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Abstract

Background: We previously investigated the association between 5 “first-generation” measures of epigenetic aging and
cancer risk in the Melbourne Collaborative Cohort Study. This study assessed cancer risk associations for 3 recently
developed methylation-based biomarkers of aging: PhenoAge, GrimAge, and predicted telomere length. Methods: We
estimated rate ratios (RRs) for the association between these 3 age-adjusted measures and risk of colorectal (N¼813), gastric
(N¼165), kidney (N¼139), lung (N¼327), mature B-cell (N¼423), prostate (N¼846), and urothelial (N¼404) cancer using con-
ditional logistic regression models. We also assessed associations by time since blood draw and by cancer subtype, and we in-
vestigated potential nonlinearity. Results: We observed relatively strong associations of age-adjusted PhenoAge with risk of
colorectal, kidney, lung, mature B-cell, and urothelial cancers (RR per SD was approximately 1.2-1.3). Similar findings were
obtained for age-adjusted GrimAge, but the association with lung cancer risk was much larger (RR per SD¼1.82, 95% confi-
dence interval [CI]¼1.44 to 2.30), after adjustment for smoking status, pack-years, starting age, time since quitting, and other
cancer risk factors. Most associations appeared linear, larger than for the first-generation measures, and were virtually
unchanged after adjustment for a large set of sociodemographic, lifestyle, and anthropometric variables. For cancer overall,
the comprehensively adjusted rate ratio per SD was 1.13 (95% CI¼1.07 to 1.19) for PhenoAge and 1.12 (95% CI¼1.05 to 1.20) for
GrimAge and appeared larger within 5 years of blood draw (RR¼1.29, 95% CI¼1.15 to 1.44 and 1.19, 95% CI¼1.06 to 1.33, re-
spectively). Conclusions: The methylation-based measures PhenoAge and GrimAge may provide insights into the relationship
between biological aging and cancer and be useful to predict cancer risk, particularly for lung cancer.

DNA methylation is one of the key mechanisms thought to un-
derlie the association between aging and cancer (1,2). Biological
aging measures derived from blood DNA methylation—taking
advantage of varying rates of aging-associated methylation
changes between individuals—have gained considerable popu-
larity as tools to better understand and predict disease (3-6). We
previously investigated the association between 5 “first-gener-
ation” measures of epigenetic aging (7-9) and the risk of 7 cancer

types using data from the Melbourne Collaborative Cohort
Study (MCCS) (10). The observed associations were relatively
weak compared with those obtained for all-cause mortality (9);
cancer risk overall was increased by 4%-9% per 5-year increase
in methylation “age acceleration,” although these estimates
varied by cancer type.

Two novel methylation-based measures of biological aging,
called PhenoAge (11) and GrimAge (12), have been developed
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based on associations of DNA methylation with, for PhenoAge,
age, mortality, and clinical biomarkers; and for GrimAge, smok-
ing pack-years and plasma concentrations of adrenomedullin,
beta-2 microglobulin, cystatin C, growth differentiation factor
15, leptin, plasminogen activation inhibitor 1, and tissue inhibi-
tor metalloproteinase 1. These new measures have proved to be
more strongly associated with mortality (11) than the first-
generation measures. Telomere length is another widely used
biomarker of aging, which shows unclear associations with can-
cer risk (2,13,14). A methylation-based predictor of telomere
length was recently developed (15).

In this study, we aimed to assess the association of the 3
aforementioned measures of biological aging, calculated using
DNA methylation data from the Infinium
HumanMethylation450 assay, and the risk of 7 cancer types: co-
lorectal, gastric, kidney, lung, prostate, and urothelial, and ma-
ture B-cell neoplasms. We used a prospective design, and 3117
incident cancer cases and matched controls were included in
the analysis.

Methods

Study Sample and Blood Collection

We used data collected from participants in the MCCS, a pro-
spective study of 41 513 adult volunteers (24 469 women) aged
between 27 and 76 years (99.3% aged 40-69 years) when recruited
between 1990 and 1994 (16). DNA samples were collected from
peripheral blood drawn at the time of recruitment (1990-1994)
or at the wave 2 follow-up visit (2003-2007). The DNA source
was dried blood spots, peripheral blood mononuclear cells, or
buffy coats for 70%, 28%, and 2% of participants, respectively
(Supplementary Methods, available online).

