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Objective. To investigate the expression patterns and prognostic characteristics of inflammasome-related genes (IRGs) across
cancer types and develop a robust biomarker for the prognosis of KIRC. Methods. 2e differentially expressed IRGs and
prognostic genes among 10 cancers were analyzed based on 2e Cancer Genome Atlas (TCGA) dataset. Subsequently, an
IRGs risk signature was developed in KIRC. Its prognostic accuracy was evaluated by receiver operating characteristic (ROC)
analysis. 2e independent predictive capacity was identified by stratification survival and multivariate Cox analyses. 2e gene
ontology (GO) analysis and principal component analysis (PCA) were performed to explore biological functions of the IRGs
signature in KIRC. Results. 2e expression patterns and prognostic association of IRGs varied from different cancers, while
KIRC showed the most abundant survival-related dysregulated IRGs. 2e IRG signature for KIRC was able to independently
predict survival, and the signature genes were mainly involved inimmune-related processes. Conclusions. 2e pan-cancer
analysis provided a comprehensive landscape of IRGs across cancer types and identified a strong association between IRGs
and the prognosis of KIRC. Further IRGs signature represented a reliable prognostic predictor for KIRC and verified the
prognostic value of inflammasomes in KIRC, contributing to our understanding of therapies targeting inflammasomes for
human cancers.

1. Introduction

Inflammasomes are a kind of intracellular innate immune
multiprotein complexes, the concept of which was introduced
by Martinon in 2002 [1]. Inflammasomes consist of three
components: sensor protein, apoptosis-associated speck-like
protein containing a caspase recruitment domain (ASC)/
PYCARD, and pro-caspase-1. Inflammasomes can be activated
by recognizing pathogen-associated and damage-associated
molecular patterns (PAMPs and DAMPs) via their sensor

protein, inducing the activation of pro-caspase-1. Activated
caspase-1 (CASP1) will promote the release of inflammatory
cytokines interleukin (IL)-1β and IL-18 which subsequently
participate in immune and inflammatory response [2]. Studies
have shown that inflammasomes play essential roles in reg-
ulating the physiological and pathological processes and cor-
relate with various human diseases such as type 2 diabetes [3],
immune-related diseases [4], and tumor [5].

In tumor, inflammasomes prove to be double-edged. On
the one hand, inflammasomes are involved in regulating
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antitumor immunity. Inflammasomes downstream effectors
IL-18 and IL-1β can inhibit the killing against cancer cells by
certain immune cells, which is detrimental to the control of
tumor growth and metastasis [6, 7]. On the other hand,
inflammasomes are critical in the regulation of multiple cell
death modes such as apoptosis and pyroptosis. NOD-like
receptor (NLR) containing a pyrin domain 3 (NLRP3)
inflammasome and absent in melanoma 2 (AIM2) inflam-
masome can induce apoptosis by recruiting and activating
caspase-8 via ASC [8]. In addition, inflammasome-mediated
activated CASP1 can cleave gasdermin D (GSDMD) and
expose N-terminus of pore-forming activity, leading to cell
membrane nanopores and cell swelling, and finally to cell
pyroptosis [9, 10]. Pyroptosis is a kind of programmed cell
death marked by inflammatory cytokines release [11]. 2ese
inflammasome-mediated cell death pathways are un-
doubtedly beneficial to tumor inhibition.

Recent studies have demonstrated that the functions of
inflammasomes in tumor, to a certain extent, are determined
by the different types of cells and tissues [12–14]. However,
there is still no systematic molecular profile of inflamma-
some-related genes (IRGs) across diverse human cancers until
now.2e accessibility of high-throughput expression datasets
offers the opportunity to investigate the roles of inflamma-
somes in various cancers. In this study, we identified dys-
regulated IRGs and prognostic IRGs among 10 cancer types
using transcriptome data from 2e Cancer Genome Atlas
(TCGA) [15]. Kidney renal clear cell carcinoma (KIRC) was
observed to have most significant IRGs dysregulation and
association with tumor prognosis, but few studies have fo-
cused on the relationship between inflammasomes and KIRC.

