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Abstract

Purpose: A predictive linac quality assurance system based on the output of the

Machine Performance Check (MPC) application was developed using statistical

process control and autoregressive integrated moving average forecast modeling.

The aim of this study is to demonstrate the feasibility of predictive quality assur-

ance based on MPC tests that allow proactive preventative maintenance proce-

dures to be carried out to better ensure optimal linac performance and minimize

downtime.

Method and Materials: Daily MPC data were acquired for a total of 490 measure-

ments. The initial 85% of data were used in prediction model learning with the

autoregressive integrated moving average technique and in calculating upper and

lower control limits for statistical process control analysis. The remaining 15% of

data were used in testing the accuracy of the predictions of the proposed system.

Two types of prediction were studied, namely, one‐step‐ahead values for predict-

ing the next day's quality assurance results and six‐step‐ahead values for predicting

up to a week ahead. Results that fall within the upper and lower control limits

indicate a normal stage of machine performance, while the tolerance, determined

from AAPM TG‐142, is the clinically required performance. The gap between the

control limits and the clinical tolerances (as the warning stage) provides a window

of opportunity for rectifying linac performance issues before they become clinically

significant. The accuracy of the predictive model was tested using the root‐
mean‐square error, absolute error, and average accuracy rate for all MPC test

parameters.

Results: The accuracy of the predictive model is considered high (average root‐
mean‐square error and absolute error for all parameters of less than 0.05). The aver-

age accuracy rate for indicating the normal/warning stages was higher than 85.00%.

Conclusion: Predictive quality assurance with the MPC will allow preventative main-

tenance, which could lead to improved linac performance and a reduction in

unscheduled linac downtime.
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1 | INTRODUCTION

Daily quality assurance (QA) testing of linear accelerators (linacs) is

standard practice for ensuring the safe and accurate delivery of

radiotherapy treatments. The American Association of Physicists in

Medicine (AAPM) has published recommendations on daily linac QA

procedures with tolerances.1–3 However, the test equipment and

exact methodology are non‐standardized and remedial action is

often only reactively performed once tolerances have been brea-

ched.

With the TrueBeam 2.0 platform, Varian (Varian Medical Sys-

tems, Palo Alto, CA, USA) released the Machine Performance Check

(MPC) application, which is now also available on the Varian Halcyon

linac. MPC is a fully integrated image‐based tool for assessing the

performance of linac critical functions. MPC tests are divided into

two categories. First, beam constancy checks use a single megavolt

image per beam energy without a phantom in place to assess the

output, beam center, and uniformity constancy against a user‐de-
fined baseline. Second, geometric tests use a series of kilovoltage

and 6 MV beam images of the IsoCal phantom situated in a specific

bracket on the couch top to assess the radiation isocenter size, coin-

cidence of megavolt and kilovolt isocenters, accuracy of collimator

and gantry angles, accuracy of jaw and multileaf collimator (MLC)

leaf positions, and accuracy of the couch positioning including pitch

and roll. All measurements are highly automated, and the user is sim-

ply required to set up the IsoCal phantom and bracket on the treat-

ment couch at position H2 and to beam‐on for each required

energy. For the geometric tests, the system makes all required

motions automatically and beams‐on when all is in position. Images

are automatically analyzed at the linac console. Beam constancy

check results are presented relative to the baseline, whereas geo-

metric tests are self‐referenced. Functionality for presenting trends

in results is also embedded in the MPC module and data can be

exported in.csv format. The MPC application has now been evalu-

ated by multiple authors as a daily linac QA tool.4–8

Statistical process control (SPC) is a statistical method for detect-

ing the defects of a process and was first presented by Shewhart.9

SPC has become a standard method of quality control. In SPC, con-

tinual observations are used to calculate a control chart, which

includes a maximum control limit and minimum control limit that

define a quality level. The control chart is often used in monitoring a

process and detecting failure states at a point of measurement.

Binny et al. applied SPC to analyze the QA output variation in helical

and static output for periods of up to 4 yr in an effort to improve

helical tomotherapy QA.10 Meanwhile, López‐Tarjuelo et al. adopted

SPC in the daily quality control of linac electron beams.11 Fuangrod

et al. applied SPC in constructing a clinically significant threshold of

a real‐time treatment verification system.12 Recently, SPC has been

used with MPC data in another study by Binny et al.13 In that study,

SPC analysis was conducted for MPC data across six TrueBeam

linacs for 12 months in an attempt to determine MPC tolerances.

However, the study did not attempt to forecast MPC results to be

used for predictive QA.