Study participants provided informed consent in accordance
with the Declaration of Helsinki, and the study was approved by
Cancer Council Victoria’s Human Research Ethics Committee.

Cancer Case-Control Studies Nested in the MCCS

A series of case-control studies nested within the MCCS of colo-
rectal (N¼ 835 pairs), gastric (N¼ 170), kidney (N¼ 143), lung
(N¼ 332), prostate (N¼ 869), and urothelial cancers (N¼ 428) and
mature B-cell neoplasms (N¼ 439) were conducted (17-20).
Cancer diagnoses were identified by linkage with the Victorian
Cancer Registry and the Australian Cancer Database (Australian
Institute of Health and Welfare). For each nested case-control
study, controls were individually matched to incident cases (di-
agnosed after blood sample collection) on age using incidence
density sampling (ie, they had to be free of the cancer of interest
up to the age at diagnosis of the corresponding case), sex, coun-
try of birth (Australia or New Zealand, southern Europe, north-
ern Europe), blood DNA source (dried blood spots, peripheral
blood mononuclear cells, or buffy coat), and collection period
(baseline or wave 2, the latter applicable to 151 case-control
pairs of the urothelial cancer study). Controls were also
matched to cases on year of birth, except for the colorectal can-
cer study, where controls were matched on year of baseline at-
tendance. For the lung cancer study, controls were also
matched on smoking history (never; former, quitting <10 years;
former, quitting �10 years; current, smoking <15 cigarettes per
day; current smoking �15 cigarettes per day) at the time of
blood collection. For each study, matched cases and controls

were placed next to each other, but allocated randomly, on the
same slide.

DNA Extraction and Bisulfite Conversion, and DNA
Methylation Data Processing

Methods relating to DNA extraction and bisulfite conversion
and to DNA methylation data processing have been described
previously (21) and are detailed in the Supplementary Material
(available online).

Methylation-Based Measures of Biological Aging

PhenoAge, GrimAge, methylation-predicted telomere length, and
their respective age-adjusted measures (the residual from the
regression of biological age on chronological age) were obtained
using Horvath’s online calculator at https://dnamage.genetics.
ucla.edu/new (7,11,12).

Statistical Analysis

Pearson correlations of the 3 aging measures with each other
and with age were calculated for participants selected as con-
trols. We used conditional logistic regression to calculate odds
ratios, which are estimates of the rate ratios (RRs) when inci-
dence density sampling matching is used (22), for the associa-
tions between age-adjusted biological aging measures, per
standard deviation (SD), and the risk of cancer. In Model 1, no
covariates were included. In Model 2, we adjusted for smoking
status (current, former, or never), smoking pack-years, age at
starting smoking (never smoked, aged 16 years or younger, aged
17-21 years, older than 21 years), years since quitting smoking
(never smoked, >10 years without smoking, between 5 and
10 years without smoking, <5 years without smoking), body
mass index (in kg/m2), height (in meters), alcohol intake in the
past week (in grams per day), physical activity (categorized
score based on time spent doing vigorous or less vigorous activi-
ties) (23), dietary quality (Alternative Healthy Eating Index 2010)
(24), socioeconomic status (deciles of the relative socioeconomic
disadvantage of area of residence index) (25), education (ordinal
variable ranging from 1, primary school only, to 8, tertiary or
higher university degree) (Table 1). In Model 3, we added to
Model 2 the white blood cell proportions estimated using the
Houseman algorithm (26). These models were used to analyze
each cancer type separately, and all 7 cancers combined; for the
combined analysis, where an individual was diagnosed with
several cancers, we included the first diagnosis only (respecting
the incidence density sampling procedure) so that participants
did not contribute twice to the pooled estimate. Analyses were
additionally stratified (Model 1) by time between blood draw
and diagnosis of the case (�5 years, 5-10 years, and >10 years),
and effect modification was examined using likelihood ratio
tests of the interaction between each measure and the time-to-
diagnosis variable, used as either categorical (Pheterogeneity) or
continuous (Plinearity). Potential nonlinearity in the associations
between methylation-based measures and cancer risk was
assessed using penalized regression splines, specifically P-
splines, which are based on cubic B-splines and a large number
of equidistant knots (27), with 3 degrees of freedom. This type of
spline was chosen because results are numerically stable, not
sensitive to the location and number of knots (28). These were
represented graphically, and nonlinearity was assessed by com-
paring the P-spline and linear models using a likelihood ratio
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test. Case-control pairs with any missing values for the con-
founders (Model 2) measured at baseline were excluded, and
missing values at follow-up (urothelial cancers) were replaced
by baseline values; 3% of the initial sample was excluded be-
cause of missing values. We also excluded 6 case-control pairs
(0.2%) for which a participant had an outlying value (>5 or � �5)
for any of the 3 age-adjusted methylation-based measures
(Supplementary Figure 1, available online). The same models
were used to calculate associations: expressed for a 5-year in-
crease for PhenoAge and GrimAge (Supplementary Table 4, avail-
able online); expressed per a 1 SD increase for the first-
generation measures (Supplementary Table 5, available online).

