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Abstract
Multiple	sclerosis	(MS)	is	among	the	most	common	autoimmune	disabling	neu-
rological	 conditions	 of	 young	 adults	 and	 affects	 more	 than	 2.3	 million	 people	
worldwide.	Predicting	future	disease	activity	in	patients	with	MS	based	on	their	
pathophysiology	and	current	treatment	is	pivotal	to	orientate	future	treatment.	
In	this	respect,	we	used	machine	learning	to	predict	disease	activity	status	in	pa-
tients	with	MS	and	 identify	 the	most	predictive	covariates	of	 this	activity.	The	
analysis	is	conducted	on	a	pooled	population	of	1935	patients	enrolled	in	three	
cladribine	tablets	clinical	trials	with	different	outcomes:	relapsing–	remitting	MS	
(from	CLARITY	and	CLARITY-	Extension	trials)	and	patients	experiencing	a	first	
demyelinating	event	(from	the	ORACLE-	MS	trial).	We	applied	gradient-	boosting	
(from	XgBoost	 library)	and	Shapley	Additive	Explanations	 (SHAP)	methods	 to	
identify	 patients'	 covariates	 that	 predict	 disease	 activity	 3	 and	 6	months	 before	
their	clinical	observation,	including	patient	baseline	characteristics,	longitudinal	
magnetic	 resonance	 imaging	 readouts,	 and	 neurological	 and	 laboratory	 meas-
ures.	The	most	predictive	covariates	for	early	identification	of	disease	activity	in	
patients	were	found	to	be	treatment	duration,	higher	number	of	new	combined	
unique	active	lesion	count,	higher	number	of	new	T1	hypointense	black	holes,	and	
higher	age-	related	MS	severity	score.	The	outcome	of	this	analysis	improves	our	
understanding	of	the	mechanism	of	onset	of	disease	activity	in	patients	with	MS	
by	allowing	their	early	identification	in	clinical	settings	and	prompting	preven-
tive	measures,	therapeutic	interventions,	or	more	frequent	patient	monitoring.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Classical	 pharmacometric	 methods	 are	 computationally	 intensive	 and	 have	 a	
limited	 ability	 to	 exploit	 high-	dimensional	 covariate	 data.	 Hence,	 incorporat-
ing	 machine-	learning	 (ML)	 approaches	 that	 are	 better	 suited	 for	 big	 data	 in	
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INTRODUCTION

Multiple	 sclerosis	 (MS)	 is	 an	 inflammatory	 neurological	
condition	 that	 is	 the	 leading	 disabling	 disease	 in	 young	
adults1,2	 with	 compounded	 socioeconomic	 impact.3	 The	
pathology	 and	 clinical	 presentation	 of	 MS	 have	 been	
widely	studied.1,4,5	Cladribine	tablets	(Mavenclad®)	repre-
sent	an	attractive	treatment	owing	to	its	benefit–	risk	bal-
ance	and	convenience	of	use	as	an	oral	disease-	modifying	
drug	(DMD)	for	use	in	MS	treatment.6,7	The	recommended	
dose	is	3.5 mg/kg,	consisting	of	two	annual	courses,	each	
comprising	two	treatment	weeks	1	month	apart	and	start-
ing	at	the	beginning	of	two	consecutive	years.	Reviews	of	
cladribine	tablets	for	relapsing	MS	treatment	can	be	found	
in	Deeks8	and	Rammohan	et	al.9

Cladribine	 functions	 by	 preferentially	 reducing	 lym-
phocytes,	 key	 immune	 cells	 underlying	 MS	 pathogen-
esis.10	 The	 clinical	 pharmacology	 of	 cladribine	 tablets	
have	 been	 investigated	 in	 detail	 including	 the	 pharma-
cokinetics,	 pharmacodynamics,	 and	 exposure–	response	
relationships.11	Network	meta-	analysis	of	10,825	articles	
covering	44	studies	assessing	12	disease-	modifying	treat-
ments	(DMTs)	showed	that	cladribine	tablets	are	compar-
atively	 effective	 and	 a	 safe	 alternative	 to	 other	 DMTs	 in	
both	active	relapsing–	remitting	MS	(RRMS)	and	high	dis-
ease	activity	populations12	with	respect	to	multiple	clinical	

end	points	such	as	annualized	relapse	rate,	confirmed	dis-
ease	progression,	and	no	evidence	of	disease	activity.

The	efficacy	and	safety	of	cladribine	tablets	in	the	treat-
ment	of	patients	with	MS	in	different	stages	of	the	evolu-
tion	 of	 the	 disease	 have	 been	 studied	 by	 integrating	 data	
from	 multiple	 phase	 III	 clinical	 trials.13,14	 The	 CLARITY	
(NCT00213135)	study	in	patients	with	RRMS	showed	that	
annualized	relapse	rates	and	worsening	sustained	disabil-
ity	were	reduced	in	patients	treated	with	cladribine	tablets	
compared	 with	 patients	 on	 placebo.15,16	 The	 efficacy	 ob-
served	in	CLARITY	was	maintained	without	further	active	
treatment	during	CLARITY-	Extension	(NCT00641537).14,17	
ORACLE-	MS	(NCT00725985)	clinical	data	showed	the	ef-
ficacy	of	cladribine	in	delaying	the	conversion	of	patients	
with	a	first	clinically	isolated	event	to	clinically	definite	MS	
(CDMS).18	A	significant	treatment	effect	of	cladribine	tab-
lets	was	observed	in	patients	who	later	converted	to	CDMS	
and	were	switched	to	a	different	DMD.19

