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Background: Tributyltin, a well-known endocrine disruptor, is widely used in agriculture and industry. Previous
studies have shown that tributyltin could cause deleterious effects on bone health by impairing the adipo-

Methods: To investigate further the effects of tributyltin on bone, weaned male SD rats were treated with
tributyltin (0.5, 5 or 50 ugkg™ ") or corn oil by gavage once every 3 days for 60 days in this study. Then, we analyzed
the effects of tributyltin on geometry, the polar moment of inertia, mineral content, relative abundances of mRNA
from representative genes related to adipogenesis and osteogenesis, serum calcium ion and inorganic phosphate

Results: Micro-computed tomography analysis revealed that treatment with 50 ug-kg™ ' tributyltin caused an
obvious decrease in femoral cortical cross sectional area, marrow area, periosteal circumference and derived polar
moment of inertia in rats. However, other test results showed that exposure to tributyltin resulted in no significant
changes in the expression of genes detected, femoral cancellous architecture, ash content, as well as serum calcium

Conclusions: Exposure to a low dose of tributyltin from the prepubertal to adult stage produced adverse effects

Keywords: Tributyltin, Adipogenesis, Osteogenesis, Bone geometry, Micro-computed tomography, Polar moment of

Background

Osteoporosis is an emerging medical and socioeconomic
threat characterized by systemic impairment of bone
mass and microarchitecture that increases the propensity
for fragility fractures [1], and has become a serious pub-
lic health problem [2, 3]. Genetic and environmental fac-
tors play key roles in the development of osteoporosis
[4]. Mounting evidence obtained from studies on animal
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models and population studies revealed that exposure to
endocrine disruptors (EDs) negatively affected bone
health [5-8]. Tributyltin chloride (TBT), a notorious ED,
is widely used in wood preservatives, disinfection of in-
dustrial circulation water, antifouling coatings for ships
and slime treatment in paper mills [9]. Human exposure
to TBT occurs mainly through consumption of contami-
nated dietary sources [9]. In one investigation of Mattos
et al. on butyltin (BT) contamination in Northern Chil-
ean coast, the calculated consumption of BT might ex-
ceed the tolerable daily intake recommended by
European Food Safety Authority in the most
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contaminated sites [10]. Moreover, high levels of BTs
have been detected in human liver tissue [11] and blood
samples [12]. Previous studies showed that exposure to
high dose TBT (over 10mgkg ') during gestation
period caused delayed ossification of the fetal skeleton
[13, 14]. Our previous study revealed that exposure to a
low dose of TBT (50 pgkg™ ") reduced the femoral bone
mineral density (BMD) of rats with a downtrend of bio-
mechanical strength [15].

Although measurement of BMD is an indispensable
tool to identify individuals at high risk of injury, bone
densitometry affords only a two dimensional areal view
of the three dimensional mineralized mass of the skel-
eton [4]. Micro-computed tomography (uCT) is the
most common technique for the nondestructive assess-
ment and analysis of the three-dimensional bone archi-
tecture. There were two papers using uCT to assess the
effect of TBT on bone [16, 17]. However, they both used
adult female rodents. Although osteopenia is more ser-
ious in women than men, there is a 20% osteoporotic
fracture risk in white men [2]. Moreover, skeletal growth
is rapid during adolescence, and exposure to EDs before
and during puberty therefore results in greater deficits at
a site than exposure after puberty [18]. In this study, we
would furtherly assess the effect of TBT on bone based
on femoral cancellous and cortical architecture using
uCT, derived polar moment of inertia (Jo), ash content
(mineral content), serum calcium ion (Ca**) and inor-
ganic phosphate (Pi) levels, and expression of genes re-
lated to adipogenesis and osteogenesis.

Methods

Reagents

TBT (purity 296%) was purchased from Sigma-Aldrich
Chemicals Co. (St Louis, MO). Kits for determination of
total protein, serum Ca®* and Pi were from NanJing
JianCheng Bioengineering Institute (Nanjing, China).
The QIAamp RNA Blood Mini Kit and QuantiTect
SYBR® Green RT-PCR Kits were from QIAGEN (re-
gional headquarter, Shanghai for Asia). All other chemi-
cals were of analytical grade and were obtained from
commercial sources.

Animals and treatment

21-day-old male SD rats were purchased from Beijing
Vital River Laboratory Animal Technology Co., Ltd. [Li-
cense No. SCXK (Jing) 20,160,011]. After 3 days of
acclimatization, rats were randomly assigned into four
groups (10 rats per group) based on body weight to
achieve similar average weights in different groups. Rats
were treated with corn oil or TBT (0.5, 5 or 50 pgkg ')
by gavage once every 3 days from ages of 24 d to 84 d,
while the established no observable adverse effect level
(NOAEL) of TBT was 25pugkg 'day ' based on
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immunological effects [19]. All rats were killed 1 day
after the final gavage (85 d). All treatments of rats in this
study were performed humanely in accordance with the
National Institutes of Health’s Guide for the Care and
Use of Laboratory Animals and followed the principles
described in the “Use of Animals in Toxicology,” which
were approved by the Ethics Committees of the School
of Public Health, Shandong University, in March 2019.
The identification code was 20,190,204.

