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Abstract

Small heterodimer partner (SHP, NR0B2) is identified as a unique orphan nuclear receptor that 

acts as a transcriptional repressor. SHP plays a crucial role in the control of various physiological 

processes and in several diseases by regulating the expression of disease-specific genes. Non-

coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), 

are encoded of RNAs that are transcribed but not translated into proteins, which are involved in 

diverse developmental and cellular processes in eukaryotic organisms. Research during the past 

decade has identified factors participating in the regulation of ncRNAs biogenesis and function. In 

this review, we summarize recent findings demonstrating a critical role of SHP as a transcriptional 

regulator of ncRNAs expression and function.
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1. Introduction

Small heterodimer partner (SHP, NR0B2) is a unique member of the nuclear receptor (NRs) 

superfamily [1]. It generally acts as a transcriptional repressor through interaction with other 

nuclear receptors or transcription factors (TFs) to inhibit function of these NRs or TFs on 

specific gene transcription, which contributes to its roles in diverse signaling pathways 

including metabolism and inflammation, and cell cycle [2]. Non-protein-coding RNAs 

(ncRNAs) account for more than 98% of the human genome, which play crucial roles in 

normal development and physiology [3]. NcRNAs are classified as long non-coding RNAs 

and small non-coding RNAs respectively based on the size of ncRNAs. Long non-coding 

RNAs are defined as ncRNAs that are longer than 200 nucleotides, while the length of small 

non-coding RNAs ranges from few to 200 nucleotides [4]. In the past, most studies were 

focused on elucidating the function and mechanism of ncRNAs, however, relatively little is 

known about the regulation of ncRNAs by NRs and TFs [5]. Growing evidence suggests that 

ncRNAs can be regulated at different levels, including promoter transcription, methylation, 

chromatin state regulation, and post-transcriptional regulation [6, 7]. In this mini-review, we 

will discuss the regulation of ncRNAs expression by SHP and to elaborate on their possible 

regulatory mechanisms.

2. The Basic Function of SHP

The most well established function of SHP in hepatic bile acid (BA) biosynthesis was 

demonstrated more than a decade ago using SHP knockout mice [8,9]. The increased BA 

levels in Shp-deficient mice could be in part associated with the increased energy 

metabolism and insulin sensitivity in other metabolic tissues including brown fat [10] and 

pancreas [11]. Interestingly, loss of SHP in leptin-deficient mice increased insulin sensitivity 

and diminished the severity of fatty liver [12], whereas overexpression of SHP in adipose 

tissue exacerbated high-fat diet-induced obesity [13]. In addition to inhibiting the rhythmic 

expression of BA synthetic enzymes Cyp7a1 and Cyp8b1 [14], SHP also directly represses 

the cholesterol biosynthesis enzyme, namely 3-hydroxy-3-methylglutaryl coenzyme A 

reductase [15]. On the other hand, SHP regulates hepatic glucose metabolism by disrupting 

AMPK-dependent repression of gluconeogenesis [16].

Liver fibrosis occurs due to the excessive accumulation of extracellular matrix proteins from 

activated hepatic stellate cells (HSCs) in response to liver injury. Loss of SHP sensitized 

liver to cholestatic liver fibrosis [17], which involved E2F1 and Egr1 transcription factors 

[18]. In terms of liver cancer, SHP expression was lost in human hepatocellular carcinoma 

(HCC) [19], which was likely attributed by SHP inhibition of hepatocyte proliferation [20], 

activation of apoptosis [21] and in the repression of epigenetic modifying enzymes [22, 23]. 

With regard to breast cancer, numerous studies provided the possibility that estrogen 

signaling would be specifically inhibited at multiple levels by SHP expression [24,25]. SHP 

as a tumor suppressor also interacts with other partners for its anti-tumor activity. Indeed, the 

transcriptional activity of glioma-associated oncogene homologue (Gli) was reported to be 

inhibited by SHP [26]. Recent studies showed that SHP is an essential negative regulator of 

the innate immune signaling. SHP repressed the inflammasome activation induced by toll-

like receptor (TLR) [27] and NLR Family Pyrin Domain Containing 3 (NLRP3) [28] in 
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macrophages. A small molecule activator of SHP showed strong effect in inhibiting HCC 

cell migration by suppressing chemokine (C-C motif) ligand 2 (Ccl2) [29]. Overall, SHP 

exerts a crucial function to protect liver against various insults and injury and is 

indispensable to maintain bile acid, lipid and glucose homeostasis.