The	 pooled	 data	 set	 from	 the	 three	 trials	 results	 in	 a	
richly	informative	population	with	a	long	observation	pe-
riod	of	more	than	6	years,	with	heterogeneous	baseline	and	
time-	varying	covariates	that	can	be	used	to	explore	the	rela-
tionship	of	multiple	efficacy	end	points	with	patient	(base-
line)	 characteristic	 and	 treatment	 effects.	 Incorporation	
of	 machine-	learning	 (ML)	 methods	 to	 efficiently	 handle	
the	analysis	of	high-	dimensional	data	for	model-	informed	

clinical	analysis	has	the	potential	to	improve	prediction	in	model-	informed	drug	
development.
WHAT QUESTION DID THIS STUDY ADDRESS?
This	study	presents	a	predictive	modeling	approach	for	identifying	patients	with	
MS	who	will	have	an	onset	of	disease	activity	in	3	and	6	months	along	with	iden-
tification	of	clinical	covariates	that	drive	the	model	prediction	using	explainable	
ML	methods.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This	 study	 illustrates	 how	 incorporation	 of	 interpretable	 ML	 methods	 such	 as	
Shapley	Additive	Explanations	(SHAP)	with	complex,	nonlinear	“black	box”	ML	
models,	 such	as	XgBoost	 into	Drug	Discovery	and	Development	questions	can	
lead	 to	 efficient	 exploration	 of	 high-	dimensional	 patient	 covariates	 and	 assess	
their	 contribution	 to	 composite	 clinical	 end	 points	 in	 MS.	 The	 interpretability	
methods	such	as	SHAP	make	the	decision	process	of	ML	models	transparent,	in-
creasing	trust	in	the	models,	whereas	ensemble	methods	such	as	XgBoost	enable	
improved	prediction	by	capturing	nonlinear	effects	and	covariate	interactions	in	
a	data	set	with	a	high	number	of	diverse	covariates.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The	 study	 demonstrates	 a	 framework	 to	 use	 complex	 “black	 box”	 ML	 models	
and	explainability	methods	to	analyze	high-	dimensional	data	and	present	clinical	
insights	and	 interpretable	covariate	 importance	 to	 further	enrich	 the	currently	
available	domain	knowledge	of	MS	disease	progression	and	drug	response	mech-
anisms	in	clinical	pharmacology.
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drug	 development	 has	 been	 widely	 supported	 and	 evi-
denced	in	the	literature,20-	23	including	in	predicting	the	MS	
disease	 course	 in	 patients	 and	 the	 conversion	 to	 second-
ary	progressive	MS.24-	27	This	multivariate	data	set	presents	
an	opportunity	to	characterize	patients	who	will	have	dis-
ease	activity	in	the	future	with	data-	driven	ML	modeling.	
Earlier	studies	have	assessed	the	relation	of	various	base-
line	 and	 time-	varying	 patient	 characteristics	 for	 overall	
clinical	outcome	through	time-	to-	event	modeling.28-	31	The	
focus	of	our	current	analysis	is	on	the	early	identification	
of	patients	who	will	experience	the	onset	of	disease	activity	
within	a	6-	month	period	and	explore	which	covariates	con-
tribute	to	their	early	identification.

In	 this	 article,	 we	 present	 our	 findings	 by	 applying	
interpretable	 ML	 methods	 such	 as	 Shapley	 Additive	
Explanations	(SHAP)	in	combination	with	XGBoost,	an	en-
semble	 tree-	boosting	 method,	 a	 state-	of-	the-	art	 approach	
for	many	ML	challenges.32-	34	These	methods	generate	 in-
sights	 into	 the	 contribution	 of	 the	 input	 covariates	 into	
model	predictions,	thus	rendering	the	decision	process	of	
the	so-	called	“black-	box”	models	transparent	and	informa-
tive	for	clinical	patient	management.	To	this	end,	we	stud-
ied	the	top	predictive	covariates	in	our	models	affecting	the	
future	disease	activity	status	of	patients	with	MS.

METHODS

In	 this	 study,	 combining	 the	 patient	 populations	 from	
ORACLE-	MS,	CLARITY,	and	CLARITY-	Extension,	a	dis-
ease	activity	event,	for	a	patient	while	on	cladribine	treat-
ment	or	placebo	or	observational	follow-	up,	is	defined	as	
meeting	any	of	the	following	five	criteria:

C1:	one	qualified	relapse	and	at	least	one	new	T1	gad-
olinium	 enhancing	 (Gd+)	 lesion	 during	 the	 previous	
48	weeks.

C2:	one	qualified	relapse	and	at	 least	 two	new	or	en-
larging	T2	lesions	during	the	previous	48	weeks.

C3:	 two	or	more	qualified	 relapses	 in	absence	of	any	
magnetic	 resonance	 imaging	 (MRI)	 finding	 during	 the	
previous	48	weeks.

C4:	 3-	month	 sustained	 Expanded	 Disability	 Status	
Scale	(EDSS)	progression.

C5:	Required	switching	to	an	alternative	DMT.
Sustained	EDSS	progression	was	defined	as	an	increase	

in	 the	 EDSS	 score	 of	≥1	 point	 if	 baseline	 EDSS	 was	 be-
tween	≥1.0	and	≤4.5,	≥1.5	points	if	baseline	EDSS	was	0,	or	
≥0.5	if	baseline	EDSS	was	≥5.0	during	a	period	of	at	least	
3	months.

Although	the	first	four	criteria	measure	various	dimen-
sions	of	disease	activity,	the	last	criterion,	C5,	is	a	marker	
of	treatment	persistence	and	can	be	driven	by	lack	of	ef-
ficacy	or	a	tolerability	issue.	Because	of	the	complex	and	
multidimensional	 aspect	 of	 disease	 progression	 in	 MS,	
there	is	a	strong	interest	in	studying	composite	end	points	
that	combine	several	clinical	end	points	to	address	better	
treatment	planning	and	MS	patient	monitoring.	To	note,	
our	analysis	 involves	all	patients	 from	the	 three	cladrib-
ine	trials,	including	those	in	the	placebo	arm	not	receiving	
cladribine.