KIRC, the most frequent type of renal cell carcinoma
(RCC) [16], have high risk of metastasis and mortality [17].
Currently, the primary treatment for localized RCC remains
surgery. However, occurrences of recurrence or distant me-
tastasis in postoperative patients with KIRC account for
approximately 30% [18]. 2erefore, reliable prognostic
models are urgently required to predict the risk of progression
for patients with KIRC. From the perspective of pan-cancer
analysis, the relationship between inflammasomes and KIRC
might be quite close. 2us, an IRGs signature was further
constructed to predict patient survival and detect the prog-
nostic value of inflammasomes in KIRC. Broadly speaking,
the pan-cancer analysis will help us better understand the
molecular mechanism of inflammasomes in the progression
of human cancers. Moreover, our robust prognostic indicator
confirms the vital role of inflammasomes in KIRC and
provides novel therapeutic strategies for KIRC.

2. Materials and Methods

2.1.Selectionof IRGs. A total of 40 genes were included in the
inflammasome-related gene set: 20 of them were retrieved
from the gene set (REACTOME_INFLAMMASOMES,
M1072) in the Molecular Signatures Database v7.0 [19, 20],
while the added genes were described as the components of
inflammasome complexes or being involved in the
inflammasome-related pathways according to the published
literature.

2.2. Samples of Databases. 2e RNA sequencing (RNA-Seq)
cohorts and clinical information involved in the pan-cancer
analysis were obtained fromTCGA. To ensure the stability of
differential analysis and survival analysis, we only selected 10
types of cancer containingmore than 20 normal samples and
20 dead samples. 2e cancer types included colon adeno-
carcinoma (COAD), liver hepatocellular carcinoma (LIHC),
breast invasive carcinoma (BRCA), head and neck squamous
cell carcinoma (HNSC), lung squamous cell carcinoma
(LUSC), lung adenocarcinoma (LUAD), kidney renal pap-
illary cell carcinoma (KIRP), KIRC, stomach adenocarci-
noma (STAD), and uterine corpus endometrial carcinoma
(UCEC). For the TCGA cohorts, we downloaded counts as
well as FPKM values of the mRNA expression data. 2e
counts data were used for gene differential expression
analysis, whereas FPKM data for prognostic genes
identification.

For establishing the risk model in KIRC, 526 patients
with complete survival information in TCGA_KIRC dataset
were used as a discovery set. 2e FPKM values of the KIRC
RNA-Seq were log-transformed by log2(FPKM+1) before
being applied to the model. To test the prognostic reliability
of the model, these 526 KIRC samples were randomized to
internal validation set-1 (n� 132) or internal validation set-2
(n� 394). 2e TCGA database also included 72 normal
samples, of which 71 had matched KIRC samples. Fur-
thermore, three datasets (GSE40435, GSE53757, and
GSE73731) were selected from the Gene Expression Om-
nibus (GEO) database as external validation cohorts for their
larger sample sizes. In detail, GSE40435 contained 101 pairs
of KIRC and the corresponding normal samples [21];
GSE53757 had 72 KIRC and 72 unpaired normal samples
[22], whereas GSE73731 included 265 tumor samples only
[23]. 2e expression matrixes of the GEO datasets were
obtained and normalized by the limma package of R [24].
Above KIRC datasets and corresponding clinical features of
patients are shown in Table 1.

2.3. Bioinformatic Analysis. 2e R package “edgeR” was
performed to identify the differentially expressed IRGs
between tumor and normal samples [25], with a filter
condition of adjusted p value< 0.05 and absolute log fold-
change (FC)> 1. Also, “edgeR” package was used to analyze
differential expression between the high- and low-risk
groups. 2e heatmap and principal component analysis
(PCA) were carried out with R packages.2e Search Tool for
the Retrieval of Interacting Genes database (version 11.0)
was used for accessing protein-protein interaction (PPI) [26]
and Cytoscape software (version 3.7.2) for visualization [27].
To investigate the functional roles of the IRGs signature in
KIRC, gene ontology (GO) analysis was conducted on g:
Profiler database [28].