The concept of predictive QA that allows preemptive mainte-

nance based on SPC analysis has been studied for radiotherapy

linacs.14–17 Predictive QA testing would allow radiotherapy depart-

ments to be proactive in their maintenance by remedying faults

before clinical tolerances are breached. In theory, this should provide

for improved linac performance consistency and reduced unsched-

uled linac downtime that can be disruptive to departmental work-

flow. Previous predictive QA studies have either been based on

readouts from the linac itself15–17 and hence lack independence or

have been based on film measurements,14 which are impractical on a

daily basis.

The present study presents a framework of predictive linac QA

based on MPC data. Control limits were determined from the SPC

analysis of MPC data over the long term and used to determine the

standard linac performance. When this performance is within clinical

tolerances, there is a window of opportunity to rectify the problem

before it becomes clinically significant. Such remedial action can be

scheduled out of standard treatment hours to avert disruption to the

clinical workflow. The forecasting of QA results provides a measure

of how long this window of opportunity is.

2 | MATERIALS AND METHODS

2.A | System overview

Figure 1 presents the proposed predictive QA system, which can be

divided into the four steps of prediction, display, evaluation, and

relearning. Daily MPC test data are prepared and loaded into the

system. The system predicts both one‐step‐ahead and six‐step‐ahead
MPC test results using a predictive model, which has been learnt

from historical MPC data. In the display step, the predictive MPC

data for each parameter are displayed on the constructed control

chart which shows the upper control limit (UCL), lower control limit

(LCL), central line (CL), and tolerance levels. The tolerance levels are

defined by AAPM TG‐142 recommendations.1 However, some MPC

tests are not required by TG‐142 daily QA, the standard MPC

thresholds were used instead. The trend of predictive data is also

plotted from the predictive six‐step‐ahead MPC test result for each

parameter. The system was developed and implemented using in‐
house software development using MATLAB version 2019a (Math-

works, Natick, MA, USA).
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In the evaluation step, the predictive MPC test results are com-

pared with the UCL and LCL and the system generates a warning

flag if the control limits are breached. This flag escalates from warn-

ing to fail if the result exceeds the TG‐142 tolerance. Finally, the

MPC test results are added to the historical MPC data for relearning

and recalculating the UCL and LCL. The system therefore self‐adjusts
to reflect the current linac uncertainty and behavior.

2.B | MPC tests and data collection

There are 29 MPC tests that can be grouped into four categories,

namely, isocenter, collimation, gantry, and couch tests. In collima-

tion, there are four MLC tests — denoted mean offset leaf‐bank A

and B and max offset leaf‐bank A and B — and the system also

provides results for individual MLC leaves from leaf number 2 to

59 for both banks A and B. There are thus a total of 141 MPC

test parameters (25 MPC tests + 116 individual MLC leaves). For

the predictive model and SPC development, historical MPC data

were taken from daily MPC tests from a single Varian TrueBeam

Stx linac with HD MLC, 6MV energy, and As 1200 EPID over

490 days. The data were divided into two data sets. The first 85%

of data (416 days) were used in constructing the SPC control chart

and calculating the predictive model for each MPC test. The

remaining 15% of data (74 days) were compared to the predictive

model results to validate its accuracy and evaluate the system per-

formance.

2.C | Control chart construction

The control chart 9 and UCL and LCL are constructed according to

UCL ¼ xþ E �MRLCL ¼ x� E �MRCL ¼ x (1)

where x is the average of m data observations, MR is an average of

the moving range MR ¼ ∑ xi�xi�1j j
m�1

� �
, and E is 2.66.18 UCL, LCL, and CL

are, respectively, the UCL, LCL, and CL.

2.D | Predictive model calculation: autoregressive
integrated moving average

The autoregressive integrated moving average (ARIMA) model is a

statistical predictive model whose fitting allows future prediction of

the time series.9 The ARIMA methodology includes an autoregres-

sive term (AR), which is the weighted sum of recent differenced val-

ues, moving average term (MA), which is the weighted sum of the

forecasting error, and integrated term, which is the degree of differ-

encing for nonstationary elimination, if necessary. The general form

of ARIMA (p,d,q) is as follows:

ẑt ¼ μþ ðϕ1zt�1 þ . . .þ ϕpzt�pÞ � ð#1at�1 þ . . .þ #qat�qÞ; (2)

where ẑt is the predictive value at t, zt denotes differenced values in

the time series at t, μ is a constant value, ϕi denotes the weights of

differenced values of AR (i ¼ 1;2; . . . ; p), at denotes the orders of

predicted error, #j denotes the weights of predicted error

F I G . 1 . System overview.
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(j ¼ 1;2; . . . ; q), p is the order of AR, q is the order of the MA, and d

is the order of differencing in nonstationary elimination.