Materials

In	our	analysis,	we	adopted	a	supervised	ML	framework	
which	 algorithmically	 learns	 the	 complex	 relationship	

T A B L E  1 	 Input	covariates	for	the	P3-	T-	24	and	P3-	T-	12	models

Patient	
characteristics	+	baselines

Age,	sex,	race,	dose	(number	of	weeks	of	treatment),	weight,	age	of	onset	of	disease,	time	since	first	
attack,	lymphocytes_baseline,	EDSS_baseline

Neurological	assessment Global	Age-	Related	Multiple	Sclerosis	Severity	Score,	KFSS1–	Bowel	and	Bladder	Functions,	KFSS1–	
Brain	Stem	Functions,	KFSS1–	Cerebellar	Functions,	KFSS1–	Cerebral	or	Mental	Functions,	KFSS1–	
Pyramidal	Functions,	KFSS1–	Sensory	Functions,	KFSS1–	Visual	or	Optic	Functions

MRI	assessment Total	number	of	T1	Gd+	lesions,	total	T1	hypointense	(black	holes),	total	number	of	T2/flair	lesions,	
T1	Gd+	(volume	in	mm3),	T1	hypointense	lesions	(volume	in	mm3),	T2	lesions	(volume	in	mm3),	
combined	unique	lesion	count,	new	T1	hypointense	(black	holes)

Laboratory Biochemistry:	alanine	
aminotransferase,	albumin,	
alkaline	phosphatase,	aspartate	
aminotransferase,	bilirubin,	blood	
urea	nitrogen,	calcium,	creatine	
kinase,	creatinine,	sodium,	
potassium,	urate,	serum	protein

Hematology:	basophils,	basophils/leukocytes,	
eosinophils,	eosinophils/leukocytes,	
erythrocytes,	hematocrit,	hemoglobin,	
leukocytes,	lymphocytes,	lymphocytes/
leukocytes,	monocytes,	monocytes/
leukocytes,	neutrophils,	neutrophils/
leukocytes,	platelets

Urinalysis:	
urine	pH,	
glucose

Note:	The	laboratory	covariates	are	not	collected	in	routine	clinical	practice.	Hence,	the	input	to	P4-	T-	24	and	P4-	T-	12	models	have	the	same	set	of	input	
covariates	as	P3	models	except	for	the	laboratory	covariates.
Abbreviations:	EDSS,	Expanded	Disability	Status	Scale;	Gd+,	gadolinium	enhancing;	KFSS,	Kurtzke	Functional	Systems	Scores;	MRI,	magnetic	resonance	
imaging;	P3-	T-	12,	phase	III	12	weeks;	P3-	T-	24,	phase	III	24	weeks;	P4-	T-	12,	phase	IV	12	weeks;	P4-	T-	12,	phase	IV	24	weeks.
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between	the	high-	dimensional	 input	covariate	set	with	
the	dependent	or	output	covariate.	We	trained	and	vali-
dated	four	models	that	make	predictions	of	disease	ac-
tivity	 for	 patients	 approximately	 3	months/12	weeks	
(T-	12)	and	6	months/24	weeks	(T-	24)	in	advance,	as	this	
matches	the	frequency	of	patient	clinical	visits	and	sam-
pling	 schedules	 of	 various	 covariates	 in	 the	 trials.	 Our	
phase	III T-	12	(P3-	T-	12)	and	T-	24	(P3-	T-	24)	models	are	
based	on	a	 set	of	57	 independent	covariates,	 including	
various	 patient	 baseline	 and	 time-	varying	 covariates	
such	 as	 patient	 characteristics,	 neurological	 and	 MRI-	
based	 assessments,	 laboratory	 measurements	 (refer	 to	
Table 1).	The	phase	IV	T-	12	(P4-	T-	12)	and	T-	24	(P4-	T-	24)		
models	 in	 contrast	 to	 the	 P3	 models	 are	 based	 on	 25	
independent	 covariates,	 excluding	 laboratory	 covari-
ates,	 to	 mimic	 the	 scenario	 of	 routine	 clinical	 practice	
or	 phase	 IV	 trials	 where	 laboratory	 covariates	 are	 not	
usually	collected.

This	covariate	 list	 includes	those	that	were	collected	
and	can	be	matched	across	the	combined	population	of	
1935	 individuals	 in	 the	 three	 trials.	 Covariates	 missing	
for	 greater	 than	 20%	 of	 the	 patients	 are	 not	 included	
(e.g.,	 lymphocyte	 subset	 CD4,	 CD8).	 This	 is	 because	
such	 covariates	 increase	 the	 dimension	 of	 the	 feature	
space	without	contributing	to	the	predictive	power	of	the	
model.	These	can	further	adversely	affect	generalizability	
of	model	performance.	Last	observation	carried	forward	
imputation	was	adopted	to	have	a	fixed	number	of	input	
variables	 for	 the	 XGBoost	 algorithm.	 The	 input	 to	 the	
T-	12	models	are	baseline	covariates	and	time-	varying	co-
variates	from	12	to	20	weeks	before	the	first	observation	
of	disease	activity	for	the	patient	or	from	the	time	of	their	
last	available	observation	record.	Similarly,	 input	to	the	
T-	24	models	are	baseline	covariates	and	time-	varying	co-
variates	from	21	to	30	weeks	before	the	first	observation	
of	disease	activity	or	from	the	time	of	their	last	available	
observation	record.	The	representation	of	the	cladribine	
dose	to	the	model	was	chosen	as	the	number	of	weeks	of	
treatment	 received	 instead	 of	 cumulative	 dose	 because	
the	former	had	fewer	confounders	such	as	patient	body	
weight.

