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Abstract

Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA.
Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the
expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell
cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically
arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to
decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and
extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause
fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA
production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts
occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription
burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the
transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components.
Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance
can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be
combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters.
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Introduction

Genetically identical cell populations exposed to same extracel-

lular environment exhibit considerable variability in gene expres-

sion [1–5]. This variation in the level of a given protein is often

referred to as gene expression noise. Increasing evidence suggests that

noise plays important functional roles in many cellular processes.

For example, tight control of expression noise is vital for optimal

functioning of housekeeping proteins [6–8], and diverse diseased

states have been attributed to an elevated expression noise [9–11].

Not surprisingly, genes actively use different regulatory mechanism

to reduce stochastic fluctuations in protein levels [12–22,22–25].

Expression noise is also exploited to drive genetically identical cells

to different cell-fates [26–31], and to buffer cellular populations

from hostile changes in the environment [27,32–34].

Gene expression noise can be decomposed into intrinsic and

extrinsic noise [35–37]. More specifically, intrinsic noise is the

protein variability that arises from the inherent stochastic nature of

biochemical reactions associated with transcription, translation,

mRNA and protein degradation. Given that many mRNA species

are present at low copy numbers inside cells, random birth and

death of individual mRNA transcripts generates considerable

intrinsic noise [38–41]. Let Z be any cell-specific factor (such as

cell cycle stage, abundance of RNA polymerases/ribosomes,

cellular environment, etc.) that affects expression of a given gene.

Then, cell-to-cell differences in Z will create intercellular

variability in gene expression, that is referred to as extrinsic noise

Variations in Z induce fluctuations in model parameters (such as

the transcription and translation rate), and extrinsic noise can be

effectively quantified through analysis of deterministic gene

expression models with corresponding parameter fluctuations [42].

We define intrinsic and extrinsic noise in the context of a two-

color experiment, where the gene of interest is duplicated inside

the cell (Figure 1). Consider two identical copies of a promoter that

express two different reporter proteins P1 and P2. Let p1(t) and

p2(t) denote the level of these proteins at time t inside the cell.

Since cell-specific factor Z is common to both copies of the gene,

cell-to-cell variations in Z will make p1(t) and p2(t) correlated.

The contribution of Z to expression noise is quantified via the

extrinsic noise defined as

Extrinsic Noise ~
Sp1p2T{Sp1T Sp2T

Sp1T Sp2T
, ð1Þ

and is related to the covariance between reporter levels. If reporter

levels are perfectly correlated, and assuming Sp1T~Sp2T,

Sp2
1T~Sp2

2T,
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Extrinsic Noise ~ Total Noise ~
Sp2

1T{Sp1T2

Sp1T2
, ð2Þ

which is the total noise in protein level measured by its coefficient

of variation squared. Intrinsic noise is the protein variability that is

not accounted for by extrinsic noise, and is defined as

Intrinsic Noise~Total Noise� Extrinsic Noise

~
Sp2

1T{Sp1p2T
Sp1T2

:
ð3Þ

In summary, a two-color assay can be used to decompose the

total protein noise level into intrinsic and extrinsic noise

components, computed via (1) and (3), respectively.

Analytical formulas for intrinsic and extrinsic noise are derived

for a class of stochastic gene expression models with fluctuations in

the transcription or translation rate. Assuming mRNA production

occurs in random bursts, transcription rate is represented by either

the burst frequency (how often the bursts occur) or the burst size

(number of mRNAs produced in each burst). Our results show that

fluctuations in the transcription burst frequency enhance extrinsic

noise but do not affect the intrinsic expression noise. However,

fluctuations in the transcriptional burst size or mRNA translation

rate increase both intrinsic and extrinsic noise. A recent study has

implicated fluctuations in ATP levels as a major driver of gene

expression variability [43]. Since ATP affects both transcription

and translation, simultaneous fluctuations in multiple model

parameters is investigated. Interestingly, simultaneous fluctuations

in the transcription and translation rates decrease intrinsic noise in

certain parameter regimes. Finally, usefulness of these formulas in

interpreting two-color reporter experiments and estimating model

parameters is discussed.