In secondary analyses, we assessed the association between
biological aging measures and risk of the following cancer sub-
types, as defined in previous publications: colon and rectal can-
cer; multiple myeloma, follicular lymphoma, low-grade non-

Hodgkin lymphoma (including chronic lymphocytic leukemia),
and high-grade non-Hodgkin lymphoma (20); aggressive and
nonaggressive prostate cancer (18); and invasive and superficial
urothelial cancers (19).

As per the Journal guidelines, a P value of less than .05 was
considered statistically significant, and P values of less than
.001 were written as “<.001.” All statistical tests were 2-sided.
All analyses were undertaken using R version 3.6.1.

Results

The correlation with chronological age was 0.70, 0.80, and �0.55
for PhenoAge, GrimAge, and methylation-predicted telomere
length, respectively (Supplementary Table 1, available online).
For the age-adjusted measures, the correlation between

Table 1. Characteristics of the study sample, 7 case-control studies nested within the Melbourne Collaborative Cohort Study (N¼ 41 513)

Variable of interest Controls Cases

Cancer type, No.
Colorectal cancer 813 813
Gastric cancer 165 165
Kidney cancer 139 139
Lung cancer 327 327
Mature B-cell neoplasms 423 423
Prostate cancer 846 846
Urothelial cancers 404 404

Matching variables
Age at blood draw, median (IQR), y 61 (54-66) 61 (54-66)
Sex, No. (%)

Male 2159 (69.3) 2159 (69.3)
Female 958 (30.7) 958 (30.7)

Country of birth, No. (%)
Australia/New Zealand 2,079 (66.7) 2,094 (67.2)
Northern Europe 211 (6.8) 205 (6.6)
Southern Europe 827 (26.5) 818 (26.2)

Blood sample type, No. (%)
Dried blood spots 2142 (68.7) 2142 (68.7)
Peripheral blood mononuclear cells 794 (25.5) 794 (25.5)
Buffy coats 181 (5.8) 181 (5.8)

Potential confounders
Smoking, No. (%)

Current 458 (14.7) 485 (15.8)
Former 1230 (39.5) 1294 (41.5)
Never 1429 (45.8) 1338 (42.9)
Pack-years, median (IQR) 2.4 (0-27.2) 4.5 (0-31.1)

Age at starting, No. (%)
Never smoked 1429 (45.8) 1338 (42.9)
�16 y 639 (20.5) 672 (21.6)
17-21 y 749 (24.0) 834 (26.8)
�22 y 300 (9.6) 273 (8.8)

Time since quitting, No. (%)
Never smoked 1429 (45.8) 1338 (42.9)
<5 y 622 (20.0) 675 (21.7)
5-10 y 862 (27.7) 885 (28.4)
>10 y 204 (6.5) 219 (7.0)

Body mass index, median (IQR), kg/m2 27 (24-29) 27 (25-30)
Height, median (IQR), m 168 (161-174) 169 (162-175)
Alcohol consumption, median (IQR), g/d 4 (0-19) 5 (0-19.3)
Diet quality: AHEI-2010, median (IQR) 63 (56-71) 63 (56-71)
Physical activity score, median (IQR) 2 (1-4) 2 (1-4)
Education score, median (IQR) 4 (4-6) 4 (4-6)
Socioeconomic status: SEIFA-10, median (IQR) 5 (3-8) 6 (3-9)

aAHEI-2010 ¼ Alternate Healthy Eating Index 2010; IQR ¼ interquartile range; SEIFA-10 ¼ Socio-Economic Indexes for Areas deciles.
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PhenoAge and GrimAge was 0.34, and their correlations with
methylation-predicted telomere length were �0.25 and �0.29,
respectively. The correlations of the 3 measures with the 5 first-
generation measures of epigenetic aging (all age adjusted) were
in the same range (Supplementary Table 2, available online).