The	dependent	variable	is	a	binary	indicator	of	whether	
a	patient	will	meet	any	of	the	five	disease	activity	criteria	
in	3	or	6	months.	The	covariates	used	in	the	computation	
of	the	dependent	variable	are	explicitly	removed	from	the	
input	set	of	model	covariates	to	ensure	that	the	retrospec-
tive	analysis	mimics	how	the	 information	could	be	used	
prospectively,	 where	 the	 covariates	 for	 clinical	 determi-
nation	of	disease	activity	in	patients	in	the	future	are	not	
available.	 These	 covariates	 are	 qualified	 relapse	 count,	
new	T1	Gd+	lesions	count,	new	and	enlarging	T2	lesions	
count,	EDSS,	and	whether	the	patient	required	switching	
to	another	DMT.

ML methods

The	overview	of	our	analysis	 framework	 is	presented	 in	
Figure 1.	First,	the	available	patient	data	is	split	in	an	80%–	
20%	ratio	using	a	stratified	random	sampling	strategy	for	
model	training	and	testing,	respectively.	During	the	train-
ing	 process,	 GridSearch	 cross-	validation35	 was	 used	 to	
select	optimal	model	hyperparameters.	We	used	10	times	
repeated	 10-	fold	 cross-	validation	 to	 optimize	 the	 model	
hyperparameters	 (fraction	 of	 covariates	 to	 subsample	 at	
each	split = 0.8,	tree	depth = 6,	minimum	weight	of	leaf	
nodes	for	regularization = 15,	learning	rates = 0.05,	and	
number	of	estimators = 150),	which	generalizes	best	the	
model	 performance	 on	 unseen	 data.	 In	 cross-	validation,	
the	model	is	trained	on	a	fraction	of	the	training	data,	and	
its	performance	is	estimated	on	the	unseen	“out	of		sample”	
(test)	data,	and	this	process	is	repeated	by	randomly	shuf-
fling	the	data	splits	to	obtain	an	averaged	performance	es-
timate	over	several	runs.	In	this	way,	the	training	of	the	
classifier	and	the	evaluation	of	its	predictive	performance	
are	based	on	statistically	unrelated	training	and	test	sets.	
Therefore,	cross-	validation	provides	a	more	generalizable	
estimation	of	the	performance	of	a	model	on	new	unseen	
data.35	Finally,	the	trained	model	is	applied	on	the	com-
pletely	left	out	test	data	set	to	get	an	unbiased	estimate	of	
model	performance	on	future	unseen	data.	This	training	
and	evaluation	protocol	results	in	a	good	balance	of	pre-
venting	overfitting	and	ensuring	generalizability	of	model	
performance	on	future	unseen	data,	also	termed	the	bias- 
variance trade- off in ML.

We	 employed	 the	 gradient-	boosting,	 tree-	based	 en-
semble	 ML	 algorithm	 XGBoost	 that	 has	 been	 empiri-
cally	 demonstrated	 to	 be	 highly	 effective	 in	 a	 variety	 of	
problems.32,33	 Final	 model	 predictions	 are	 obtained	 by	
aggregating	 the	 predictions	 of	 individual	 decision	 trees	
by	weighted	voting.	XGBoost	can	efficiently	handle	mul-
ticollinearity	 between	 covariates	 as	 a	 result	 of	 consider-
ing	each	individual	covariate	independently	for	the	splits	
during	the	decision	tree	building.	In	fact,	because	of	the	
ability	 of	 ensembles	 to	 handle	 correlated	 covariates	 and	
their	interaction	well,	there	is	no	requirement	for	covari-
ate	 selection	 in	 the	 final	 model.	 The	 models	 have	 been	
built	with	the	Python	(Version	3.7)	interface	of	the	“xgb”	
library	(Version	0.90).

Difficulties	in	interpreting	complex	ML	models	such	
as	XGBoost	and	their	predictions	limit	the	practical	ap-
plicability	of	and	confidence	in	ML.	In	clinical	settings,	it	
is	critical	to	understand	not	only	the	global	aspects	of	co-
variate	dynamics	at	a	population	level	but	also	to	under-
stand	it	specifically	for	each	individual	patient.	The	goal	
of	SHAP	is	to	explain	the	model	prediction	for	each	pa-
tient	by	computing	the	contribution	of	each	covariate	to	
the	prediction	using	cooperative	game	theory.	The	global	
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ranking	of	important	covariates	is	obtained	by	ordering	
the	 covariates	 by	 their	 mean	 absolute	 SHAP	 values	 for	
all	patients	(exemplified	in	Figure 3	and	Figure 4).	The	
results	 were	 obtained	 with	 the	 Python	 SHAP	 library	
(Version	0.35).

RESULTS

First,	 after	 combining	 the	 patient	 populations	 from	 the	
three	trials,	we	examined	the	proportions	of	patients	with	
disease	 activity	 in	 the	 three-	treatment	 arms:	 placebo,	