3. SHP Regulation of ncRNAs

It is well established that ncRNAs exhibit a broad range of functions. However, less is 

known how ncRNAs gene transcription is controlled by NRs. Recent studies suggest that 

SHP plays a pivotal role in the regulation of ncRNA expression.

3.1. SHP in microRNA regulation

3.1.1. miR-433 and miR-127—miR-433 and miR-127 are part of a miRNA cluster but 

are expressed from independent overlapping primary transcripts [30]. The gene structures of 

the miR-433-127 loci are well conserved among multiple species [31]. Further study 

demonstrated that the miR-433 and miR-127 promoters were commonly activated by 

estrogen related receptor gamma (ERRγ) which was inhibited by SHP [32], providing the 

1st evidence for the regulation of miRNA expression by SHP (Figure 1A). Interestingly, 

miR-433 inhibited liver cancer migration by targeting cAMP response element-binding 

protein (CREB) [33], whereas miR-127 inhibited HCC cell migration by targeting 

transforming growth factor-β (TGF-β)-mediated MMP13 [34]. A new study showed that 

miR-127 repressed high-mobility-group protein 2 (HMGB2) to modulate pluripotency of 

mouse embryonic stem cells and liver tumor initiating cells [35].

3.1.2. miR-206—MiR-206, a member of the miR-1 family, was initially identified as a 

skeletal muscle specific miRNA [36] that played an important function in muscle 

development. For the regulation of miR-206 expression, TGF-β has been reported to inhibit 

miR-206 expression to regulate muscle differentiation [37]. We revealed a cascade “dual 

inhibitory” mechanism governing miR-206 gene transcription by SHP [38]. Specifically, 

ERRγ transactivated the promoter of YY1 (Ying Yang 1), which repressed the transcription 

factor AP1 (c-Jun and c-Fos)-induced miR-206 promoter activity. The SHP inhibition of 

ERRγ led to decreased YY1 expression and the derepression of YY1 on AP1 activity, 

ultimately leading to the activation of miR-206 (Figure 1B).

3.1.3. miR-34a—Farnesoid X Receptor (FXR), the nuclear bile acid receptor, plays a 

pivotal role in maintaining bile acid homeostasis [39]. The miR-34a levels were elevated in 

FXR null mice but decreased in obese mice when FXR signaling was activated by FXR 

agonist GW4064 or FXR overexpression [40]. The expression of miR-34a was 

downregulated by FXR involving SHP. p53 is a key activator of miR-34a [41], which is 

destabilized by SHP [42] and Mdm2 [43]. When FXR is activated, SHP is recruited to the 

miR-34a promoter to inhibit p53 occupancy in the miR-34a promoter, thereby causing 

repression of miR-34a gene transcription in liver [40] (Figure 1C). Under normal conditions, 

miR-34a levels are down-regulated by the FXR/SHP cascade pathway. However, in the livers 

of obese mice, the FXR/SHP pathway is dysregulated and miR-34a levels are highly 
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elevated, resulting in the reduced expression of its target gene SIRT1; an important regulator 

in the pathogenesis of metabolic disease [40].

3.1.4. miR-200c—The miR-200c was initially identified to be distinctively expressed in 

the lung [44], which has been demonstrated to regulate key processes in tumorigenesis, 

including epithelial-mesenchymal transition (EMT), migration, invasion, stem cell 

maintenance, stromal remodeling and oxidative stress response [45]. Transcriptional 

regulation is the primary level of control for miR-200c expression. Zinc finger E-box-

binding protein homeobox 1 (ZEB1), which was identified as a miR-200c target [46], was 

shown to repress miR-200c expression in a negative feedback loop [47]. The expression of 

miR-200c was activated by peroxisome proliferator activated receptor alpha (PPARα) and 

liver receptor homolog- 1 (LRH-1) but inhibited by SHP. Knockdown of SHP dramatically 

enhanced the ability of the LRH-1 agonist RJW100 to induce miR-200c. Furthermore, co-

expression of PPARα and LRH-1 transactivated the miR-200c promoter, which was 

repressed by SHP co-expression, suggesting that SHP represses miR-200c expression by 

inhibiting the activity of PPARα and LRH-1 [48] (Figure1D).

3.2. SHP as a target of miRNAs

In spite of its critical role in the regulation of miRNA expression, SHP can also be a target of 

miRNAs. It was found that SHP was downregulated in multiple prostate cancer cell lines. 

The mature form of miR-141 was upregulated in prostate cancer cells. miR-141 can bind to 

SHP 3’ UTR resulting in translational suppression and RNA degradation, which modulates 

androgen receptor transcriptional activity [49].

