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Abstract: Chronic inflammation contributes significantly to the development and progression of
atherosclerosis. However, the factors that lead to an inflammatory imbalance towards a proinflam-
matory state are not yet fully understood. The CRP rs1800947, TNFA rs1800629, and IL6 rs1800795
polymorphisms may play a role in the pathogenesis of atherosclerosis and were therefore selected to
investigate the influence of genetic variability on the corresponding plasma levels after treatment
with a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor. A group of 69 patients with
stable coronary artery disease after myocardial infarction before the age of 50 years and very high
lipoprotein(a) levels were enrolled in the study. All patients received a PCSK9 inhibitor (evolocumab
or alirocumab). Genotyping was performed using TaqMan assays (CRP rs1800947, TNFA rs1800629,
and IL6 rs1800795). Consistent with previous studies, no significant change in levels of inflamma-
tory biomarkers was observed after 6 months of treatment with PCSK9 inhibitors. We also did
not detect any significant association between single nucleotide polymorphisms CRP rs1800947,
TNFA rs1800629, and IL6 rs1800795 and plasma levels of high-sensitivity C-reactive protein (hsCRP),
tumor necrosis factor-α (TNF-α), or interleukin 6 (IL6), respectively, at enrollment. However, the
difference in IL6 levels after treatment with PCSK9 inhibitors was statistically significant (p = 0.050)
in patients with IL6-74CC genotype, indicating the possible role of the IL6 rs1800795 polymorphism
in modulating inflammation.

Keywords: polymorphism; inflammation; CRP rs1800947; TNFA rs1800629; IL6 rs1800795; lipoprotein(a);
PCSK9 inhibitors; cardiovascular disease

1. Introduction

Atherosclerosis was considered to be the degenerative disorder of the vessel wall, with
elevated levels of low-density lipoprotein cholesterol (LDL-C) being one of the best-known
risk factors for cardiovascular disease (CVD). However, there is growing evidence that
inflammation plays a central role in all steps of atherogenesis, from endothelial dysfunction,
plaque formation, its rupture and thrombus formation [1]. Proinflammatory cytokines
such as interleukin (IL) 6 and tumor necrosis factor-α (TNF-α) promote inflammation,
whereas anti-inflammatory cytokines such as IL10 attenuate the inflammatory response.
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An impaired inflammatory balance with a shift toward a proinflammatory state leads to
chronic low-grade inflammation, in which gene polymorphisms may play an important
role [2].

High-sensitivity C-reactive protein (hsCRP) is a well-established marker of inflamma-
tion and is associated with risk for CVD [3]. However, its casual role in the development
of CVD is questionable [4]. CRP is produced in the liver in response to proinflammatory
cytokines such as IL6, which is secreted by activated cells at the site of inflammation [5].
CRP levels are considered to be an independent predictor of acute cardiovascular events in
primary [6] and secondary prevention [7]. CRP levels are determined by several factors
such as age, body mass index, and smoking status [8]. In addition, there is also evidence of
a strong genetic component, as family and twin studies have shown that genetic variability
in the CRP gene accounts for up to 40% of the variance in CRP levels [9–11]. The most
studied variant of the CRP gene is rs1800947, a synonymous substitution within exon 2
known as G1059C, which results in lower CRP levels [12].

Single nucleotide polymorphisms (SNPs) of cytokine genes affect gene transcrip-
tion and cytokine secretion that could modulate the risk of CVD [12]. TNF-α is one of
the most important proinflammatory cytokines. Through its presence in atherosclerotic
plaques, TNF-α contributes to plaque progression by enhancing the local inflammatory
response [13,14]. Substitution in the promoter region of the TNFA gene (rs1800629), known
as −308G>A, leads to increased TNF-α production [15]. The proinflammatory cytokine
IL6 modulates endothelial synthase activity in endothelial cells, involved in leukocyte
recruitment to the vessel wall, and stimulates smooth muscle cell proliferation [16]. The
rs1800795 polymorphism in the IL6 gene, known as −174G>C, is a substitution in the
promoter region affecting the transcription rate of the gene and subsequent plasma con-
centrations of IL6 [17]. However, the effect of this polymorphism is complex and may
depend on other factors such as physiological and psychological stress, metabolic factors,
age, and body mass index [18]. In patients after acute myocardial infarction IL6 levels have
been associated with increased cardiovascular mortality during a 3-year follow-up period
independently of other inflammatory parameters [19].