Hereafter, the age-adjusted measures are referred to as
PhenoAge, GrimAge, and telomere length. Their associations with
cancer risk are presented in Table 2. In models without adjust-
ment other than that provided by the matching variables, in-
creasing PhenoAge was associated with increased risk of several
types of cancer, including colorectal cancer (per 1-SD RR¼ 1.22,
95% confidence interval [CI]¼ 1.10 to 1.36), kidney cancer
(RR¼ 1.25, 95% CI¼ 0.96 to 1.63), lung cancer (RR¼ 1.23, 95% CI ¼
1.06 to 1.44), mature B-cell neoplasms (RR¼ 1.24, 95% CI¼ 1.07 to
1.43), urothelial cancer (RR¼ 1.21, 95% CI ¼ 1.05 to 1.40), and
cancer overall (RR¼ 1.14, 95% CI¼ 1.08 to 1.20). These rate ratios
were virtually the same after adjustment for a comprehensive
set of cancer risk factors (cancer overall, RR¼ 1.13, 95% CI¼ 1.07
to 1.19). GrimAge biological aging showed similar associations to
PhenoAge for risk of colorectal, kidney cancer, and cancer over-
all. The association with risk of lung cancer was much stronger
(per 1-SD RR¼ 1.81, 95% CI¼ 1.45 to 2.26). A possible inverse as-
sociation with risk of prostate cancer was also observed

(RR¼ 0.88, 95% CI¼ 0.79 to 0.98). These associations were virtu-
ally the same in comprehensively adjusted models (lung cancer
RR¼ 1.82, 95% CI¼ 1.44 to 2.30) except for urothelial cancer, for
which estimates showed substantial attenuation while remain-
ing quite strong (RR¼ 1.22, 95% CI¼ 1.00 to 1.48). The RR also
remained similar after additional adjustment for estimated
white blood cell proportions for cancer overall (RR¼ 1.11, 95%
CI¼ 1.05 to 1.18), being somewhat smaller for colorectal cancer
risk (PhenoAge: RR¼ 1.18, 95% CI¼ 1.05 to 1.32; GrimAge:
RR¼ 1.12, 95% CI¼ 0.96 to 1.30) but larger for lung cancer risk
(GrimAge: RR¼ 2.03, 95% CI¼ 1.56 to 2.64) (Table 2). We found no
association between methylation-predicted telomere length
and risk of any type of cancer or cancer overall (all P> .1).

The same results expressed per a 5-year increase for
PhenoAge and GrimAge and expressed per a 1 SD increase for the
first-generation measures are shown in Supplementary Tables
4 and 5 (available online), respectively.

In analyses stratified by time since blood draw (Table 3),
associations were somewhat larger within 5 years of blood draw
for several cancer types for PhenoAge: colorectal cancer
(RR¼ 1.48, 95% CI¼ 1.16 to 1.89, Plinearity¼ .07), lung cancer
(RR¼ 1.51, 95% CI¼ 1.05 to 2.18, Plinearity¼ .18), and mature B-cell
neoplasms (RR¼ 1.38, 95% CI¼ 1.01 to 1.90, Plinearity¼ .14), and

Table 2. Association (RRs, 95% CIs) between 3 methylation-based measures of aging (per 1 SD) and cancer risk in the Melbourne Collaborative
Cohort Study

Cancer type Cases, No.

PhenoAge GrimAge Telomere length

Model RR (95% CI) P RR (95% CI) P RR (95% CI) P

Colorectal cancer 813 Model 1a 1.22 (1.10 to 1.36) <.001 1.20 (1.07 to 1.34) .001 0.98 (0.88 to 1.09) .68
Model 2b 1.22 (1.09 to 1.36) <.001 1.19 (1.03 to 1.36) .02 0.99 (0.89 to 1.10) .90
Model 3c 1.18 (1.05 to 1.32) .01 1.12 (0.96 to 1.30) .15 1.02 (0.90 to 1.14) .78