Gene Expression with Constant Parameters

We begin by introducing the standard stochastic gene expres-

sion model [44–47], where all model parameters are fixed, and

expression variability arises due to the stochastic nature of

transcription and translation processes.

Model Formulation
Transcription has been shown to occurs in ‘‘bursts’’ with each

burst producing multiple mRNA copies [48–53]. Assume mRNAs

are produced in bursts of size Bm that occur at a rate km. We refer

to km and Bm as the transcriptional burst frequency and burst size,

respectively. Consistent with measurements [50], Bm is assumed to

be a geometrically distributed random variable with probability

distribution

ProbabilityfBm~ig~ai~(1{s)is, 0vsƒ1, i~f0,1,2, . . .g ð4Þ

and mean burst size SBmT : ~(1{s)=s. Proteins are produced

from each mRNA at a translation rate kp. Finally, mRNAs and

proteins degrade at constant rates cm and cp, respectively. The

stochastic model considers transcription, translation and degrada-

tion as probabilistic events that occur at exponentially-distributed

time intervals [54,55]. Moreover, whenever a particular event

occurs, the mRNA and protein population count is reset

accordingly. Let m(t) and p(t) denote the number of molecules

of the mRNA and protein at time t, respectively. Then, the reset in

m(t) and p(t) for different events is shown in the second column of

the table in Figure 2. The third column lists the propensity

functions f (m,p) which determine how often an event occurs. In

particular, the probability that a particular event will occur in the

next infinitesimal time interval (t,tzdt� is given by f (m,p)dt.

Computation of Intrinsic Noise
It is relatively straight forward to derive differential equations

describing the time evolution of the different statistical moments of

the mRNA and protein count. For the above model, the time-

derivative of the expected value of any differentiable function

Q(m,p) is given by

dSQ(m,p)T
dt

~S
X

Events

DQ(m,p)|f (m,p)T, ð5Þ

where DQ(m,p) is the change in Q when an event occurs, f (m,p) is

Figure 1. Decomposing gene expression variability into extrinsic and intrinsic noise using a two-color reporter assay. Two identical
copies of a promoter express two different reporter proteins. Correlation in reporter levels is a measure of extrinsic noise that arises from cell-to-cell
differences in shared cellular factors. Intrinsic noise is the protein variability that is not accounted for by extrinsic noise, and typically originates from
the inherent stochastic nature of biochemical processes.
doi:10.1371/journal.pone.0084301.g001
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the event propensity function, and S:T represents the expected

value [56,57]. Using the resets and propensity functions in Figure 2

this corresponds to

dSQ(m,p)T
dt

~

Scmm½Q(m{1,p){Q(m,p)�zkpm½Q(m,pz1){Q(m,p)�T

zScpp½Q(m,p{1){Q(m,p)�T

zS
X?
i~0

kmai½Q(mzi,p){Q(m,p)�T:

ð6Þ

Choosing Q(m,p) as m,p,m2,p2 and mp in the above equation

yields

dSmT
dt

~kmSBmT{cmSmT,
dSpT

dt
~kpSmT{cpSpT ð7aÞ

dSm2T
dt

~kmSB2
mTzcmSmTz2SBmTkmSmT{2cmSm2T ð7bÞ

dSp2T
dt

~kpSmTzcpSpTz2kpSmpT{2cpSp2T ð7cÞ

dSmpT
dt

~kpSm2TzSBmTkmSpT{cpSmpT{cmSmpT: ð7dÞ

Setting the left-hand-side of (7) to zero and solving for the

moments results in the following steady-state mean protein and

mRNA levels

SmT~
kmSBmT

cm

, SpT~
kpSmT

cp

, ð8Þ

where SBmT is the mean transcriptional burst size and S:T
represents the steady-state expected value. As done in previous