In addition to inflammatory markers, elevated lipoprotein(a) (Lp(a)) levels have been
identified as one of the major contributors to atherosclerotic changes and as an independent
predictor of cardiovascular morbidity and mortality [20] in the general population and in
patients with established coronary artery disease [21]. The proinflammatory effects of Lp(a)
are mediated by increased oxidized phospholipid content in Lp(a), induced expression
of inflammatory cytokines and ILs, including IL1β, IL6, IL8, and TNF-α, and increased
chemotaxis of monocytes [22].

The level of Lp(a) is genetically determined by variants in the LPA gene with ap-
proximately 30% of the population having levels in the atherothrombotic range [23]. The
incidence among patients with established CVD is possibly even higher [24]. Pharmaco-
logical interventions to lower LDL-C levels are well established, whereas effective Lp(a)-
lowering therapies are still in development [25]. Proprotein convertase subtilisin/kexin
type 9 (PCSK9) inhibitors reduce LDL-C levels by up to 65%, while the reduction in Lp(a)
ranges from 20 to 40%; therefore, in patients with very high Lp(a) levels, Lp(a) remains
elevated [26].

Inflammation is not only the driver of CVD, but also represents a possible therapeutic
target. Complex mechanisms underlying the atherosclerotic inflammation and variability
between different subjects should be elucidated. Since the genetic component may have
an important role, the objectives of our study were (1) to determine the allelic frequencies
and genotype distribution of polymorphisms CRP rs1800947, TNFA rs1800629, and IL6
rs1800795; (2) to identify the association of these polymorphisms on inflammatory status;
and (3) to evaluate the effect of genetic variability and 6 months of treatment with PSCK9
inhibitors on inflammatory status in a cohort of patients with myocardial infarction before
the age of 50 years and very high Lp(a) levels.
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2. Materials and Methods
2.1. Study Participants

A total of 69 patients were enrolled in the study from November 2019 to May 2021 and
were followed for 6 months. All patients had clinically stable coronary artery disease for
at least 6 months after myocardial infarction, which occurred before the age of 50 years.
Included patients had a Lp(a) level > 1000 mg/L or Lp(a) level > 600 mg/L and LDL-C
level > 2.6 mmol/L. All patients received maximally tolerated statin therapy and ezetimibe
if needed, β-blockers, antiplatelet drugs, and angiotensin-converting enzyme inhibitors.
Their therapy had not changed for at least 2 months before enrollment in the study. The
main exclusion criteria were liver transaminases elevated more than three times above
reference values, severe renal dysfunction, serum creatinine level higher than 200 mmol/L,
and acute illness in the previous 6 weeks.

After enrolment, all patients underwent clinical and laboratory evaluation and were
then randomized into two groups. The first group of 39 patients received a PCSK9 inhibitor
(alirocumab (150 mg) or evolocumab (140 mg), subcutaneously, every two weeks), whereas
the second group of 30 patients received placebo initially, and after six months, the PCSK9
inhibitor. In total, 35 patients received alirocumab and 34 received evolocumab. Clinical
and laboratory parameters were measured before and after six months of placebo and after
six months of the treatment period as previously described in detail [27].

The study protocol was approved by the Slovenian Ethics Committee for Research in
Medicine (0120-357/2018/8). All participants gave written informed consent in accordance
with the Declaration of Helsinki.

2.2. Blood Collection and Laboratory Investigations

Peripheral blood samples were collected in tubes without and with anticoagulant
(K3-EDTA) to obtain serum, plasma, and buffy-coat. Aliquots of samples were immediately
stored at –20 ◦C. All laboratory parameters were measured in the Laboratory of Haemostasis
and Atherothrombosis at the Clinical Department of Angiology, University Clinical Centre
Ljubljana, according to standard laboratory procedures.

2.3. Genotyping

Genomic DNA was isolated from buffy-coat samples using the FlexiGene DNA kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Three SNPs were
selected for analysis: CRP rs1800947, TNFA rs1800629, and IL6 rs1800795. Genotyping
was performed using Predesigned TaqMan SNP Genotyping Assays (Thermo Fisher Scien-
tific, Waltham, MA, USA) and TaqMan™ Genotyping Master Mix (Applied Biosystems,
Waltham, MA, USA) according to the manufacturer’s instructions in a QuantStudio 7
Flex Real-Time PCR System (Applied Biosystems, Waltham, MA, USA). Genotyping was
performed blind to all clinical data and was repeated randomly on 15% of samples to check
the reliability of genotyping.