Gastric cancer 165 Model 1 0.95 (0.77 to 1.18) .65 1.03 (0.83 to 1.27) .80 1.17 (0.92 to 1.48) .19
Model 2 0.96 (0.76 to 1.22) .74 1.05 (0.78 to 1.41) .74 1.25 (0.96 to 1.63) .10
Model 3 0.88 (0.67 to 1.15) .34 0.95 (0.68 to 1.33) .75 1.19 (0.86 to 1.64) .29

Kidney cancer 139 Model 1 1.25 (0.96 to 1.63) .09 1.27 (0.98 to 1.65) .07 1.07 (0.80 to 1.43) .65
Model 2 1.28 (0.94 to 1.76) .12 1.32 (0.91 to 1.91) .15 1.11 (0.78 to 1.57) .57
Model 3 1.25 (0.88 to 1.77) .21 1.28 (0.84 to 1.95) .25 1.19 (0.79 to 1.79) .40

Lung cancer 327 Model 1 1.23 (1.06 to 1.44) .007 1.81 (1.45 to 2.26) <.001 0.90 (0.76 to 1.06) .19
Model 2 1.23 (1.05 to 1.45) .01 1.82 (1.44 to 2.30) <.001 0.88 (0.74 to 1.04) .13
Model 3 1.25 (1.05 to 1.49) .01 2.03 (1.56 to 2.64) <.001 0.88 (0.73 to 1.06) .19

Mature B-cell neoplasms 423 Model 1 1.24 (1.07 to 1.43) .003 0.95 (0.81 to 1.11) .49 0.92 (0.81 to 1.05) .24
Model 2 1.27 (1.09 to 1.47) .002 0.96 (0.78 to 1.17) .66 0.91 (0.79 to 1.05) .20
Model 3 1.23 (1.04 to 1.45) .02 1.03 (0.82 to 1.28) .81 0.95 (0.81 to 1.13) .57

Prostate cancer 846 Model 1 0.98 (0.88 to 1.08) .68 0.88 (0.79 to 0.98) .02 1.06 (0.95 to 1.18) .28
Model 2 0.99 (0.89 to 1.10) .85 0.88 (0.76 to 1.01) .07 1.05 (0.94 to 1.17) .43
Model 3 1.00 (0.89 to 1.11) .96 0.84 (0.72 to 0.98) .02 1.06 (0.94 to 1.20) .35

Urothelial cancers 404 Model 1 1.21 (1.05 to 1.40) .01 1.39 (1.19 to 1.61) <.001 0.90 (0.77 to 1.04) .14
Model 2 1.17 (1.00 to 1.36) .05 1.22 (1.00 to 1.48) .05 0.95 (0.81 to 1.10) .48
Model 3 1.16 (0.99 to 1.37) .07 1.22 (0.98 to 1.52) .08 0.92 (0.78 to 1.09) .33

All types 2994d Model 1 1.14 (1.08 to 1.20) <.001 1.13 (1.06 to 1.19) <.001 0.98 (0.93 to 1.03) .46
Model 2 1.13 (1.07 to 1.19) <.001 1.12 (1.05 to 1.20) .001 0.98 (0.93 to 1.04) .58
Model 3 1.11 (1.05 to 1.18) <.001 1.11 (1.03 to 1.20) .01 1.00 (0.94 to 1.06) 1.00

aModel 1: No adjustment other than that provided by the matching variables age, sex, country of birth (Australia, northern Europe, or southern Europe), sample type

(peripheral blood mononuclear cells, dried blood spots, or buffy coats); lung cancer study: additional matching for smoking status (never; former, quitting less than

10 years; former, quitting 10 years and over; current, smoking less than 15 cigarettes per day; current smoking 15 or more cigarettes per day). CI ¼ confidence interval;

RR ¼ rate ratio.
bModel 2: Additional adjustment for smoking (current, former, or never), smoking pack-years, age at starting smoking (4 categories), time since quitting smoking (4 cat-

egories), body mass index (in kg/m2), height (in meters), alcohol consumption (in grams per day), physical activity (categorized score), dietary quality (24), socioeco-

nomic status score (at the local area level, ranging from 1 to 10), education score (ordinal variable ranging from 1, primary school to 8, postgraduate degree).
cModel 3: Model 2þadditional adjustment for white blood cell proportions estimated using the Houseman algorithm.
dFor the combined analysis, where an individual was diagnosed with several cancers, we included the first diagnosis only (respecting the incidence density sampling