2.4. Statistical Analysis. Univariate Cox regression model
was applied to obtain prognostic characteristics of IRGs. For
constructing the IRGs signature in KIRC, least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis was performed to select the most optimal prognostic
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genes by R package “glmnet” [29]. 2e packages “survival”
and “survminer” of R were used for conducting
Kaplan–Meier survival analysis and log-rank test to evaluate
the survival difference.2e “survivalROC” package was used
to perform a time-dependent receiver operating charac-
teristic (ROC) analysis, and the area under the curve (AUC)
value was calculated to measure the prognostic accuracy of
the risk signature. Additionally, univariate and multivariate
Cox regression analyses were conducted to determine
whether the risk signature was an independent prognostic
factor for KIRC. 2e expression levels of unpaired samples
and risk score distribution were evaluated by independent
samples t-test, while the expression levels of paired samples
were analyzed by paired t-test. All the statistical analyses
were performed on GraphPad Prism 7 software (GraphPad
Software Inc., La Jolla, CA) and R software (R.3.6.0). A two-
tailed p value less than 0.05 was considered to be statistically
significant.

3. Results

3.1. 
e Pan-Cancer Expression Patterns and Prognostic
Characteristics of IRGs. 2e flow chart of this study is shown
in Figure 1. To explore the expression patterns and prog-
nostic association of IRGs across human cancers, we
identified differentially expressed IRGs between cancer and
normal samples as well as survival-related IRGs among 10
cancers. Generally, 33 (82.5%) of the IRGs were dysregulated
in one or more cancer types (Figure 2(a)), while 35 (87.5%)
were significantly associated with overall survival (OS) of
patients (Figure 2(c)). We observed AIM2 overexpression in
8 cancers and its association with poor prognosis in two
kidney carcinomas (KIRC and KIRP). 2ioredoxin-inter-
acting protein (TXNIP) expression was consistently sup-
pressed in 7 cancers and positively correlated with patient
OS in 2 cancers (KIRC andHNSC) of the 7.2e PPI network
of all of the IRGs is displayed in Supplementary Figure 1.
Furthermore, the expression patterns and prognostic
characteristics of IRGs varied from different cancer types,
and the numbers of dysregulated and survival-related IRGs
for each type were calculated (Figures 2(b) and 2(d)). Ab-
normally expressed IRGs were most in LUSC and KIRC
(n� 16, resp.) and least in STAD (n� 6). 2e unsupervised
clustering showed that expression patterns of the homolo-
gous tissues LUAD and LUSC were relatively close
(Figure 2(a)). Besides, survival-related IRGs were most in
KIRC (n� 19) and least in LUSC as well as COAD (n� 1,
resp.).

It is worth mentioning that prognostic and dysregulated
IRGs were most abundant in KIRC, but rarely reported.
Similarly, KIRC showed the largest number (n� 8) of dys-
regulated IRGs related to OS (Figure 2(e)). Furthermore,
among the eight genes, the risky genes (PSTPIP1, IFI16,
NLRC5, AIM2, and PYCARD) were consistently upregu-
lated, whereas the protective genes (IL1RL1, TXNIP, and
APP) were consistently downregulated in KIRC in com-
parison to normal tissues (Table 2). Due to most survival-
related dysregulated IRGs and less studies of inflammasomes
in KIRC, the prognostic value of inflammasomes in KIRC
was worth investigating.2us, we further developed an IRGs
signature in KIRC to predict patient survival.

3.2. Construction of an IRGs Signature for Predicting OS of
KIRC Patients. Based on the pan-cancer analysis, eight
dysregulated genes associated with OS of KIRC patients were
obtained from TCGA_KIRC dataset (Table 2). 2en, a total
of five prognostic genes were selected by LASSO Cox re-
gression (Supplementary Figures 2(a) and 2(b)); interferon
gamma-inducible protein 16 (IFI16) and AIM2 were
identified as risky factors (HR> 1), whereas IL-1 receptor-
like 1 (IL1RL1), TXNIP, and amyloid precursor protein
(APP) were protective factors (HR< 1).