2.4. Statistical Analysis

All analyses were performed using IBM SPSS Statistics version 27.0 (IBM Corporation,
New York, NY, USA). For descriptive statistical analysis, the normality of the distribution
of continuous variables was tested using Shapiro–Wilk test. The median with interquartile
range (25–75%) or the mean with standard deviation were used to describe the central
tendency and variability of the continuous variables. The frequencies were used to describe
the distribution of the categorical variables. Wilcoxon signed-rank test was used to assess
changes during the placebo and treatment periods. For all SNPs, Chi-square test was
used to assess deviation from Hardy–Weinberg equilibrium (HWE). The association of
genotyping data with continuous variables were analyzed using the nonparametric Mann–
Whitney U tests. All statistical tests were two-sided. The level of statistical significance was
set at 0.05. Figures were prepared with GraphPad Prism 9 (San Diego, CA, USA).
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3. Results
3.1. Patient Characteristics

A total of 69 patients with a median age of 52.6 (45.8–56.9) years and a mean age of
45 years at first coronary event were included in the study. The cohort was composed of
61 (88.4%) men and 8 (11.6%) women. Patient characteristics and levels of lipid parameters
and inflammatory markers are shown in Table 1.

Table 1. Baseline characteristics of patients included in the study (n = 69).

Parameter Value

Age at inclusion (years) 52.6 (45.8–56.9)
Body mass index (kg/m2) 28.6 ± 3.9

Systolic blood pressure (mmHg) 128 (120–135)
Diastolic blood pressure (mmHg) 78 (70–82)

Heart rate (beat/min) 61 (56–67)
Total cholesterol (mmol/L) 4.24 ± 0.82

HDL-C (mmol/L) 1.20 ± 0.28
Non-HDL-C (mmol/L) 2.90 (2.40–3.68)

LDL-C (mmol/L) 2.27 (1.69–2.66)
Triglycerides (mmol/L) 1.43 (1.01–2.12)

Lp(a) (mg/L) 1483 (1196–1785)
ApoA1 (g/L) 1.28 (1.19–1.45)
ApoB (g/L) 0.79 (0.67–0.99)

hsCRP (mg/L) 0.87 (0.41–2.31)
TNF-α (ng/L) 3.91 (3.13–5.14)

IL6 (ng/L) 1.69 (1.20–2.18)
IL8 (ng/L) 13.5 (10.6–17.8)

HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Lp(a), lipoprotein (a);
apo, apolipoprotein; hsCRP, high-sensitivity C-reactive protein; TNF-α, tumor necrosis factor-α; IL, interleukin.
Data are presented as medians (25–75%) for variables not normally distributed and as means ± standard deviation
for variables with normal distribution.

3.2. Single Nucleotide Polymorphism Frequencies in Selected Genes of Inflammatory Markers

The distribution of genotype frequencies for the polymorphisms studied and minor
allele frequencies (MAFs) are shown in Table 2. All SNPs were in HWE (p > 0.05). MAFs
for the European non-Finnish population, retrieved from the gnomAD database v2.1.1
(https://gnomad.broadinstitute.org/, accessed on 20 January 2022), are 0.065 for CRP
rs1800947, 0.443 for IL6 rs1800795, and 0.165 for TNFA rs1800629 and are in agreement with
our cohort.

Table 2. Genotype and minor allele frequency of included patients for selected polymorphisms (n = 69).

SNP Genotype Number (%) p Value HWE MAF

CRP
rs1800947

CC 58 (84.1)

1.000 0.087CG 10 (14.5)

GG 1 (1.4)

TNFA
rs1800629

GG 58 (84.1)

1.000 0.087GA 10 (14.5)

AA 1 (1.4)

IL6
rs1800795

CC 16 (23.2)

0.988 0.478GC 34 (49.3)

GG 19 (27.5)
SNP, single nucleotide polymorphism; HWE, Hardy–Weinberg equilibrium; MAF, minor allele frequency.

https://gnomad.broadinstitute.org/
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3.3. Plasma Levels of Inflammatory Markers at Enrollment and after Treatment with
PCSK9 Inhibitors

Plasma levels of inflammatory markers were measured at enrollment and after 6
months of placebo or treatment. Plasma levels of hsCRP, TNF-α, IL6, and IL8 did not
change significantly in either the control or treatment groups (Table 3).