procedure), so that participants did not contribute twice to the pooled estimate, resulting in 2994 pairs out of 3117 in total.
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this pattern was even clearer in the overall cancer analysis
(RR¼ 1.29, 95% CI¼ 1.15 to 1.44; RR¼ 1.12, 95% CI¼ 1.01 to 1.23;
and RR¼ 1.09, 95% CI¼ 1.01 to 1.17 for �5, 5-10 years, and
>10 years, respectively, Plinearity¼ .004). A similar trend, albeit
weaker, was observed for GrimAge (RR¼ 1.19, 95% CI¼ 1.06 to
1.33; RR¼ 1.15, 95% CI¼ 1.04 to 1.28; RR¼ 1.08, 95% CI¼ 1.00 to
1.17, respectively, Plinearity¼ .11). As shown in Figure 1, most
associations with cancer risk appeared relatively linear. Some
evidence of nonlinearity was observed for GrimAge and lung
cancer risk (P¼ .001), with a sharp increase at lower values and
a plateau after the 75th percentile. A similar shape of associa-
tion, while less marked, was also observed for GrimAge and
overall cancer risk (P¼ .05).

Associations were generally consistent across cancer sub-
types (Supplementary Table 3, available online). Evidence of
heterogeneity was observed for the association of PhenoAge with
B-cell lymphoma subtypes (P¼ .05, being stronger for low-grade
non-Hodgkin lymphoma: RR¼ 1.90, 95% CI¼ 1.37 to 2.62). Weak
evidence of heterogeneity was observed for PhenoAge and colo-
rectal cancer risk (P¼ .16; colon: RR¼ 1.16, 95% CI¼ 1.01 to 1.32;
rectum: RR¼ 1.38, 95% CI¼ 1.12 to 1.69). The inverse association
observed between GrimAge and prostate cancer risk was only
apparent for nonaggressive disease (RR¼ 0.79, 95% CI¼ 0.64 to
0.97, Pheterogeneity¼ 0.16). No association was found between
methylation-predicted telomere length and risk of cancer
subtypes.

Discussion

In this prospective study, including 3117 incident cancer cases,
we observed relatively strong associations of PhenoAge and
GrimAge with risk of several cancer types; these appeared to be
greater than in our study of first-generation epigenetic aging
measures for risk of colorectal, lung, and urothelial cancer
(Supplementary Table 5, available online) (10). For GrimAge, a
very strong association was observed with risk of lung cancer
independently of several questionnaire-collected variables re-
lating to smoking. An association stronger than for PhenoAge
was also observed with risk of urothelial cancer. A possible in-
verse association was observed between GrimAge and (nonag-
gressive) prostate cancer. No association was observed between
methylation-predicted telomere length and any cancer type or
subtype.

PhenoAge and GrimAge integrate methylation measures at
CpG sites associated with age, mortality, key disease risk fac-
tors, and biomarkers, which are also involved in the aetiology of
cancer. That GrimAge is enriched for smoking-associated meth-
ylation measures likely explains the very strong association ob-
served with lung cancer risk; of note, however, case-control
pairs were matched on smoking history in the lung cancer
study, and the estimates were robust to further adjustment for
questionnaire-collected variables. In the case of urothelial can-
cer, for which smoking is a strong risk factor, the association

Table 3. Stratification by time since blood draw for the association (RRs, 95% CIs) between 3 methylation-based measures of aging (per 1 SD)
and cancer risk in the Melbourne Collaborative Cohort Study

PhenoAge GrimAge Telomere length

Cancer type
No.

cases
Time since
blood draw RRa95% CI Phet

b Plin
b RRa95% CI Phet

b Plin
b RRa95% CI Phet

b Plin
b

Colorectal cancer 813 �5 y 1.48 (1.16 to 1.89) 1.20 (0.94 to 1.52) 0.95 (0.75 to 1.20)
5-10 y 1.23 (1.02 to 1.50) .13 .07 1.24 (1.03 to 1.50) .89 .32 1.05 (0.87 to 1.26) .68 .79
>10 y 1.11 (0.95 to 1.30) 1.17 (0.99 to 1.38) 0.95 (0.81 to 1.10)

