COMMENTARY

Does Endurance Training Protect From Lipotoxicity?

Michael Roden

odest regular exercise and reduction of die-

tary fat halves the risk of developing type 2

diabetes. In overt type 2 diabetes, higher

levels of exercise training improve glycemic
control, whereas the impact of diet and optimal dietary
composition are presently unknown (1). Thus, one can
assume that intensive exercise protects from diet-induced
insulin resistance. Intravenous lipid infusion is an estab-
lished model to increase plasma free fatty acids (FFAs)
and induce insulin resistance (2,3). Although plasma FFAs
and intramyocellular lipid (IMCL) inversely correlate with
insulin sensitivity in sedentary humans, athletes store
more IMCL despite greater insulin sensitivity. This has
been termed the “athletes’ paradox” (4).

In this issue of Diabetes, Phielix et al. (5) hypothesize
that, relative to their untrained counterparts, the high ox-
idative capacity of endurance-trained athletes attenuates
lipid-induced insulin resistance during hyperinsulinemic-
normoglycemic clamp tests. Results showed that the ath-
letes’ higher Voo,,.x Was associated with greater ex vivo
muscle mitochondrial capacity, insulin sensitivity, and
carbohydrate oxidation. Lipid infusion reduced glucose
disposal by 63% in untrained individuals, thereby con-
firming previous reports (3), but only by 29% in the ath-
letes. The authors explained the athletes’ reduction in
glucose disposal exclusively by diminished carbohydrate
oxidation. They interpret the concomitant dephosphorylation
of muscle glycogen synthase as stimulation of glycogen
synthesis reflecting shuttling of glucose into nonoxidative
storage as glycogen, in line with the “substrate (glucose:FFA)
competition” theory of Randle et al. (6) (Fig. 1). The
strength of this article includes combining in vivo and in
vitro methods to assess muscle metabolism and signaling
without interference from acute exercise effects. None-
theless, some limitations need to be considered: 1) the
nominally higher body weight and plasma FFAs during
lipid infusion could have contributed to greater insulin
resistance in the untrained participants; 2) indirect calo-
rimetry does not measure tissue-specific nonoxidative
metabolism; and 3) assessment of protein expression after
prolonged insulin stimulation, which cannot trace the se-
quence of signaling events.

Endurance training causes various adaptations such as
increased muscle capillary density, glucose transporter-4
expression, and mitochondrial mass (7). Phielix et al.
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confirm this in that maximal oxidative phosphorylation
expressed per muscle fiber was enhanced in athletes
but not different from the untrained individuals when
expressed per mitochondrial content. Nevertheless, base-
line ATP synthase flux can be lower in relation to tri-
carboxylic acid cycle flux, thereby indicating less efficient
mitochondrial coupling in athletes (8).

Without lipid infusion, the athletes’ higher insulin
sensitivity resulted from increased oxidative, but not non-
oxidative, carbohydrate metabolism. In contrast, a compa-
rable group of athletes had augmented nonoxidative
glucose disposal, muscle glycogen synthase activity, and
glycogen accumulation (9). Also in sedentary individuals,
muscle glycogen synthesis, resulting from increased
glucose transport/phosphorylation, accounts for whole-
body insulin sensitivity (10). Finally, endurance training
improves insulin sensitivity in first-degree relatives of
patients with type 2 diabetes by increasing myocellular
glucose-6-phosphate and glycogen concentrations (11).
These findings indicate that the current study’s ob-
servation requires confirmation by direct monitoring
of muscle glycogen synthesis and glucose transport/
phosphorylation.