F I G U R E  1  Overview	of	our	analysis	framework.	The	available	data	is	split	into	a	80–	20	fraction	using	stratified	random	sampling	as	
training	and	testing	data.	The	training	data	are	used	to	select	optimal	XGBoost	model	parameters	using	repeated	cross-	validation,	and	the	
final	model	performance	is	estimated	on	the	completely	unseen	test	data.	In	the	final	step,	an	explainable	machine-	learning	model	SHAP	is	
used	to	study	the	covariate	contribution	to	the	model	predictions	and	assess	covariate	importance.	gARMSSS,	Global	Age-	Related	Multiple	
Sclerosis	Severity	Score;	MRI,	magnetic	resonance	imaging;	SHAP,	Shapley	Additive	Explanations
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F I G U R E  2  Kaplan–	Meier	survival	curves	for	disease	activity	in	patients	in	the	combined	trial	population	from	ORACLE-	MS,	CLARITY,	
and	CLARITY-	Extension.	The	survival	curves	are	stratified	by	the	treatment	arm	assignment	at	the	start	of	the	observation	period	for	these	
three-	armed	trials.	We	see	that	the	disease	activity	free	survival	probability	in	the	placebo	arm	(red)	drops	lower	compared	with	the	two	
treated	arms	(CT3.5	in	blue	and	CT5.25	in	green),	showing	that	there	is	higher	prevalence	of	disease	activity	in	the	placebo	population.	
Vertical	bars	represent	the	time	of	censoring.	CT3.5,	cumulative	cladribine	dose	of	3.5	mg/kg	over	96	weeks;	CT5.25,	cumulative	cladribine	
dose	of	5.25	mg/kg	over	96	weeks
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CT3.5	 (cumulative	 cladribine	 dose	 of	 3.5  mg/kg	 over	
96	weeks),	 and	 CT5.25	 (cumulative	 cladribine	 dose	 of	
5.25	mg/kg	 over	 96	weeks).	 Looking	 at	 Kaplan–	Meier	
curves	of	time	to	first	disease	activity	(Figure 2),	there	is	a	
higher	prevalence	of	disease	activity	among	patients	in	the	
placebo	arm	compared	with	the	two	cladribine	treatment	
arms.	These	 results	are	 in	accordance	with	observations	
in	studies	demonstrating	the	efficacy	of	cladribine	versus	
placebo	 in	 reducing	 clinical	 relapses,	 disability	 progres-
sion,	and	MRI-	assessed	disease	activity	and	some	aspects	
of	 health-	related	 quality	 of	 life.8,16,17,19	 Of	 our	 combined	
population	of	1935	patients	with	more	than	6	years	of	ob-
servation,	 approximately	 25%	 (497	 patients)	 met	 one	 or	
more	of	the	five	criteria	for	disease	activity.	Second,	most	
patients	who	had	disease	activity	had	it	early	during	the	
observation	 period,	 with	 80%	 of	 observed	 events	 in	 the	
first	96	weeks	of	our	more	than	6	years	of	observation.

In	 our	 analysis	 of	 disease	 activity,	 we	 treated	 all	 five	
criteria	in	the	definition	equally	and	assumed	no	temporal	
ordering	among	them.	Hence,	a	patient	may	meet	simulta-
neously	or	sequentially	multiple	criteria	during	the	obser-
vation	period	to	qualify	as	having	disease	activity,	but	the	
time	of	disease	activity	is	defined	as	the	one	correspond-
ing	to	the	first	occurrence	of	any	criteria.	To	quantify	the	
informativeness	of	each	of	these	criteria,	we	performed	a	
sensitivity	analysis	by	dropping	out	one	criterion	at	a	time	
and	 calculating	 what	 percentage	 of	 our	 total	 number	 of	
patients	with	disease	activity	fail	to	be	detected	with	the	
remaining	four	criteria.

Table 2	shows	the	contribution	of	each	of	the	five	crite-
ria	toward	qualifying	disease	activity	in	patients.	Dropping	
C1	criteria	does	not	result	in	the	loss	of	identification	of	
any	patients	with	disease	activity,	and	in	fact	the	remain-
ing	 criteria	 are	 sufficient	 to	 identify	 this	 set	 of	 patients.	
This	could	be	explained	by	the	overlap	of	the	relapse	count	
and	MRI	lesion	observations	in	criteria	C2	and	C3.	On	the	
other	hand,	dropping	the	C4	criterion,	which	is	3-	month	
sustained	EDSS	progression,	results	in	missing	the	detec-
tion	 of	 approximately	 42%	 of	 the	 patients	 with	 disease	
activity.	This	implies	that	C1	criteria	do	not	uniquely	iden-
tify	disease	activity	in	patients	and	that	the	C4	criterion	is	
extremely	important	as	patients	meeting	the	disease	activ-
ity	criteria	by	C4	do	not	seem	to	exhibit	the	remaining	four	
criteria	at	any	timepoint.	Simultaneously,	it	highlights	the	

need	 to	 include	 the	 remaining	 criteria	 in	 our	 composite	
analysis	 objective	 given	 the	 multidimensional	 aspect	 of	
MS,	which	 requires	MRI,	 relapses,	 and	DMT	switch	ob-
servations	for	qualifying	disease	activity.

Next,	we	used	a	supervised	multivariate	ML	method	to	
train	 and	 validate	 models	 to	 predict	 which	 patients	 will	
have	disease	activity	3	and	6	months	 in	advance	of	 their	
clinical	determination	matching	the	frequency	of	patient	
visits	 according	 to	 the	 design	 of	 the	 clinical	 trials	 and	
current	 clinical	 practice.	 Specifically,	 we	 used	 XGBoost	
classifiers	and	several	metrics	suitable	for	studying	model	
performance	 in	 cases	 of	 unbalanced	 data  (Methods,	
Table 3,	and	Appendix S1:	Table	S1).	Overall,	we	achieved	
comparable	 model	 performance	 for	 both	 6-	month	 out-
come	prediction	models	P3-	T-	24	and	P4-	T-	24	on	test	data	
at	 balanced	 accuracies	 of	 80%	 (Table  3).	 Sensitivity	 and	
specificity	are,	respectively,	84%	and	76%	and	81%	and	78%,	
whereas	the	areas	under	the	receiver	operating	character-
istic	 curve	 (ROC)	 for	 both	 models	 are	 also	 80%.	 In	 case	
of	 the	 3-	month	 outcome	 prediction	 models	 P3-	T-	12	 and	
P4-	T-	12,	P3-	T-	12	maintains	a	similar	level	of	performance	
with	balanced	accuracy	and	area	under	ROC	of	80%,	but	
for	 P4-	T-	12,	 the	 performance	 reduces	 to	 around	 75%	 for	
these	metrics	(refer	to	Appendix S1:	Table	S1).	Balanced	
accuracy	 is	a	metric	 in	binary	classification	problems	 to	
deal	with	imbalanced	data	sets	and	is	defined	as	the	aver-
age	of	sensitivity	and	specificity.	Although	intuitively	it	is	
expected	 that	 the	 3-	month	 model	 should	 perform	 better	
than	the	6-	month	model,	given	we	are	closer	to	the	time	of	
event,	there	are	other	factors	at	play	such	as	the	frequency	
of	covariate	assessment	that	can	impact	the	performance	
of	the	models.