Preparation of serum and femurs

Urethane was dissolved in saline solution at a final con-
centration of 20% (w/v). The rats were anesthetized with
urethane (~ 1.2 gkg™ ') by introperitoneal injection. After
reaching the surgical level of anesthesia, blood was ob-
tained from the aorta ventralis. The serum was separated
and stored at —80°C for further analysis. Both femurs
were isolated modestly, and then the muscular tissue
was removed. Five left femora were used to assess gene
expression, and the other left femora were stored at -
20°C for ash content analysis. All right femurs were
weighed and measured as described in a previous study
[15], and fixed in 4% (vol/vol) paraformaldehyde for fur-
ther research.

RNA isolation and quantitative real-time reverse
transcription-polymerase chain reaction (QPCR)

Bone marrow (BM) was flushed from the left femur (1 =
5 per group), and strained through a 70-pum cell strainer.
After centrifugation, total RNA was extracted using the
QIAamp RNA Blood Mini Kit (Qiagen, Valencia, CA)
according to the manufacturer’s recommendation. The
concentration and quality of RNA were determined with
a NanoDrop 2000c spectrophotometer (Gene Company
Limited, USA). After quality inspection, RNA was stored
at — 80 °C for QPCR.

QPCR was performed using QuantiTect SYBR® Green
RT-PCR Kits (QIAGEN) with reactions scaled to 25 pl,
and 25ng mRNA was used in each reaction. PCRs (in
duplicate) were performed using a 7500 Fast Real-Time
PCR System (Applied Biosystems, Carlsbad, CA) with a
program consisting of 95 °C for 2 min, 40 cycles of 95 °C
for 10s and then 60°C for 20s and 72°C for 30s,
followed by melting curve analysis. The primer se-
quences for each gene are listed in Table S1. Genes of
interest were normalized to the GAPDH gene in the
same sample following the 27**CT method [20]. Primers
were designed using Primer-BLAST (NCBI) or Primer5
software (Rozen and Skaletsky 2000), and were verified
by gradient amplification and melting curve analysis.

Micro-computed tomography (uCT)
The fixed femurs were scanned with a Scanco pCT100
scanner (Scanco Medical AG, Bassersdorf, Switzerland),
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at a 20 pm isotropic resolution using an integration time
of 300 ms, energy of 70 kVp, and intensity of 200 pA.
Gaussian filtering (sigma = 0.8, support = 1) was used to
reduce background noise. For analyses of trabecular
bone within the distal femur, the specimen was scanned
in 700 slices and a region of interest (ROI) of trabecular
bone was selected between 230 slices and 300 slices to
the growth plate. Trabecular bone parameters of the
femoral metaphysis, including bone volume fraction
(BV/TV), connectivity density (Conn.D), structural
model index (SMI), trabecular number (Tb.N), trabecu-
lar thickness (Tb.Th), and trabecular separation (Tb.Sp),
were determined using Scanco’s 3D analysis tools (direct
model). For cortical bone analysis, the femur specimens
were scanned similarly. One millimeter thick sections
immediately distal to the mid-diaphysis were used as
ROL In addition, total cross sectional area (TCS.Ar),
cortical cross sectional area (Ct.Ar), cortical thickness
(Ct.th), periosteal circumference (Ps.Cf), endocortical
circumference (Ec.Cf) and marrow area (Ma.Ar) were
obtained from the analysis.

Calculation of Jo

Jo was calculated as the medio-lateral (IML) + antero-
posterior (IAP) axes, following the method of Jepsen
et al. [21].

Ash content

Five left femora per group were used to detect the ash
content. The dried, and ash weights were determined as
described previously [21]. Ash content was determined
as the ash weight normalized for hydrated weight.

Serum parameters
Serum Ca®* and Pi levels were detected by colorimetry,
following the manufacturer’s instructions.

Statistical analysis

The statistical analyses were performed by SPSS soft-
ware, version 21.0 for Windows (SPSS Inc., Chicago, IL,
USA). Two-tailed Student’s t-test was used to analyze
the bone structural phenotype and Jo, which were com-
pared between the two groups. Other indicators were
analyzed by ANOVA. The significance level was set at
0.05. Once significance was established (P < 0.05), Dun-
nett’s or Dunnett’s T3 test was performed to make mul-
tiple comparisons among the groups based on the
homogeneity of variance.