Table 3. Plasma levels of inflammatory markers in control (n = 30) and treatment (n = 68) group at
baseline and after 6 months.

Inflammatory
Marker Group Baseline After 6 Months p Value

hsCRP (mg/L)
Control 0.80 (0.39–2.23) 0.74 (0.35–1.47) 0.713

Treatment 0.85 (0.36–1.81) 0.79 (0.31–1.57) 0.989

TNF-α (ng/L)
Control 3.74 (2.99–5.02) 3.91 (3.05–5.25) 0.396

Treatment 3.91 (3.36–5.36) 3.30 (2.53–6.04) 0.402

IL6 (ng/L)
Control 1.69 (1.19–2.18) 1.69 (1.19–2.75) 0.614

Treatment 1.69 (1.20–2.53) 1.36 (1.16–2.18) 0.066

IL8 (ng/L)
Control 11.8 (10.8–16.1) 11.5 (10.8–16.3) 0.819

Treatment 13.5 (10.7–17.7) 15.5 (10.8–24.1) 0.250
hsCRP, high-sensitivity C-reactive protein; TNF-α, tumor necrosis factor-α; IL, interleukin. Data are presented as
median and interquartile range (25–75%).

3.4. The Influence of Investigated Genotypes on Plasma Levels of Inflammatory Markers and Levels
of Lipoprotein(a)

The major novelty of our study was that we examined the association between geno-
types and plasma levels of inflammatory markers. For all polymorphisms, we used an
additive genetic model, in which we combined patients with a present alternate allele.
There was no statistically significant difference between the different genotypes and the
levels of the corresponding inflammatory markers (Table 4).

Table 4. Association of SNPs with plasma levels of inflammatory markers at enrolment (n = 68).

SNP Genotype Median (25–75%) p Value

CRP
rs1800947

CC 0.93 (0.41–2.10) mg/L
0.664

CG+GG 0.81 (0.40–2.38) mg/L

TNFA
rs1800629

GG 3.91 (3.05–5.14) ng/L
0.555

GA+AA 3.83 (3.28–35.27) ng/L

IL6
rs1800795

CC 1.69 (1.20–2.07) ng/L
0.888

CG+GG 1.69 (1.18–2.36) ng/L
SNP, single nucleotide polymorphism.

Additionally, polymorphisms TNFA rs1800629 and IL6 rs1800795 were not associated
with hsCRP levels (p = 0.467 and p = 0.741, respectively).

There was no statistically significant difference in hsCRP and TNF-α levels before and
after 6 months of treatment, regardless of the genotype present. However, IL6 levels were
significantly different (p = 0.050) in patients with genotype CC after treatment with PCSK9
inhibitors (Figure 1).

The variability in inflammatory genes was not associated with the level of Lp(a) at
enrolment in the study (Table 5).
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Table 5. The association of genetic variability in inflammatory genes with the median level of Lp(a)
(mg/L) at enrolment (n = 69).

SNP Genotype Median (25–75%) p Value

CRP
rs1800947

GG+GC 1559 (974–1782)
0.782

CC 1463 (1196–1837)

TNFA
rs1800629

AA+AG 1607 (1219–2105)
0.376

GG 1462 (1171–1741)

IL6
rs1800795

GG+CG 1461 (1011–1785)
0.316

CC 1580 (1295–1871)
SNP, single nucleotide polymorphism.

3.5. The Correlation of the Change of Inflammatory Markers with the Change of Lipid Parameters
after Treatment with PCSK9 Inhibitors

We performed Spearman’s Rho correlation analysis to investigate the association
between the change in plasma level of inflammatory markers and lipid parameters after
6 months of treatment with PCSK9 inhibitors. We found no statistically significant corre-
lations between the change in hsCRP, TNF-α, IL6, and IL8 levels and the change in lipid
parameters (Table 6).

Table 6. Spearman’s Rho correlation analysis between changes in inflammatory marker and lipid
levels after treatment with PCSK9 inhibitors.