Maximum likelihood estimation is adopted to estimate the

parameter and error terms of the ARIMA model. The Akaike infor-

mation criterion20 is used to select the optimal model, which is the

model that best fits the recorded time‐series data. The ARIMA model

is also used to predict the n‐step‐ahead value, which can be used to

represent the future trend of the time‐series data.

2.E | Predictive model and system evaluation

The accuracy of the predictive model was evaluated by comparing

the ARIMA predicted results with the actual results in the final 15%

of the MPC data. Model accuracy was assessed using the root‐
mean‐square error (RMSE) and absolute error (MAE).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1

ŷi � yið Þ2
n

s
(3)

MSE ¼ 1
n
∑
n

i¼1
ŷi � yið Þ2 (4)

when ŷi is the predicted value, yi is the actual value of state i, and n

is the number of observations. RMSE and MSE are considered as

the standard error measurements of model in predicting quantitative

data. In addition, the model can also be evaluated by comparing the

predicted results against the control chart (pass, fail, or warning sta-

tus). The accuracy of the model in this sense can be calculated using

the average accuracy:

Average accuracy ¼ 1
l
∑
l

i¼1
tpi þ tnið Þ= tpi þ tni þ fpi þ fnið Þ (5)

The average accuracy rate represents the average overall effec-

tiveness of prediction. Let tpi be the number of true positives of

state i, which is the number of correct predictions of state i. Let tni

be number of the true negatives of state i, which is the number of

correct predictions of nonstate i. Let fpi be the number of the false

positives of state i, which is the number of incorrect predictions of

state i. Let fni be the number of false negatives of state i, which is

the number of incorrect predictions of nonstate i.

3 | RESULTS

3.A | SPC analysis

Figures 2 and 3 present the UCL and LCL for each MPC test. In the

figures, a white area represents the normal stage level (ranging from

F I G . 2 . Results of the derived LCL and
UCL of the MPC (isocenter, collimation,
gantry, and couch) against the TG 142
tolerance.
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the UCL to LCL) and a grey area is a warning stage level (ranging

from the UCL/LCL to the tolerance).

3.B | Predictive QA system

Figure 4 shows an example of predicted QA data. Figure 4(a) and 4

(b) present the MPC test for the beam output change. The one‐step‐
ahead predictive value is calculated as well as its weekly trend line

(from six‐step‐ahead predictive values). All predictive values are

within the SPC control limits and the trend is that the beam output

slightly drops over the week but remains at normal‐stage levels. Fig-

ure 4(c) presents prediction results of individual MLC leaf tests,

showing that the one‐step‐ahead result remains located at normal‐
stage levels for all leaves. Figure 4(d) presents the six‐step‐ahead
prediction for MLC leaf #30. The prediction indicates that the leaf

remains between the UCL and LCL. Figure 5 presents the compar-

ison between predicted and actual of beam center shift, beam out-

put change, and beam uniformity change for all tested data. It found

that the beam output change had the systematic offset in predicted

value. Figure 6 demonstrated how the system predicts that the data

will exceed the warning level (UCL). Figures are not presented for all

MPC parameters for readability purposes.

3.C | Predictive model performance

The performance of the ARIMA model in predicting daily MPC

results is presented in Table 1. The majority of tests make accurate

predictions with an RMSE less than or equal to 0.05. Exceptions are

the jaw collimation, gantry relative, kilovolt imager tangential, beam

output change, and beam uniformity change, with the worst case

being the output measured at 0.14 RMSE. A lower RMSE

corresponds to the predictive model better correlating with the

actual MPC test results. A similar pattern of evaluation results was

observed with the MAE metric in that most of the results are less

than or equal to 0.05. Figure 5 presents the results for individual

MLC leaves. The results show that the high numbered leaves are

predicted better than the low numbered leaves for Bank A, while

the prediction is more consistent across the bank for bank B. The

reason for these results is unclear.

The average accuracy rate was applied to assess the ability of the

models to accurately flag the warning stage. The fourth column in

Table I shows the results of the average accuracy rate of the one‐
step‐ahead prediction. It is seen that most of the average accuracy

rates for all tests were higher than 85.00%. Exceptions are the tests

denoted megavolt and kilovolt imager projection offset, Jaw X1, Jaw

Y1 & Y2, couch longitudinal and rotation, and megavolt imager

source axial. It can be noted that QA test with minor variability or

drift will result in tight UCL and LCL so that sensitivity is maintained.