Results

Effect of TBT on body weight and femur

The mean body-weight of rats is shown in Fig.1. Rat
body weights increased with prolonged feeding time,
however, exposure to TBT caused no significant effects
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Fig. 1 Effects of TBT exposure on body weight. The body weight of
rats was not affected by TBT exposure at all time points, n =10

on the body weights at all time points observed com-
pared to the control. Consistent with the body weight,
TBT-treatment caused no significant differences in fem-
oral length and weight at the end of the experiment
(Table 1).

Effect of TBT on the mRNA expression of genes involved
in adipogenesis and osteogenesis in BM

PPARYy is a key transcriptional regulator of fat formation
[22], while Fabp4 and Angptl4 are their target genes [23,
24]. Runx2 and ALP are early osteogenic markers [25,
26] and osteocalcin (OC) is a late osteoblast differenti-
ation marker [27].

Analysis with QPCR analysis showed no notable TBT-
related changes in the expression of PPARY, Fabp4, ALP
and OC at 85 d (Fig.2). The relative expression of Fabp4
showed 1.69-, 1.68- and 1.48-fold increases in respective
TBT groups, but the change was not significant (P =
0.153). Although the expression of Angptl4 showed a
significant decrease in the 0.5pugkg ' and 5pgkg *
TBT groups compared with the control (P<0.05), the
degree of the decline was minor (- 29.79% and - 24.25%,
respectively).

Effect of TBT on microstructure of femur

Quantitative measures of trabecular bone quality showed
a decreasing trend in the BV/TV (- 24.60%, P =0.153)

Table 1 Bone length and bone weight of rats

Group (ug-kg"') Bone length (mm) Bone weight (g)

Control 3647 £1.35 084 £0.10
TBTCl 0.5 36.15 £ 1.36 0.85 £ 0.08
TBTCI 5 36.06 = 0.95 0.86 £+ 0.08
TBTCI 50 36.00 + 0.99 0.85 + 0.06

Date was shown as means + SD, n=10
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Fig. 2 Effect of TBT on genes expression related to adipogenesis and osteogenesis. Expression of PPARy (a), Fabp4 (b), Angptl4 (c), ALP (d), OC
(e) and Runx2 (f) under different treatments. Data were presented as mean + SEM, n =5, *P<0.05, compared with control
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along with a decreasing trend in Conn. D (- 17.56%, P =
0.277), Tb. N (- 14.92%, P =0.193), and a subtle increase
in Tb. Sp (+10.53%, P =0.390) and SMI (+ 15.17%, P =
0.124), in TBT-treated rats compared to controls, al-
though the differences were not significant (Fig.3). In
contrast, the analysis of the mid-diaphysis showed that
TBT-treated rats had a smaller Ct. Ar, Th. Ar and Ps. Cf
than those of their control counterparts (Fig.4; P < 0.05),
but had no effects on other indexes.

Effect of TBT on Jo
Jo was significantly reduced in 50 pgkg™' TBT-treated
rats, compared with control rats (P < 0.05, Fig.5).

Effect of TBT on ash content
There was no significant difference in ash content be-
tween the TBT groups and the control group (Fig.6).

Effect of TBT on serum Ca®* and pi levels

As shown in Fig.7, there were no significant changes in
serum levels of Ca®>" and Pi between the control and
TBT treated rats.

Discussion

Consistent with our previous result on the BMD of the
femur, pCT analysis revealed that the effect of TBT was
more significant on the diaphysis than on the cancellous
diaphysis in the femur of rats in this study. However, the
study of Watt et al. observed a reduced femoral cortical
cross-sectional area and thinner cortex with increased
cancellous Tb. Th, Tb. N, and BV/TV in TBT-treated
mice [16]. The discrepancies between the two studies

might be explained by (1) the different dose. EDs could
exhibit complex dose-response curves, and they might
produce different effects at extremely low concentrations
[28-30]. The highest concentration used in our study
was 200-fold lower than the dose used in the study by
Watt et al; (2) The different species and sexes. Several
systematic studies have revealed that femoral morph-
ology and composition differ in genetic variation, sex
and age [31-33]; (3) The different exposure times. Our
exposure time included puberty of rats while that of
Watt et al. only included the adult stage. Notably, skel-
etal growth is rapid during adolescence [34], in which
endochondral and intramembranous ossification are
produced simultaneously, while the process of endo-
chondral ossification disappears after puberty [35].
Hence, the effect of TBT in this study includes the effect
on skeletal development, while such an effect in the
study of Watt et al. [16] is only on bone remodeling. As
a long bone, the femoral diaphysis is a hollow cylinder
whose size and shape can be influenced by the relative
amounts of bone deposition and resorption on the peri-
osteal and endosteal surfaces [36—39]. Therefore, a sig-
nificantly smaller periosteal expansion and marrow
infilling might lead to a smaller Ct. Ar, Th. Ar and Ps.
Cf, which reflected the relative contribution of osteo-
blasts and osteoclasts working on them [33]. Indeed,
in vitro studies showed that TBT not only inhibited os-
teoblasts [40, 41] but also suppressed osteoclastogenesis
and resorptive activity of osteoclasts [16, 42].
Mesenchymal stem cells (MSCs) are multipotent cells
contributing to osteoblast and adipocyte progenies in
adult bone marrow [43]. As common progenitor cells of
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Fig. 3 Effects of TBT on femoral metaphysis of rat. Representative uCT images of trabecular architecture in the distal metaphysis form control and
the 50 pg«kg’1 TBT rats (a), BV/TV (b), Conn. D (c), SMI (d), Tb. N (e), Tb. Th (f), Tb. Sp (g). Data were presented from individual rat, and the mean