Direct monitoring of cellular glucose fluxes would also
be important for the article’s main conclusion that lipid-
induced insulin resistance is prevented in athletes by
shuttling glucose toward glycogen storage. This reasoning
favors the substrate competition concept of Randle et al.
above the alternative mechanism, which relies on “sub-
strate signaling,” i.e., the interaction of lipids with insulin
signaling. Randle et al. (6) inferred from rodent studies
that FFAs increase the intramitochondrial acetyl-CoA/CoA
and NADH/NAD™ ratios, leading to pyruvate dehydrogenase
inhibition (Fig. 1). Subsequently, glycolytic intermediates
and glucose-6-phosphate would accumulate and inhibit
hexokinase II (HKII) activity and glucose uptake. The al-
ternative substrate signaling mechanism postulates that
myocellular lipid intermediates (diacylglycerol [DAG],
ceramides) act as “lipotoxins” to inhibit insulin signaling
directly or via activation of novel protein kinase C iso-
forms (PKC) with subsequent impairment of glucose
transport/phosphorylation and reduction in glycogen
synthesis (Fig. 1). Indeed, lower increases in glucose-6-
phosphate precede lipid-induced reduction in insulin
sensitivity and glycogen synthesis in sedentary humans
(3). Phielix et al. confirm the reduced nonoxidative glu-
cose disposal in untrained volunteers, whereas only
glucose oxidation was lower in the athletes during lipid
infusion. They speculate that the higher oxidative ca-
pacity of trained muscle allows for more efficient shifting
from glucose to lipid oxidation. This would imply a rise
in glucose-6-phosphate with decreased glucose uptake
and continued glycogen synthesis. However, lipid oxi-
dation was comparable between both groups in this
study, and the lipid-induced decline of glucose oxidation
was similar in another study (12). In the absence of data
on glycolytic intermediates and glucose-6-phosphate, the
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FIG. 1. Mechanisms of lipid-induced insulin resistance in skeletal muscle. Lipolysis of plasma triglycerides (TG) by lipoprotein lipase (LPL)
increases FFAs, including saturated fatty acids (SFA), which are taken up by fatty acid transporters (Fatpl/CD36) and activated to fatty acyl-CoA
(FA-CoA) by acyl-CoA synthase. Substrate competition postulates that lipid oxidation in the tricarboxylic acid (TCA) cycle raises the NADH/
NADH" and acetyl-CoA/CoA ratios, which inhibits pyruvate dehydrogenase (PDH) and subsequently phosphofructokinase (PFK) and hexokinase II
(HKII). Glucose-6-phosphate (G6P) would inhibit glucose uptake and feed glycogen synthesis via glycogen synthase (GSK). Substrate signaling
involves the lipid intermediate DAG arising from triglyceride synthesis via glycerol phosphate synthase (GPAT) and DAG acyltransferase (DGAT)
or from lipolysis via adipose tissue triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). Certain DAG species activate novel PKC
isoforms and inhibit insulin receptor substrate-1 (IRS1) signaling. Ceramides are synthesized via serine palmitoyl transferase (SPT), which is also
transcriptionally activated by inhibitory-«B kinase (IKK) and ceramide synthase (CS) and in turn inhibit Akt signaling. Inhibition of insulin
signaling will inhibit glucose transporter-4 (GLUT4) recruitment and thereby decrease glucose transport/phosphorylation. In this model, glycogen
synthesis will decrease in turn and/or as a result of lower phosphorylation (p) of glycogen synthase kinase-3p (GSK3p), which would lead to lower

glycogen synthase (GS) activity. AMPK, AMP-activated protein kinase.

operation of substrate competition remains to be proven for
lipid-exposed athletes. Supporting substrate signaling, in-
sulin failed to consistently stimulate Akt phosphorylation
in both trained and untrained individuals. Nevertheless,
glycogen synthase phosphorylation as surrogate of actual
glycogen synthesis was decreased only in the athletes.
It is noteworthy that increased AMP-activated protein ki-
nase activity could stimulate glucose uptake via glucose
transporter-4 translocation independently of insulin.
Endurance training also stimulates IMCL synthesis (13),
which should diminish myocellular lipotoxins. Phielix
et al. state that only untrained humans responded to lipid
infusion with an increased total lipid fraction. However,
total IMCL do not necessarily reflect true triglyceride
turnover in that lipid infusion could require longer expo-
sure times (14) or differently affect subsarcolemmal
compartments, which are more closely associated with
insulin resistance (15). Finally, endurance training can
enhance lipoprotein lipase and FFA uptake (16), thereby
raising myocellular lipotoxins. Indeed, a recent study
reported accumulation of total muscle DAG as “another
athletes’ paradox” (17). Detailed studies on subcellular
DAG distribution, however, suggest that athletes have de-
creased membrane-associated saturated DAG species
and membrane-to-cytosol PKCe/0 ratios (18). This could
result from upregulation of DAG acyltransferase, which
will take DAG to triacylglycerols and protects mice from
lipid-induced insulin resistance (10). In sedentary humans,
lipid infusion sequentially increases muscle DAG species,
activates PKC6, and induces insulin resistance (19). Thus,
a diminished rise in DAG and novel PKC could account for
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the partial prevention of lipid-induced insulin resistance in
athletes.

In conclusion, application of lipid infusion in athletes
sheds new light on muscle metabolism, but future studies
are needed to identify the sequence of events leading to
lipotoxic effects not only on muscle but also on liver me-
tabolism. This will contribute to improved characterization
of subgroups at risk for type 2 diabetes as well as identi-
fication of innovative targets for the treatment of insulin
resistance.
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