2e five-gene differential expression in KIRC tissues was
tested using paired KIRC samples from TCGA and
GSE40435, as well as unpaired KIRC samples from
GSE53757. As shown in Figure 3, RNA-Seq data from all
these validated cohorts confirmed a significant dysregulation
of IFI16, IL1RL1, and AIM2 in KIRC tissues. In addition,
downregulation of TXNIP and APP was assured by two
cohorts, respectively. Overall, compared with normal kidney
tissues, the five genes were significantly dysregulated in
KIRC. Subsequently, a risk signature was established
based on the five IRGs’ LASSO Cox regression coefficients
(Table 2) and expression levels:

Risk score � (0.5409 × IFI16 expression)

+(0.1449 × AIM2 expression)

+(−0.0698 × IL1RL1 expression )

+(−0.3261 × TXNIP expression)

+(−0.5283 × APP expression).

(1)

2e risk score for each patient was calculated by our
IRGs signature. In the discovery set, patients were divided
into high-risk and low-risk groups according to the median

Table 1: Clinical characteristics of the KIRC patients.

Id No. of KIRC
samples

No. of normal renal tissue
samples

KIRC samples
Death
events

Mean age
(years)

Gender (female/
male)

Stage
(I/II/III/IV)

Grade
(1/2/3/4)

TCGA 526 72 170 60.42 183/343 261/57/123/
82

13/226/205/
74

GSE40435 101 101 NA 64.12 42/59 — 22/47/24/8
GSE53757 72 72 NA NA — 24/19/14/15 —
GSE73731 265 — NA NA 102/160 41/12/28/44 22/90/95/49
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Figure 1: Flow chart of the analysis procedure: data acquisition, signature construction, and validation in KIRC.
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Figure 2: Continued.
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risk score of −4.427 as a cutoff value. 2e risk score, survival
status, and the five-gene expression of each patient are
displayed in Supplementary Figures 2(c)-2(e). As expected,
the high-risk group had higher expression levels of the risky
genes and lower expression levels of the protective genes
(Supplementary Figure 2(e)). Further, Kaplan–Meier anal-
ysis and ROC analysis were conducted in the discovery set
(entire TCGA set), and high-risk group had significantly
shorter OS time in comparison to the low-risk group
(Figure 4(a)). ROC curves showed that the 1-year, 3-year,
and 5-year predictive accuracy of the risk model were 0.722,
0.677, and 0.688, respectively (Figure 4(a)).

3.3. 
e IRGs Signature Associated with Poor Clinicopatho-
logic Characteristics of KIRC Patients. Since the IRGs sig-
nature was negatively correlated to patient OS, we
investigated its correlation with multiple clinicopathologic
factors of KIRC patients based on the TCGA dataset. We
compared distribution of the risk score among different
tumor (T) stages, node (N) stages, metastasis (M) stages,
TNM stages, and histologic grades. It was noteworthy that
higher risk indicated more advanced grades of all these
clinicopathologic parameters (Figure 5(a)–5(e)), suggesting
the relationship between the IRGs signature and the pro-
gression of KIRC.

3.07
2.60
2.20
2.20
1.00
2.02
2.17
1.70
1.68
1.59
1.51
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.44
0.26
0.65

1.00
0.62
1.00
1.00
2.33
1.62
1.76
1.66
1.29
0.71
1.00
0.58
0.43
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.79
0.70
0.82
0.69
0.60
1.00
1.00
1.43
1.53
1.48
1.00
1.00
1.00
1.00
0.40
0.61

1.00
1.42
1.00
1.62
1.00
1.00
1.00
1.00
1.00
1.41
1.00
1.00
1.00
1.23
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.67
1.00
0.87
1.00
1.75
2.03
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.48
1.00
1.00
1.00
1.00
1.32
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.26
0.72
0.79
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.81
0.65
0.74
0.69
1.00
0.17
0.67
0.69
1.42
1.00
0.80

1.53
0.74
1.00
1.00
0.77
0.70
1.00
1.00
1.00
1.00
0.83
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.77
0.62
1.00
1.00
1.00
1.00
1.00
1.00
0.70
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.87