Gastric cancer 165 � 5 y 0.72 (0.42 to 1.26) 0.99 (0.54 to 1.84) 0.98 (0.57 to 1.71)
5-10 y 1.06 (0.71 to 1.59) .52 .48 0.93 (0.61 to 1.42) .85 .49 1.14 (0.73 to 1.77) .74 .60
>10 y 0.97 (0.73 to 1.30) 1.08 (0.82 to 1.41) 1.26 (0.91 to 1.74)

Kidney cancer 139 �5 y 1.29 (0.61 to 2.70) 0.81 (0.46 to 1.42) 1.68 (0.82 to 3.45)
5-10 y 1.33 (0.72 to 2.48) .97 .67 1.91 (1.06 to 3.44) .09 .26 1.01 (0.54 to 1.91) .36 .13
>10 y 1.22 (0.89 to 1.67) 1.29 (0.89 to 1.87) 0.95 (0.66 to 1.38)

Lung cancer 327 �5 y 1.51 (1.05 to 2.18) 2.15 (1.28 to 3.61) 0.76 (0.51 to 1.14)
5-10 y 1.13 (0.85 to 1.50) .44 .18 1.46 (1.00 to 2.12) .40 .92 0.97 (0.71 to 1.31) .64 .51
>10 y 1.20 (0.97 to 1.49) 1.94 (1.40 to 2.69) 0.91 (0.73 to 1.13)

Mature B-cell neoplasms 423 �5 y 1.38 (1.01 to 1.90) 0.85 (0.58 to 1.25) 0.94 (0.72 to 1.22)
5-10 y 1.21 (0.93 to 1.57) .73 .14 1.22 (0.87 to 1.71) .22 .30 1.03 (0.78 to 1.35) .64 .30
>10 y 1.20 (0.98 to 1.46) 0.88 (0.71 to 1.09) 0.88 (0.73 to 1.05)

Prostate cancer 846 �5 y 1.23 (0.96 to 1.57) 0.90 (0.71 to 1.13) 1.03 (0.82 to 1.30)
5-10 y 0.93 (0.77 to 1.13) .13 .13 0.94 (0.74 to 1.18) .78 .95 1.09 (0.88 to 1.34) .95 .95
>10 y 0.93 (0.81 to 1.07) 0.85 (0.73 to 0.99) 1.06 (0.91 to 1.23)

Urothelial cancers 404 �5 y 1.17 (0.94 to 1.47) 1.70 (1.31 to 2.22) 0.90 (0.72 to 1.13)
5-10 y 1.16 (0.89 to 1.51) .76 .93 1.07 (0.84 to 1.38) .04 .52 1.04 (0.80 to 1.36) .22 .47
>10 y 1.32 (0.99 to 1.75) 1.48 (1.10 to 2.00) 0.74 (0.54 to 1.00)

All types 2994 �5 y 1.29 (1.15 to 1.44) 1.19 (1.06 to 1.33) 0.95 (0.85 to 1.06)
5-10 y 1.12 (1.01 to 1.23) .05 .004 1.15 (1.04 to 1.28) .36 .11 1.05 (0.95 to 1.16) .31 .70
>10 y 1.09 (1.01 to 1.17) 1.08 (1.00 to 1.17) 0.96 (0.89 to 1.03)

aModel 1: No adjustment other than that provided by the matching variables age, sex, country of birth (Australia, northern Europe, or southern Europe), sample type

(peripheral blood mononuclear cells, dried blood spots, or buffy coats); lung cancer study: additional matching for smoking status (never; former, quitting less than

10 years; former, quitting 10 years and over; current, smoking less than 15 cigarettes per day; current smoking 15 and more cigarettes per day).
bPhet (Pheterogeneity) and Plin (Plinearity) were calculated using a likelihood ratio test for the interaction between each methylation-based measure and the time-to-diagno-

sis variable, taken as categorical and continuous, respectively.
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Figure 1. Assessment of linearity. Relative cancer rates for age-adjusted PhenoAge, GrimAge, and predicted telomere length for 7 cancer types and overall in the