The	 top	 20	 most	 predictive	 covariates	 and	 their	 re-
lationship	 to	 the	 predicted	 output	 by	 the	 models	 are	
presented	 in	 Figure  3	 (P3-	T-	24	 and	 P4-	T-	24)	 and	 in	
Appendix S1:	Figure	S1	(P3-	T-	12	and	P4-	T-	12)	in	descend-
ing	order	for	the	models,	sorted	by	their	mean	absolute	
SHAP	values.	This	represents	a	global	view	at	the	popu-
lation	level	of	the	important	covariates.	Covariate	impor-
tance	is	understood	here	as	the	contribution	of	covariates	
in	 the	model	 to	discriminate	between	 the	patients	who	
in	the	future	will	have	disease	activity	and	those	who	do	
not.	 It	 is	 interesting	 to	note	 that	 there	 is	a	 strong	over-
lap	 of	 the	 top	 predictive	 covariates	 for	 all	 the	 models	

No	C1:	one	qualified	relapse	and	one	new	T1	Gd+	in	48	weeks 0%

No	C2:	one	qualified	relapse	and	two	NE	T2	in	48	weeks 3.6%

No	C3:	two	qualified	relapses	in	48	weeks 6.6%

No	C4:	3-	month	sustained	EDSS	progression 42.3%

No	C5:	switching	DMT 16.9%

Abbreviations:	DMT,	disease-	modifying	treatment;	EDSS,	Expanded	Disability	Status	Scale;	Gd+,	
gadolinium	enhancing;	NE,	new	and	enlarging.

T A B L E  2 	 Percentage	of	patients	with	
disease	activity	not	detected	because	of	
dropping	criterion	X
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including	the	number	of	weeks	of	cladribine	 treatment	
received,	the	new	combined	unique	active	(CUA)	lesions	
count	 (of	 T1	 Gd+	lesions	 and	 T2	 lesions,	 without	 dou-
ble	counting),	and	the	new	T1	hypointense	lesions	count	
as	 well	 as	 disability	 measures	 such	 as	 the	 Age-	Related	
MS	Severity	Score	(ARMSS).36	Figure 4	shows	the	global	
relationship	of	the	top	six	predictive	covariates	with	the	
P3-	T-	24	model	output.	The	model-	derived	probability	for	
a	patient	to	have	disease	activity	in	the	future	decreases	
with	the	increasing	number	of	weeks	of	treatment	up	to	
4	weeks,	and	there	is	no	substantial	reduction	in	model	
prediction	for	more	than	4	weeks	of	treatment.	Similarly,	
increasing	 counts	 of	 new	 CUA	 lesions	 and	 new	 T1	

hypointense	 lesions	 raise	 the	 models'	 predicted	 proba-
bility	of	the	patient	having	disease	activity	in	the	future.	
ARMSS,	 a	 clinically	 well-	understood	 representation	
measure	of	disability36	ranging	from	0	to	10,	also	shows	
that	a	more	advanced	disease	stage	relative	to	a	patient's	
age	cohort	(i.e.,	increasing	ARMSS	values)	increases	the	
model-	predicted	 probability	 of	 the	 patient	 to	 have	 dis-
ease	activity.	The	other	top	predictive	factors	are	labora-
tory	variables	such	as	platelets,	creatine	kinase,	albumin,	
urate,	and	so	on	and	prognostic	factors	such	as	time	since	
first	symptoms	and	age	of	onset	of	disease	as	well	as	neu-
rological	measures	such	as	Kurtzke	Functional	Systems	
Scores	Pyramidal	Functions.

T A B L E  3 	 Performance	estimation	of	models	P3-	T-	24	and	P4-	T-	24

P3- T- 24 P4- T- 24

Train 
(n = 1356)

Test  
(n = 340)

Train 
(n = 1356)

Test  
(n = 340)

Specificity TN/(TN	+	FP) 0.76 0.76 0.77 0.78

Sensitivity TP/(TP	+	FN) 0.81 0.84 0.78 0.81

Balanced	accuracy (Sensitivity	+	Specificity)/2 0.79 0.80 0.78 0.8

AUC-	ROC Area	under	curve	of	ROC 0.79 0.80 0.78 0.8

Note:	The	table	lists	the	model	performance	on	training	and	test	data	with	several	metrics.
Abbreviations:	FP,	false	positive;	FN,	false	negative;	P3-	T-	24,	phase	III	24	weeks;	P4-	T-	12,	phase	IV	24	weeks;	ROC,	receiver	operating	characteristic	curve;	TP,	
true	positive;	TN,	true	negative.

F I G U R E  3  Covariates	predictive	of	disease	activity	in	patients	6	months	in	advance.	The	list	of	top	predictive	covariates	sorted	in	
decreasing	order	by	their	absolute	mean	SHAP	values	from	the	(a)	P3-	T-	24	and	(b)	P4-	T-	24	models.	We	see	that	for	both	models	there	is	
a	strong	overlap	of	top	predictive	covariates,	including	the	numbers	of	weeks	of	cladribine	treatment	received,	the	magnetic	resonance	
imaging	measures	of	new	combined	unique	lesion	count	and	new	T1	hypointense	lesion	count,	and	other	clinically	well	understood	
disability	measures	such	as	age-	related	multiple	sclerosis	severity	score.	In	absence	of	laboratory	covariates	in	the	P4	model,	other	well-	
known	predictive	and	prognostic	covariates	become	more	important	such	as	T1	hypointense	lesion	volume,	age	of	onset	of	disease,	and	
time	since	first	symptom.	EDSS,	Expanded	Disability	Status	Scale;	Gd+,	gadolinium	enhancing;	KFSS,	Kurtzke	Functional	Systems	Scores;	
P3-	T-	24,	phase	III	24	weeks;	P4-	T-	12,	phase	IV	24	weeks;	SHAP,	Shapley	Additive	Explanations
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DISCUSSION