Parameter
hsCRP TNF-α IL6 IL8

Rho p Value Rho p Value Rho p Value Rho p Value

Total cholesterol −0.022 0.863 −0.081 0.519 0.061 0.629 0.056 0.656

HDL-C −0.138 0.272 −0.037 0.769 0.091 0.471 −0.015 0.904

LDL-C 0.044 0.726 −0.009 0.946 0.103 0.415 0.087 0.489

Triglycerides −0.019 0.881 −0.097 0.443 −0.077 0.543 −0.077 0.543

Lp(a) 0.104 0.419 −0.168 0.188 −0.227 0.073 −0.076 0.552

ApoB 0.009 0.945 −0.097 0.453 0.031 0.808 0.064 0.623

ApoA1 −0.116 0.371 −0.166 0.198 −0.077 0.549 0.098 0.449

hsCRP, high-sensitivity C-reactive protein; TNF-α, tumor necrosis factor-α; IL, interleukin; HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Lp(a), lipoprotein(a); apo, apolipoprotein.
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However, we found significant correlations between changes in some plasma cy-
tokine levels. The change in plasma TNF-α level was correlated with the change in IL6
(Rho = 0.360, p = 0.003) and IL8 (Rho = 0.625, p < 0.001). There was also a correlation
between the change in IL6 and IL8 (Rho = 0.459, p < 0.001) (Figure 2).
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4. Discussion

To our knowledge, the present study is the first to investigate CRP rs1800947, TNFA
rs1800629, and IL6 rs1800795 polymorphisms and their association with the corresponding
plasma levels after treatment with PCSK9 inhibitors. Our results showed no significant
difference in hsCRP and TNF-α levels before and after treatment, regardless of the genotype
present. On the other hand, IL6 rs1800795 CC polymorphism was associated with a statisti-
cally significant difference in IL6 levels after treatment with PCSK9 inhibitors. This has not
been reported previously and is suggesting that the G allele of the IL6 rs1800795 polymor-
phism is likely to be associated with increased residual inflammation after treatment with
PCSK9 inhibitors in patients with premature myocardial infarction and very high Lp(a)
levels. Chronological measurements allowed us not only to assess the influence of genetic
variability at the baseline levels, but also to evaluate the impact of genetic variability on
the plasma levels of inflammatory markers after treatment with PCSK9 inhibitors. Indeed,
the study of gene polymorphisms in inflammatory marker genes could help to elucidate
the dynamics of the inflammatory response and to develop new therapeutic strategies.
However, the studies of gene polymorphisms in relation to inflammatory markers after
treatment with PCSK9 inhibitors are scarce. Several clinical trials in CVD patients have
investigated the effect of PCSK9 inhibitors on inflammatory markers, especially on hsCRP
levels. A multicenter, double-blind, placebo-controlled study EQUATOR showed that
24 weeks of treatment with the PCSK9 inhibitor RG7652 did not significantly alter circulat-
ing hsCRP levels and the proinflammatory cytokines TNF-α and IL6 in patients at high
risk or with established coronary heart disease [28], which is in line with our results. One
of the possible explanations as to why no effects of PCSK9 inhibitors on inflammatory
parameters were found in both studies is the background therapy with statins, because
the majority of patients received maximally tolerated statin therapy. Statins have been
shown to affect hsCRP, TNF-α, and IL6 levels in patients at high risk for CVD [29]. In-
deed, statins, in addition to LDL-C, also lower inflammation, so PCSK9 inhibitors may not
further reduce inflammatory markers [30,31]. Statins have a direct effect on various cell
types and signaling pathways involved in the atherogenic process via lipid-lowering and
also lipid-independent mechanisms, which contribute to the atheroprotective effects [32].
Baseline hsCRP was less than 1 mmol/L in our patients, which is considered low risk [33].
Despite the dramatic reduction in LDL-C levels, hsCRP remains a risk marker regardless of
the LDL-C level achieved [34]. The same is true for IL6, as reported in the CANTOS trial.
Namely, antagonism of IL1-reduced circulating IL6 levels [35]; however, the residual risk of
CVD was proportional to IL6 levels in a subgroup of the CANTOS trial [36]. Interestingly,
although the change in inflammatory markers after treatment with PCSK9 inhibitors was
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not significant, we found significant positive correlations between the change in TNF-α
and IL6 levels, TNF-α and IL8 levels, and IL6 and IL8 levels after treatment with PCSK9
inhibitors. Therefore, there seems to be a mechanism that regulates cytokine levels, which
may contribute to residual inflammation.