Melbourne Collaborative Cohort Study. Model 1 was used (no other adjustment than that provided by the matching variables). x-axis: methylation-based measures of

aging. All measures were expressed as Z scores (mean ¼ 0, SD ¼ 1), so that approximately 95% of the values are between –2 and 2. y-axis: Relative cancer rate, using as

a reference (y ¼ 1) the median value of the methylation-based measure distribution. P values (P-lin) are from a likelihood ratio test comparing P-spline and linear

models.
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was partially attenuated after adjustment for smoking status,
which was not a matching variable in that study. However, for
both PhenoAge and GrimAge, there was overall little attenuation
of risk estimates after adjustment for a comprehensive set of
sociodemographic and lifestyle cancer risk factors, which may
indicate that these measures capture information beyond self-
reported questionnaires and on many adverse environmental
and lifestyle factors that affect the methylome over the life
course. To our knowledge, no data exist on the association of
PhenoAge and GrimAge with risk of cancers other than pancreatic
cancer (29) and breast cancer; in the latter case, the Sister Study
revealed a reasonably strong association with PhenoAge (30) (in-
vasive disease; hazard ratio per 5-year increase: 1.13, which is of
similar magnitude to our findings for colorectal, kidney, lung,
mature B-cell, and urothelial cancers) (Supplementary Table 4,
available online) but not with GrimAge (31). Further adjustment
for estimated white blood cell proportions slightly attenuated
associations with cancer risk overall, although a larger associa-
tion was observed for GrimAge and lung cancer, similar to obser-
vations made for PhenoAge and risk of breast (30) and pancreatic
cancer (29).

Although our sample size was quite large, our findings
should be replicated by other studies before these methylation-
based measures can be used for cancer risk prediction. In the
case of lung cancer, our rate ratio estimate of 1.8 per SD for
GrimAge is considerably larger than current estimates obtained
for polygenic risk scores (32-35). For other cancers, our esti-
mates are lower than for polygenic risk scores for colorectal,
gastric, B-cell lymphoma, and prostate cancer and similar or
greater for kidney and urothelial cancer (32-35). Combining
polygenic and methylation aging scores may therefore be re-
quired to summarize risk associated with genetic factors and
lifestyle or environmental exposures accumulated over the life-
time. Our findings also suggest that PhenoAge and GrimAge may
be more valuable biomarkers than the first-generation aging
clocks (10,30) and generally show a linear association with risk.
That we observed stronger associations within 5 years of blood
draw for PhenoAge, and to a lesser extent for GrimAge, suggests
that these aging measures may have more utility for assess-
ment of short-term risk, but corroborating data are required to
confirm this. In our previous report on the first-generation
measures (10), we found at best weak evidence of effect modifi-
cation by time since blood draw. Consistent with this, it was ob-
served that Horvath epigenetic aging was largely determined
before adulthood (36), and this might not hold true for PhenoAge
and GrimAge since these predictors were developed to predict a
composite phenotype (age and clinical markers). Finally, al-
though these methylation-based predictors show some degree
of correlation with age in other tissues (11), they were developed
and validated in blood so at this stage should be considered as
biomarkers of future cancer risk and extrapolation to cancer
or normal-adjacent tissue made with caution (37), because
DNA methylation usually shows substantial variation across
tissues (38).

We also used DNA methylation measures at a set of 140
CpGs to estimate telomere length. The correlation of this pre-
dictor with measured telomere length in independent data has
been shown to be moderate (r ¼ approximately 0.40), but its cor-
relation with age appeared stronger than was the case for mea-
sured telomere length (r ¼ approximately �0.75 vs �0.35),
which is consistent with our findings (correlation with age r ¼
�0.56). Our findings of no association between telomere length
and cancer risk are consistent with those reported in a Danish
prospective study of 3142 cancer cases of any type (14). In a

Mendelian randomization study and meta-analysis by Haycock
et al., which included a larger number of cancer cases and types,
genetically predicted telomere length was strongly positively
associated with risks of lung and bladder cancers, which is in-
consistent with our findings. Our results were nevertheless con-
sistent with Mendelian randomization estimates for other
cancer types and with estimates from prospective studies for all
cancer types, all showing null or weak associations with cancer
risk (13,14).

We conclude that biological aging, as defined by the
methylation-based measures PhenoAge and GrimAge, is associ-
ated with risk of several cancer types, including colorectal, lung,
kidney and urothelial, and mature B-cell neoplasms, indepen-
dent of key demographic, lifestyle, and socioeconomic varia-
bles. These measures, derived using a limited number of
methylation sites across the genome, have the potential to im-
prove cancer risk prediction, particularly in contexts where rele-
vant cancer biomarkers have not been extensively measured.
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