1.62
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.62
1.00
1.00
1.14
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.70
1.00
1.00
1.00
1.00
1.00
1.53
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.43
1.00
1.32
1.66
1.17
1.00
1.00
1.10
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.90
1.00
1.00
1.00
0.75
0.74
1.00
1.00
0.67
1.00
1.00
1.00
0.79

1.00
1.00
1.00
1.00
1.00
1.52
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.12
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
0.76
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.32
1.00
1.00
1.00

KI
RP

KI
RC

LI
H
C

LU
A
D

BR
CA

U
CE

C

H
N
SC

CO
A
D

LU
SC

ST
A
D

PANX1
CASP7
NLRP7
CASP8
CASP4
NFKB2
IFI16
AIM2
NLRC5
HSP90AB1
TNFAIP3
APP
SUGT1
TXN
NLRP3
P2RX7
NLRP2
IL1B
MEFV
TNF
TLR1
CASP1
NLRP12
IL18
NFKBIA
NLRP6
IL1RL1
TXNIP
NFKB1
RELA
NLRC4
PSTPIP1
NLRP1
PYCARD
NAIP
CARD8
TLR7
BCL2L1
TOLLIP
BCL2

0

1

2

3

4

(c)

KI
RC

LU
A

D

KI
RP

H
N

SC

LI
H

C

BR
CA

U
CE

C

ST
A

D

LU
SC

CO
A

D

N
um

be
rs

 o
f s

ur
vi

va
l-r

el
at

ed
 IR

G
s

Low risk
High risk

0

5

10

15

20

(d)

0 2 4 6 8

KIRC

KIRP

LUAD

HNSC

LIHC

UCEC

BRCA

STAD

Numbers of survival-related
dysregulated IRGs

Low risk
High risk

(e)

Figure 2: (a) 2e expression patterns of IRGs across cancers on transcriptome level. Numerical value reflects log FC. (b) 2e numbers of
dysregulated IRGs among 10 cancers. (c) 2e association between IRGs and prognosis of cancers. Numerical value indicates hazard ratio
(HR). (d) 2e numbers of prognostic IRGs among 10 cancers. (e) 2e numbers of dysregulated IRGs associated with survival among 8
cancers.
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Table 2: Univariate and LASSO regression analyses of 8 IRGs in the entire TCGA set.

Symbol
Univariate regression

LASSO coefficient
HR p value

PSTPIP1 1.4301 0.0004 —
IFI16 1.7617 0.0001 0.5409
NLRC5 1.2888 0.0165 —
IL1RL1 0.8195 0.0378 −0.0698
AIM2 1.6595 0.0001 0.1449
TXNIP 0.6896 0.0001 −0.3261
PYCARD 1.4824 0.0001 —
APP 0.5769 0.0001 −0.5283
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Figure 3: 2e mRNA levels of signature genes in paired KIRC samples (a-b) and unpaired KIRC samples (c). ∗p< 0.05, ∗∗ p< 0.01,
∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001.
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Figure 4: (a–c) Risk score for each patient, ROC curves (1-year, 3-year, and 5-year), and Kaplan–Meier survival curves in the entire TCGA
set (a), internal validation set-1 (b), and internal validation set-2 (c).
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3.4. Validation of the IRGs Signature. To verify the reliability
of our IRGs signature, two internal validation sets and three
external validation sets (GSE40435, GSE53757, and
GSE73731) were used to test above results. 2e same hazards
model was applied to all the validation cohorts to obtain the
risk score for each patient. In the internal validation set-1/
set-2, the same cutoff value for grouping was utilized, and
the prognostic association and predictive accuracy of the
IRGs signature were assured (Figures 4(b)-4(c)). Besides, the
findings that risk score related to stage and grade of KIRC
were confirmed by the external validation cohorts
(Figures 5(f )–5(h)).