adipocytes and osteoblasts, the commitment towards
these lineages is classically considered to be inversely re-
lated [44]. As a dual RXRa/p and PPARy agonist [22],
TBT could reprogram BM-MSCs towards adipogenesis
at the cost of osteogenesis in vitro [40, 41] and in vivo
[45]. In contrast, TBT did not obviously change the ex-
pression of PPARy and its target genes in this study.
Consistent with the response of genes involved in adipo-
genesis, genes associated osteogenesis (ALP, OC and
Runx2) were not significantly changed in this study.
Since the relative expressive fold of Angptl4 expression
was marginal only in the 0.5 and 5 pgkg™' TBT groups,
and had no effects in the 50 ugkg™* TBT group. These
data revealed that the impaired effects of TBT on the

mesenchymal differentiation disappeared at 85d, sug-
gesting that TBT treatment might have no persistent ef-
fects on the adipo-osteogenic balance in the BM of rats
at the transcriptional level. This no residual effects might
be partly due to the resistance produced by rats to TBT.
One recent paper showed that feeding young mice a
high-fat diet (HFD) significantly increased the
CD45°CD31 Scal"CD24" (a tri-potent population with
stem cell-like characteristics) and adipogenic progenitor
cells (APCs) frequencies for 1day but not for 10 days
[46]. Our recent study showed that TBT treatment re-
sulted in a dose-dependent increase in lipid accumula-
tion and adipocyte number in the BM of the femur [15].
In addition, our previous study demonstrated that TBT-
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induced functional perturbations of the gut microbiome
were similar to the HFD styles [47]. Therefore, whether
the effect of TBT on APC proliferation is similar to that
of HFD needs to be further investigated.

The different effects of TBT between this study and
in vitro studies [40, 41] were at least partially were ex-
plained by the compensation effect of rats, because ex-
perimental animals can exert feedback mechanisms to
counteract harmful effects. However, one paper [45] ob-
served up-regulated MSCs expression of genes involved
in lipogenesis in all three subsequent generations after
ancestral perinatal TBT exposure. Preimplantation de-
velopment is a major developmental period of epigenetic
reprogramming of the genome in mammalians [48]. In-
deed, exposure to TBT throughout pregnancy and lacta-
tion induced genome-wide alterations in methylation
and altered the expression of metabolism-relevant genes
in unexposed male descendants [49]. However, genomic
methylation patterns are generally stable and heritable in
somatic differentiated cells [48]. Therefore, the different
exposure times might be a plausible explanation for the
discrepancy between that of Chamorro-Garcia et al. [45]
and ours.

Jo is a quantity used to predict an object’s ability to re-
sist torsion. Because structures possessing the same Ct.
Ar but different moments of inertia (e.g., a solid cylinder
and a tube) will exhibit different mechanical characteris-
tics in bending and torsion [50], so measuring Jo is ne-
cessary. Moreover, the level of Jo is consistent with bone
strength [51]. Ct. Ar, Jo, and ash content together might
explain 66—88% of the genetic variability in adult whole
bone mechanical properties [21, 33]. In this study, treat-
ment with 50 pg-kg™' TBT caused a significant decrease
in Ct. Ar and Jo, but not on ash content, which might be
one possible explanation for the reduced but no signifi-
cantly different biomechanical strength change induced
by TBT in our previous study [15].

The skeleton is made of collagen fibers that form a
scaffold where mineralization is initiated by the accumu-
lation of Ca®* and Pi, mainly in the form of crystalline

hydroxyapatite (HA) [52]. Calcium and phosphorus play
critical roles in diverse biological processes including
bone mineralization [53, 54]. TBT treatment resulted in
no significant changes in the serum Ca* and Pi levels in
this study, which was in accordance with the data of ash
content.

Conclusions

In conclusion, treatment with 50 ug-kg™* TBT caused a
significant decrease in femoral Ct. Ar, Th. Ar and Jo of
rat. All the data suggest that exposure to a low dose of
TBT from the prepubertal to adult stage produces ad-
verse effects on skeletal architecture and strength.
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