Figures 7 and 8 present the results of the average accuracy for

individual MLC leaves. The average accuracy is more than 90.00%

for all leaves of both banks with the exception of leaf number 19 of

bank B.

4 | DISCUSSION

MPC is advantageous for providing predictive QA data as MPC:

1. provides a measurement that is independent of the linac parame-

ters being tested.

2. is quick and easy to perform and thus suitable for daily measurements,

producing large, high‐frequency datasets for predictive analysis.

F I G . 3 . Results of the derived LCL and
UCL of the MPC (beam, MV imager, and
kV imager) against the TG‐142 tolerance.
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3. is largely free of user variability.

4. assesses a large number of required linac parameters, meaning

that other test devices are not required.

5. generates digital data that are integrated into the linac system,

making it simple for Varian to transmit results to a central data-

base via its Smart Connect functionality.

6. provides a standardized method for daily linac QA, meaning

that the performances of all linacs running the MPC can be

compared. This has the potential for individual linacs with out-

lying performance to be identified and to provide feedback

data to Varian for improvement of the linac design and con-

struction.

F I G . 4 . (a) Historical overview of the
beam output change (%); (b) sample of
one‐step‐ahead predictive data, six‐step‐
ahead predictive values, and trend of the
beam output change; (c) overview of the
one‐step‐ahead prediction of the MLC
against XmR; and (d) a sample comparison
of the current check and one‐step‐ahead
prediction of the MLC with XmR and the
trend line for leaf No. 30.
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In this study, the ARIMA forecasting model was applied to pre-

dict both the next‐day (one‐step‐ahead) and next‐week (six‐step‐
ahead) MPC QA results. SPC control charts were constructed to

determine the upper and lower bounds of standard machine perfor-

mance. For all parameters tested, these bounds were found to be

within clinical tolerances (defined as TG‐142 tolerances in this study),

providing a window of opportunity in which a performance issue

could be rectified before it became clinically significant.

For the MLC results of [Fig. 4(c)], individual models were gener-

ated for the leave banks and individual leaves. Since the leaf bank

results are maximum and mean of all of the individual leaves, then it

is expected that the model for each individual leaf would be more

precise than for the whole bank. This is demonstrated in the data.

The accuracy required for prediction in the clinical setting is

likely not high. Clinical physicists would most likely simply need a

rough indication of how long they have before a failed test is

F I G . 5 . Comparison of predicted and
actual beam QA data including center shift,
output change, and uniformity change.

F I G . 6 . Example of trend line to detect
the output change exceeded the UCL that
demonstrates the system is able to flag the
warning stage before it occurs.
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expected so that they can assign urgency to the problem being

addressed and organize remediation. For a TG‐142 tolerance fail, the

decision may well be to remove the linac from clinical use until the

failure has been investigated, but for results within the warning

stage between control limits and clinical tolerance, the investigation

would likely be delayed until outside of normal treatment hours to

avoid disruption to the clinical schedule. In these cases, it is likely

that investigation will be made at either the end of the clinical day

or on the weekend. In these cases, one‐step‐ahead and six‐step‐
ahead prediction is appropriate.

The testing in the present study found that the majority of the

one‐step‐ahead predictions were accurate (RMSE and MAE << 0.10)

and the majority of average accuracy results were greater than

85.00%. The worst predictive performance was for the beam output

change. The beam output change has high variability over time and

is recorded as a nonstationary time‐series dataset, which affects the

accuracy of the predictive model. Resolution of this problem may

require a different predictive model. Examples of possible models

include the EWMA model, recurrent neural networks,21 and artificial

neural networks,22 which could be investigated in future work.

An additional weakness of the ARIMA model is that the data

require cleaning to eliminate poor‐quality data, such as user errors.

The ARIMA model is sensitive to all values in the learning process

and learning from poor‐quality data will lead to poor prediction.

Moreover, the learning should continually progress by taking new

measurements into account.