In	 this	 study,	 we	 developed	 multivariate	 ML	 models	 to	
identify	 predictors	 of	 future	 disease	 activity	 in	 patients	
with	MS	3	and	6	months	 in	advance	of	 clinical	determi-
nation.	It	is	important	to	note	our	observations	of	disease	
activity	 in	 patients	 are	 both	 right	 censored	 as	 a	 result		
of	patient	dropout	as	well	as	interval	censored	because	of	
missing	covariates	such	as	MRI	lesions	counts,	EDSS,	or	
the	 time	 of	 qualified	 relapses,	 which	 are	 unavailable	 in	
the	interval	between	the	end	of	the	CLARITY	trial	and	en-
rollment	in	the	CLARITY-	Extension	trial.	The	dropout	of	
patients	from	the	CLARITY	and	CLARITY-	Extension	tri-
als	(approximately	90%	of	enrolled	patients	completed	all	
three	arms)	were	previously	investigated,	and	the	efficacy	
results	with	the	treatment	switching	were	found	to	be	not	
substantially	biased	by	informative	dropout.37

The	 ML	 models	 achieve	 comparable	 levels	 of	 perfor-
mance	 with	 about	 80%	 balanced	 accuracy	 on	 both	 the	
training	and	testing	data	sets,	indicating	no	obvious	model	
overfitting.	XGBoost	deals	with	a	 large	number	of	 input	
covariates	while	efficiently	handling	correlated	covariates	
and	 missing	 values	 without	 an	 impact	 on	 performance.	
Given	the	imbalance	in	the	data	where	disease	activity	was	

observed	in	only	about	25%	of	the	patient	population,	in	
addition	to	using	a	boosting	algorithm,	we	also	used	ma-
jority	class	undersampling	as	well	as	a	cost-	sensitive	ob-
jective	function.	For	example,	mispredicting	that	a	patient	
will	have	disease	activity	incurs	a	10%	additional	penalty	
compared	with	mispredicting	that	a	patient	will	not	have	
disease	activity,	resulting	in	higher	sensitivity	than	speci-
ficity	of	the	models.	Such	ML	models	in	conjunction	with	
explainability	methods	 (SHAP)	allow	us	 to	gain	 insights	
on	 how	 the	 most	 predictive	 covariates	 can	 discriminate	
between	patients	who	will	have	disease	activity	and	those	
who	will	not.

Among	 the	 top	 predictive	 covariates,	 the	 number	 of	
weeks	 of	 cladribine	 treatment	 received	 has	 the	 largest	
impact.	 It	 is	 not	 surprising	 given	 the	 demonstrated	 ef-
fectiveness	 of	 the	 drug	 in	 patients	 experiencing	 a	 first	
demyelinating	 event	 and	 patients	 with	 RRMS	 with	 four	
weekly	 treatments	 for	 a	 sustained	 effect	 observed	 over	
4	years.13,16,18,19	We	found	that	the	other	top	predictive	co-
variates	for	early	detection	of	disease	activity	in	patients	
are	higher	count	of	new	CUA	lesions,	higher	count	of	new	
T1	hypointense	(black	hole)	lesions,	and	clinical	disability	
measures	such	as	higher	ARMSSS	in	all	our	models.	These	
results	are	explained	by	the	clinical	understanding	of	the	

F I G U R E  4  Dependency	plots	show	the	global	relationship	between	top	predictive	covariates	and	the	output	variable	for	the	P3-	T-	24	
model.	More	positive	SHAP	values	push	model	output	toward	a	more	confident	prediction	of	disease	activity	in	patients.	For	example,	with	
the	increasing	number	of	weeks	of	cladribine	treatment	received,	from	0	(placebo)	up	to	4	weeks,	there	is	a	decrease	in	model	output	toward	
a	prediction	of	no	disease	activity	for	the	patients.	The	missing	values	are	imputed	to	population	means	only	for	visualization	of	these	
dependency	plots	and	are	highlighted	with	gray	circles,	noticeably	for	the	new	CUA	lesion	count	and	the	new	hypointense	lesion	counts.	It	
is	observed	that	patients	who	had	a	missing	value	for	CUA	lesion	are	most	at	risk	for	future	disease	activity	events.	It	shows	that	missingness	
for	CUA	is	not	at	random	and	in	fact	informative	and	related	to	the	event	of	interest.	CUA,	combined	unique	active;	MS,	multiple	sclerosis;	
SHAP,	Shapley	Additive	Explanations
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onset	of	action	of	cladribine,	which	shows	a	reduction	in	
CUA	lesion	count	in	treated	patients.38	In	the	P4	models,	
which	 excluded	 the	 laboratory	 covariates	 not	 routinely	
collected	 in	 clinical	 practice,	 we	 observed	 other	 well-	
known	markers	such	as	age	of	onset	of	disease,	time	since	
first	symptom,	volumes	of	T2	lesions,	and	T1	hypointense	
lesions	become	more	predictive39,40	in	the	absence	of	the	
laboratory	 covariates	 that	 have	 not	 been	 studied	 in	 the	
MS	 clinical	 literature.	 The	 role	 of	 laboratory	 covariates	
such	as	urate,	a	predictor	of	disease	activity	in	our	P3-	T-	12	
model	(Appendix S1:	Figure	S1),	in	MS	disease	has	been	
previously	investigated,41-	45	but	its	precise	understanding	
is	 currently	 lacking.	 Further	 investigations	 should	 focus	
on	the	assessment	of	the	prognostic	(treatment	indepen-
dent)	 versus	 predictive	 (treatment	 dependent)	 nature	 of	
these	factors.	It	is	interesting	to	note	the	strong	overlap	of	
predictive	covariates	among	all	our	models,	which	gives	
further	evidence	to	their	robustness.