3.5. Prognostic value of the IRGs Signature. To detect the
prognostic performance of the IRGs signature in stratified
cohorts, patients were classified based on age, gender, tumor
stage, lymph node status, and distant metastasis status. Due

to the small sample size of patients at N1 stage (n� 16), we
carried out stratification analysis on patients at N0 stage. In
all cohorts, the high-risk groups were observed to have worse
survival than the low-risk ones (Figure 6). 2us, the IRGs
signature was able to distinguish patients with poor survival
outcomes without considering traditional clinical factors.
Additionally, univariate and multivariate Cox regression
analyses were conducted in the entire TCGA set to explore
whether the IRGs signature could independently predict OS
for KIRC patients. As shown in Table 3, the IRGs signature
remained significantly correlated with OS even adjusted by
age, T staging, N staging, M staging, and grade, suggesting
that the IRGs signature represent an independent prognostic
predictor for KIRC.

3.6. Different Immune Response Patterns between High- and
Low-Risk Groups. To unearth the biological characteristics
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Figure 6: (a–i) Survival analyses of the IRGs signature in the TCGA cohorts stratified by age (a-b), gender (c-d), T stage (e-f ), N stage (g),
and M stage (h–i).
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of the IRGs signature in KIRC, we analyzed the differentially
expressed genes between high-risk group and low-risk group
using the entire TCGA dataset. 2en, the significantly
upregulated genes in the high-risk group (log FC> 2, ad-
justed p value< 0.05) were involved in the GO analysis. It
was shown that immune-related pathways were enriched in
the high-risk group (Figure 7(a)). We further conducted
PCA of immune-related genes in the two groups, with the
gene sets acquired from “Immune Process” and “Immune
Response” GO terms. As a result, the high- and low-risk
groups generally presented distinct directions of immune-
related gene distribution, indicating different immune states
of the two groups (Figure 7(b)). Above results indicated the
five IRGs mainly involved in immune-related processes.

4. Discussion

Accumulating evidence has revealed that inflammasomes
are involved in the pathological processes of different tumors
[14, 30, 31], but the specificmolecular mechanisms remained
incompletely elucidated. In this study, we identified different
expression patterns and prognostic characteristics of IRGs
among 10 cancers. Remarkably, dysregulation and prog-
nostic correlation of IRGs were most significant in KIRC.
Meanwhile, KIRC had the most abundant dysregulated
genes associated with patient survival. All of these suggested
that inflammasomes might contribute to the progression of
KIRC. Considering the potential essential roles of inflam-
masomes in KIRC and lack of relevant studies, we further
focused the analysis on KIRC and established a risk signature
for KIRC in order to guide the diagnosis and treatment of
KIRC.

KIRC is an aggressive tumor that requires effective
predictive biomarkers, but the prognostic models are cur-
rently limited. Based on the study value of inflammasomes in
KIRC, we produced an IRGs signature to predict the
prognosis of patients with KIRC. 2e signature gene dys-
regulation in KIRC was confirmed in both paired and un-
paired tissues from TCGA and external validation cohorts,
indicating the reliability of our differential analyses.
Moreover, the fact that the five genes were consistently
dysregulated in KIRC indicated the stability of our signature.

Survival analysis suggested that the IRGs signature was
closely related to poor prognosis in KIRC.2e ROC analysis
showed that our signature had an accurate prognostic
performance. Additionally, compared with several existing
signatures for the TCGA discovery cohorts, our IRGs sig-
nature was demonstrated to have a superior predictive

accuracy for 5-year survival (AUC� 0.688 vs. 0.637 [32]/
0.649 [33]/0.660 [34]). We also performed Kaplan–Meier
analysis in stratified cohorts and found its ability to identify
patients with worse survival regardless of other clinical
variables. Moreover, the five-gene signature was an inde-
pendent prognostic indicator for KIRC according to the
results of univariate and multivariate Cox analyses. Col-
lectively, the IRGs signature can act as a reliable prognostic
predictor for KIRC. 2e prognostic value of our IRGs sig-
nature verified the crucial roles inflammasomes played in
KIRC, indicating IRGs as potential prognostic biomarkers
for KIRC. Moreover, the five-gene signature was positively
correlated with advanced stages of the clinicopathologic
parameters, suggesting that the signature genes might im-
pact the proliferation, metastasis, and differentiation of
KIRC; nevertheless, previous studies have concentrated
more on their functions in other cancers than KIRC; hence,
further studies are needed for KIRC.