A possible source of error in the prediction model could be

caused by EPID detector drift distorting the MPC results. To miti-

gate this source of uncertainty, throughout the study the EPID dark‐
field calibration was updated monthly and pixel defect map annually

or as dead pixels were identified. It is noted that MPC is indepen-

dent of the flood field calibration. EPID response constancy has also

been extensively studied in the literature. The short‐ and long‐term
dose–response reproducibility of amorphous Silicon EPIDs has been

found to be consistently within 1.0 % and 0.5 %, respectively, for all

models once linac output variation from nominal had been

accounted.23–27 A study by King et al28 pertained specifically to the

long‐term pixel stability of Varian aS500 EPID panels. In King's study

it was found that over a 3‐year period mean pixel variations were

between 0.29 and 0.6 % and that more than 99% of all pixels

showed variations less than 1 %. Also the MPC studies of 5–7 pro-

vided comparison of MPC tests against independent measurements

over the medium term with good agreement generally observed. An

exception to this was for the output parameter for which Barnes

et al detected a divergence of MPC output vs. independent mea-

sures. Barnes et al suggest that this can be mitigated via regular

intercomparison of MPC output with ion‐chamber readings and

rebaselining MPC if a 1 % difference is detected. Such a measure,

along with regular routine EPID calibration and QA, is recommended

if the forecasting methodology of this study was implanted clinically.

Maintenance and recalibration events are also a potential source

of sudden systematic change in MPC results as demonstrated by

Barnes et al.29 These events were not accounted for in this study.

Such systematic changes will influence the prediction model and

hence at such events the prediction model input data should be

reassessed and model training data collection potentially restarted.

TAB L E 1 Results of the predictive model evaluation and accuracy
of system output.

MPC test

RMSE MAE

Average accu-
racy rate
(%)Categories Test

Isocenter Size (mm) 0.02 0.01 97.80

MV imager projection

offset (mm)

0.03 0.02 79.12

kV imager projection

offset (mm)

0.04 0.03 61.54

Collimation Maximal offset leaves

A (mm)

0.02 0.02 100.00

Maximal offset leaves

B (mm)

0.03 0.03 98.97

Mean offset leaves A

(mm)

0.02 0.02 98.97

Mean offset leaves B

(mm)

0.03 0.02 98.97

Individual MLC leaf A

(mm)

0.03 0.02 98.56

Individual MLC leaf B

(mm)

0.03 0.02 98.13

Jaw X1 (mm) 0.10 0.06 47.42

Jaw X2 (mm) 0.13 0.05 95.88

Jaw Y1 (mm) 0.09 0.07 64.21

Jaw Y2 (mm) 0.06 0.05 79.17

Rotation offset (°) 0.02 0.02 100.00

Gantry Absolute (°) 0.02 0.01 92.86

Relative (°) 0.06 0.06 100.00

Couch Lateral (mm) 0.04 0.04 100.00

Longitudinal (mm) 0.03 0.02 64.86

Pitch (°) 0.01 0.01 98.63

Roll (°) 0.01 0.00 95.38

Rotation (°) 0.01 0.01 48.10

Vertical (mm) 0.05 0.04 91.78

Rotation‐induced
couch shift (mm)

0.02 0.02 100.00

Kilovolt

imager

In‐plane rotation (°) 0.00 0.00 100.00

Source axial 0.04 0.03 95.60

Tangential 0.12 0.10 98.90

Megavolt

imager

In‐plane rotation (°) 0.00 0.00 100.00

Source Axial 0.01 0.01 60.44

Tangential 0.01 0.01 100.00

Beam Center shift (mm) 0.05 0.04 89.52

Beam output change

(%)

0.14 0.12 94.29

Uniformity change (%) 0.10 0.07 93.33
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Due to the nature of prediction models being based on large

learning‐phase datasets the prediction models are not designed to

detect large sudden one‐off jumps in data such as might be expected

with a linac component failure. Linac interlocks are still required to

mitigate treatment delivery errors from such events as well as rou-

tine retrospective QA. Predictive QA is more suited to detecting and

forecasting gradual drifts and failures that repeat at regular intervals.

The results of the present study suggest that the approach of

predictive QA based on MPC data is feasible, but additional data on

more linacs are required and the method needs to be tested further

in terms of sensitivity for the system to be clinically useable. Such

study is proposed as future work.

5 | CONCLUSION

The concept of linac predictive QA with the MPC using SPC and the

ARIMA forecast model was demonstrated and its accuracy and per-

formance evaluated. A window of opportunity between SPC control

limits and clinical tolerances based on TG‐142 was demonstrated,

suggesting that the MPC is an appropriate tool for predictive QA.

The concept can be developed further with a greater number of

linacs, sensitivity testing, and the evaluation of other predictive

model techniques. Such testing thus has the potential to reduce the

linac unscheduled downtime and allow linac performance parameters

to be controlled within tolerances tighter than those typically applied

in the clinic.
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