Such	 a	 predictive	 model	 will	 aid	 in	 treatment	 plan-
ning,	 for	 example,	 in	deciding	 the	 frequency	of	patient	
visits	for	at-	risk	patients,	or	prompt	other	clinical	inter-
ventions.	 Although	 our	 analysis	 population	 is	 different	
from	the	label	population	for	cladribine	in	several	coun-
tries	where	it	has	been	approved,	this	high-	dimensional	
data	set	enables	us	to	present	a	feasibility	study	on	how	
data-	driven	ML	models	could	help	in	the	future	as	a	clin-
ical	decision	support	tool	by	presenting	an	interpretable	
prediction	about	how	clinically	available	covariates	drive	
the	probability	of	 future	disease	 status	 in	patients	with	
MS.	 In	 this	 regard,	 it	 is	also	 interesting	 to	note	 the	up-
dates	 to	 clinically	 relevant	 covariates	 attributed	 to	 the	
evolving	understanding	of	MS.	For	example,	recent	trials	
include	 newer	 neurological	 measures	 of	 disability	 pro-
gression	such	as	a	 timed	25-	m	walk	and	 the	nine	hole-	
peg	 test	 that	 have	 been	 found	 to	 be	 robust	 and	 stable	
compared	with	traditional	clinical	trial	end	points,	such	
as	3-	month	EDSS	progression.46

Prior	work	has	investigated	various	clinical	end	points	
in	patient	populations	with	MS	using	ML	techniques	to	ac-
cess	covariate	importance.24	However,	these	studies	used	
the	in-	built	covariate	importance	of	various	tree-	based	en-
semble	methods	that	have	been	known	in	the	literature	to	
carry	various	biases.47	Our	work	differs	in	two	key	aspects.	
First,	 the	analysis	objective	that	serves	as	the	dependent	
output	variable	for	our	ML	models	encompasses	multiple	
clinical	 end	 points,	 which	 is	 important	 as	 demonstrated	
by	 the	obtained	results	 to	have	a	more	complete	picture	
of	disease	activation	and/or	progression.	Second,	we	use	
the	 state-	of-	the-	art	 explainable	ML	 technique	SHAP,48-	50	
which	overcomes	the	known	limitations	of	the	in-	built	co-
variate	importance	assessment	methods	of	the	ensemble	
decision	tree	methods.

Our	 findings	 further	 highlight	 the	 importance	 of	
quality	 MRI	 evidence	 in	 the	 management	 of	 MS	 dis-
ease	progression	and	patient	monitoring	as	highlighted	
in	the	MRI	in	MS	guidelines	for	MS.51	Although	such	
quality	 and	 detailed	 information	 regarding	 counts	 of	
various	new	lesion	types	are	difficult	to	collect	in	rou-
tine	clinical	practice	and	are	usually	only	available	in	
research	or	during	drug	development,	they	are	import-
ant	predictive	covariates	for	MS	disease	activity	in	pa-
tients.	The	current	model	treats	the	task	of	predicting	
the	 future	 probability	 of	 disease	 activity	 as	 a	 binary	
classification.	Dynamic	prediction	models	such	as	re-
current	 neural	 networks	 taking	 as	 input	 longitudinal	
covariates	 and	 predicting	 an	 updated	 probability	 of	
the	risk	of	disease	activity	could	be	explored	in	future	
work.

CONCLUSION

In	summary,	we	conducted	an	analysis	on	integrated	
data	 from	multiple	clinical	 trials	at	various	stages	of	
MS	(patients	experiencing	a	first	demyelinating	event	
and	patients	with	RRMS)	to	investigate	the	predictive	
covariates	 of	 onset	 of	 disease	 activity.	 Disease	 activ-
ity,	 as	 defined	 by	 the	 five	 criteria,	 was	 found	 to	 be	
more	 frequent	 among	 the	 placebo	 population,	 and	
3-	month	 sustained	 EDSS	 progression	 was	 the	 most	
informative	 among	 the	 five	 criteria.	 The	 novelty	 of	
our	 work	 lies	 in	 the	 use	 of	 explainable	 ML	 methods	
for	 training	 multivariate	 predictive	 models	 combin-
ing	patient	baseline	characteristics	as	well	as	longitu-
dinal	 MRI	 readouts	 and	 neurological	 and	 laboratory	
measures	 to	 identify	 patients	 3	 and	 6	months	 before	
their	 clinical	 observation	 of	 disease	 activity.	 We	
trained	 and	 validated	 multivariate	 nonlinear	 models	
with	the	XgBoost	algorithm	at	80%	balanced	accuracy	
and	area	under	ROC,	with	different	 subsets	of	 input	
covariates	 available	 during	 phase	 III	 and	 phase	 IV	
trials	 to	 predict	 patient	 outcomes	 of	 disease	 activity	
3	 and	 6	months	 in	 advance.	 Predicted	 disease	 activ-
ity	probability	in	patients	was	found	to	decrease	with	
cladribine	treatment	duration	increase,	the	most	 im-
portant	 predictor.	 Additional	 top	 predictive	 covari-
ates	 from	 explainable	 ML	 models	 were	 the	 count	 of	
new	 CUA	 lesions,	 new	 T1	 hypointense	 lesions,	 and	
ARMSS	 score.	 Such	 multivariate	 predictive	 models	
to	identify	patients	early	who	in	the	future	will	have	
disease	activity	can	improve	the	available	knowledge	
of	 the	 underlying	 mechanism	 of	 disease	 activity	 in	
patients	with	MS	to	enable	better	patient	monitoring	
and	treatment	planning.
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