4. SHP in LncRNA Regulation

Despite intensive efforts aimed at understanding the function of lncRNAs, little is known 

about how lncRNAs are regulated transcriptionally. Several recent studies shed lights on the 

role of SHP in lncRNAs expression regulation.

4.1. H19

H19 is imprinted and almost exclusively expressed from the maternally inherited allele [50]. 

The activation of H19 in various cancers including HCC and bladder carcinoma [51] has a 

significant influence on tumor growth. H19 expression is low in adult human liver but is 

highly induced in livers with cholestatic fibrosis and cirrhosis, indicating that H19 may be 

involved in the pathogenesis of liver fibrosis [52]. Hepatic overexpression of the anti-

apoptotic protein Bcl2 caused SHP protein degradation. SHP inhibited H19RNA expression. 

Therefore, in Bcl2 over-expressed mice, H19 was markedly induced due to loss of SHP 

repression [52]. Further detailed studies showed that bile acid accumulation induced by bile 

duct ligation (BDL) increased hepatic H19RNA expression. The up-regulation of H19RNA 

enhanced immuno-cell infiltration, activated hepatic stellate cells, and promoted 

cholangiocyte proliferation, which facilitated the development of cholestatic liver fibrosis 

[53]. A most recent study identified a novel function of H19 in non-alcoholic fatty liver 

disease (NAFLD) by interaction with RNA binding protein polypyrimidine tract-binding 

protein 1 (PTBP1) to modulate hepatic lipogenesis and glucose metabolism [54]. In 
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particular, H19RNA facilitated PTBP1’s association with SREBP1c mRNA and protein, 

leading to increased stability and nuclear transcriptional activity. Ectopic expression of H19 

induced steatosis and pushed the liver into a “pseudo fed” state in response to fasting by 

promoting PTBP1-mediated SREBP1c protein cleavage and nuclear translocation. Deletion 

of H19 or knockdown of PTBP1 abolished high-fat and high-sucrose (HFHS) diet-induced 

steatosis.

4.2. MEG3

Maternally expressed gene 3 (MEG3) is an imprinted gene and plays an important role in 

development and growth [55]. MEG3 RNA was dramatically elevated in the liver of Shp−/− 

mice compared with wile type mice, which was revealed by RNA-seq [56]. The MEG3 

promoter was activated by ectopic expression of cAMP response element-binding protein 

(CREB), which was inhibited by SHP overexpression. Therefore, SHP inhibited MEG3 gene 

transcription by repressing transactivation of the MEG3 promoter [56, 57] (Figure 2). 

Interestingly, MEG3 interacted with RNA binding protein PTBP1 to cause SHP mRNA 

decay, thus providing a feedback mechanism to control SHP expression.

5. Conclusion

The diversity of ncRNAs shows a new level of the complexity of nature and makes ncRNA 

research relatively complex. However, due to the cell-specific expression pattern of ncRNAs, 

this new area gives us great opportunities to develop more personalized approaches for 

clinical applications and diagnosis. New lncRNAs related to human liver diseases are 

frequently identified which may serve as serum biomarkers [58]. More importantly, the 

pivotal role of SHP in the control of miRNAs and lncRNAs expression will enable new 

discoveries for future therapeutic intervention.
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Figure 1. SHP as a transcriptional regulator of miRNA expression
A) SHP inhibits ERRγ transactivation of the promoters of miR-433 and miR-127, which 

results in the repression of these two miRNAs. B) SHP activates miR-206 expression via a 

cascade dual inhibitory mechanism. The inhibition of ERRγ by SHP leads to decreased 

YY1 expression and the derepression of YY1 on AP1 activity, ultimately leading to the 

activation of miR-206. C) SHP inhibits p53 transactivation of the miR-34a promoter, 

resulting in the repression of miR-34a. D) SHP represses miR-200c expression by inhibiting 

the activity of PPARα and LRH-1.
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Figure 2. SHP as a transcriptional regulator of lncRNA expression
SHP functions as a transcriptional repressor of both MEG3 and H19 expression. SHP 

represses CREB transactivation of the MEG3 promoter, resulting in the inhibition of MEG3 

expression. In a feedback regulatory loop, MEG3 recruits PTBP1 to Shp mRNA, resulting in 

Shp mRNA decay. SHP also represses lncRNA H19 expression. H19 in turn inhibits ZEB1 

binding to the EpCAM promoter, thus prevents the repressiive effect of ZEB1 on EpCAM 

transcription. H19 also recruits PTBP1 to Srebp1c mRNA to increase its stability, thus 

enhances lipogenesis.
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