Similarly, in patients with elevated Lp(a) and LDL-C levels, treatment with the PCSK9
inhibitor evolocumab did not alter either local inflammation in the arterial wall or systemic
inflammation measured by hsCRP, although LDL-C levels were reduced by more than
60% and Lp(a) by almost 14% [37]. Local inflammation was measured using 18F-fluoro-
deoxyglucose positron-emission tomography/computed tomography (18F-FDG PET/CT).
Arterial 18F-FDG uptake correlates with arterial macrophage content [37]. In this study,
more than 50% of the patients were treated with statins. On the other hand, in patients
with coronary artery disease or familial hypercholesterolemia who do not take statins
due to statin intolerance, treatment with alirocumab attenuates arterial wall inflammation
without changing hsCRP [38]. The difference between these two studies was higher Lp(a)
levels both at baseline and the end of the study. Although we cannot directly compare
these two studies, we can assume that this difference may explain the persistent arterial
wall inflammation.

Patients after myocardial infarction have a higher risk of recurrent events, which has
been associated with increased levels of proinflammatory molecules [39]. We showed that
genetic variability in CRP, TNF-α, and IL6 genes was not associated with the corresponding
plasma levels at enrolment. Some previous studies also reported associations between CRP
levels and polymorphisms in genes encoding IL6 [40] and TNFA [41]. However, in our
study, TNFA rs1800629 and IL6 rs1800795 were not associated with significant differences in
hsCRP levels, which is consistent with the AIRGENE study that included patients between
3 months and 6 years after myocardial infarction [42].

Besides genetic predisposition, chronic inflammation has also been shown to increase
Lp(a) levels. Studies examining the effects of the IL6 polymorphism in patients with
rheumatoid arthritis, which has been linked to elevated Lp(a) levels, have shown that
blocking the IL6 receptor, but not TNF-α signaling, decreased Lp(a) levels by 30–40% [43,44].
In addition, in patients with elevated Lp(a), the polymorphism IL6 rs1800795 was associated
with a significantly increased odds ratio of having substantially elevated serum Lp(a)
levels [45]. The results were confirmed in patients without chronic inflammatory disease,
suggesting a positive association between IL6 and Lp(a) levels [46]. Our results showed
no significant differences in Lp(a) levels between the different here assessed genotypes,
which may be due to the fact that only patients with very high Lp(a) levels were included.
Moreover, treatment with the IL6 receptor antagonist had no effect on Lp(a) levels in
patients with non-ST myocardial infarction, which was explained by background therapy
with statins, because statins may increase Lp(a) levels [47]. In our study, all patients
received maximally tolerated statin therapy, which may explain the lack of influence of
variability in the IL6 gene on Lp(a) levels.

In this context, a post hoc analysis of the SPIRE trial showed that the residual inflam-
matory risk persists after treatment with statins and PCSK9 inhibitor and contributes
significantly to recurrent events [48], but the underlying mechanisms are not fully eluci-
dated. We speculated that the modulation of inflammation by gene polymorphisms may
play an important role.

The following limitations of our study should be considered. The main limitation is the
small sample size, which is mainly due to the strict inclusion criteria because only patients
with very high Lp(a) levels and premature myocardial infarction were included in the study.
In addition, we studied only three SNPs. On the other hand, we consider the longitudinal
design as one of the major strengths of our study, which allowed a chronological assessment
of inflammatory status based on different genotypes. Moreover, the study was randomized
and placebo controlled. Further studies are needed to identify genetic risk markers that
could be included in the inflammatory gene score to predict inflammatory status for each
individual [49].
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5. Conclusions

The present study in patients with premature myocardial infarction and very high
Lp(a) showed no association between the CRP rs1800947, TNFA rs1800629, and IL6 rs1800795
polymorphisms and plasma levels of hsCRP, TNF-α, and IL6 at enrollment. Plasma levels of
inflammatory markers also did not change after treatment with PCSK9 inhibitors. However,
after 6 months of treatment with PCSK9 inhibitors, the IL6-174CC genotype was associated
with a significant difference in IL6 levels, indicating the possible role in the regulation of
inflammation. Further studies are needed to elucidate complex mechanisms underlying
inflammatory imbalance in patients with established CVD and high risk for recurrent
events, which would hopefully lead to better preventive and therapeutic strategies.
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