Among the five genes, both AIM2 and IFI16, as the
PYHIN family members and innate immune DNA sensors
[35, 36], were observed to be risky factors for KIRC. In-
terestingly, studies have previously reported the tumor-
suppressive activity of AIM2 [37, 38] and IFI16 [39, 40].
However, increasing studies have also suggested their tu-
mor-promoting property, corresponding to our findings.
For instance, AIM2 improved proliferation of non-small-cell
lung cancer (NSCLC) cells via inflammasome-dependent
pathway [41]. Knockdown of either AIM2 or IFI16 in oral
squamous cell carcinoma cells reduced cell growth [42]. As
for the protective factors (IL1RL1, TXNIP, and APP),
IL1RL1 was similarly identified to function as a tumor
suppressor in mammary tumor [43]. TXNIP was commonly
silenced in cancer cells due to genetic or epigenetic events
[44]. In addition, a recent study revealed that down-
regulation of TXNIP could predict worse survival in KIRC,
which is in good accordance with our results [45]. Regarding
APP, current studies have demonstrated its overexpression
and characteristic of oncogenes in some malignancies such
as breast cancer [46], pancreatic cancer [47], and NSCLC
[48]. In contrast, we observed its decreased expression to be
associated with worse prognosis in KIRC. Accordingly, APP
may play dual roles in tumor progression and act as an
antioncogene in KIRC.

To investigate the biological functions of the five-gene
signature in KIRC, GO analysis and PCA were performed,
demonstrating that the combined signature was able to
distinguish different immune states, and the signature genes
were mainly involved in immune-related processes; besides,

Table 3: Univariate and multivariate Cox regression analyses of the IRGs signature in the entire TCGA set.

Variable Univariate regression Multivariate regression
HR p value HR p value

Age (years) ≤65 vs.> 65 0.6065 0.0012 0.7141 0.1131
Gender Female vs. male 1.0415 0.7990 — —
T stage T1-T2 vs. T3-T4 0.3067 0.0001 0.5932 0.0346
N stage N0 vs. N1 0.3168 0.0007 0.8144 0.5783
M stage M0 vs. M1 0.2210 0.0001 0.3555 0.0001
Grade G1-G2 vs. G3-G4 0.3611 0.0001 0.5847 0.0412
Risk High vs. low 2.8241 0.0001 2.0438 0.0041
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immune response might serve as an underlying mechanism
of the signature genes impacting KIRC progression. For
treating patients withmetastatic RCC, targeted therapies and
immunotherapies such as high-dose IL-2 and immune
checkpoint inhibitors (ICIs) have been introduced [49, 50].
Nevertheless, many patients fail to benefit from the therapy
strategies [50, 51]. Given the association between the sig-
nature genes and immune states, these genes might be re-
lated to immune therapeutic response of KIRC. Scholars
have combined preclinical RNA-Seq data with clinical gene
expression profile to establish predictive signatures of
prognosis and therapeutic response for gliomas [52, 53].
Inspired by their work, we would further use single-cell
RNA-Seq data to explore the roles of the signature genes in
immunotherapy.

5. Conclusions

In general, we performed a pan-cancer analysis of abnor-
mally expressed and survival-related IRGs across 10 cancer
types, indicating a strong correlation between IRGs and the
prognosis of KIRC. We further established an IRGs signa-
ture that could independently predict survival for patients
with KIRC, which confirmed the prognostic value of
inflammasomes in KIRC. Moreover, the signature might
influence the progression of KIRC. Further exploration on
biological functions of the IRGs signature suggested that the
signature genes are mostly involved in immune-related
pathways and provided novel perspectives for therapy of
KIRC. 2us, our study not only presented a systematic
landscape of IRGs across human cancers but also developed
a robust prognostic predictor for KIRC from the perspective
of pan-cancer analysis.
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