
Some studies have pointed out that with the increase
of annotation experts, the objectivity of annotation
results will also increase, and the error will be concen-
trated around zero.35 Therefore, adding labeling experts
may be an effective way to alleviate the absence of
absolute ground truth. The second limitation is that
all the UBM images in the data set are from the same
UBM device. Different UBM devices may have differ-
ent image sizes and resolutions, which will affect the
assessment of the ACA. Therefore, the deep learn-
ing system proposed in this study does not apply to
other UBM devices. A third limitation is that all UBM
images in the data set are from Chinese people, so
our results may not apply to other ethnic groups. In
this study, although our data set contains many UBM
images from real-world clinical settings, the generality
of our findings should be treated with caution due to
the lack of validation of external data sets. A recent
study has shown that poor-quality images often have a
negative influence on image-based artificial intelligence
systems.36 Therefore, future work should assess the
automatic recognition of poor-quality images to ensure
that the performance of the deep learning system is not
affected by poor-quality images.
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In summary, our proposed automatic ACA assess-
ment system based on a deep learning algorithm
realizes reliable and repeatable angle-closure detection
and automatic measurement of angle parameters. In
the future, more studies are needed to evaluate the clini-
cal performance of this system and compare it to clini-
cal assessments without the use of artificial intelligence.
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