studies of intrinsic and extrinsic noise [35,36,58], the steady-state

coefficient of variation squared (variance divided by mean squared) is

used as a metric for quantifying the extent of variability/noise in

protein copy numbers. From the steady-state protein variance and

mean we obtain

CV 2
fixed~

SB2
mTzSBmT

2SBmTSmT

cp

cpzcm

z
1

SpT
, ð9Þ

which represents the total intrinsic noise in protein level for fixed

parameters. As Bm is geometrically distributed, SB2
mT~

2SBmT2zSBmT, and (9) reduces to

CV2
fixed~

SBmTz1

SmT

cp

cpzcm

z
1

SpT
: ð10Þ

The first term on the right-hand-side of (10) represents the noise in

mRNA copy numbers that is transmitted to the protein level

[15,46]. The second term is the Poissonian noise arising from

random birth-death of protein molecules. Next, the noise

additional to (10) that comes from fluctuations in individual model

parameters (such as km, SBmT and kp) is quantified.

Transcription Burst Frequency Fluctuations

Consider a cell-specific factor Z at the transcriptional level (such

as a transcription factor). Then, fluctuations in Z can either affect

the transcriptional frequency km or burst size Bm in the model.

The former case of burst frequency fluctuations is considered first.

Modeling Parameter Fluctuations
Let z(t) denote the level of a cellular factor Z inside the cell at

time t. Fluctuations in z(t) are modeled through a simple birth-

death process with probabilities of formation and degradation in

the infinitesimal time interval (t,tzdt� given by

Probabilityfz(tzdt)~z(t)z1g~kzdt ð11aÞ

Probabilityfz(tzdt)~z(t){1g~czz(t)dt, ð11bÞ

where kz and cz represent the production and degradation rate of

Z, respectively. For the process described in (11), the steady-state

mean, coefficient of variation squared CV 2
z and the auto-

correlation function Rz(t) are given by

Figure 2. Model formulation. Schematic of the gene expression model (left). The stochastic model consists of four events that occur randomly at
exponentially-distributed time intervals. Discrete changes in the mRNA (m(t)) and protein (p(t)) population count for different events are shown in
the second column of the table. Third column lists the event propensity function that determines how often an event occurs.
doi:10.1371/journal.pone.0084301.g002
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SzT~
kz

cz

, CV 2
z ~

1

SzT
, Rz(t)~ exp ({czt): ð12Þ

Thus by changing kz and cz, both the extent and time-scale of

fluctuations in z(t) can be independently modulated. Note the

inverse relationship between SzT and CV2
z implies Poisson statistics.

Fluctuations in Z are incorporated in the model by assuming that

the transcription burst frequency is no longer a constant but given

by kmz(t)=SzT, making it a random process with mean km and

coefficient of variation squared CV2
z . Throughout this manuscript,

CV2
z represents the extent of parameter fluctuations. Since Z

similarly affects expression of both copies of the gene in a two-color

assay, fluctuations in z(t) make reporter levels correlated in Figure 1

and induce extrinsic noise.

Computation of Total Noise
The stochastic model consists of six birth-death events that

change cellular factor, mRNA and protein copy numbers by

integer amounts. Using the propensity functions in Figure 2 and

(11) in (5) we obtain

dSQ(m,p,z)T
dt

~Sczz½Q(m,p,z{1){Q(m,p,z)�T

zSkz½Q(m,p,zz1){Q(m,p,z)�T

zScpp½Q(m,p{1,z){Q(m,p,z)�T

zSkpm½Q(m,pz1,z){Q(m,p,z)�T

zScmm½Q(m{1,p,z){Q(m,p,z)�T

zS
kmz

SzT

X?
i~0

ai½Q(mzi,p,z){Q(m,p,z)�T

ð13Þ

for any differentiable function Q(m,p,z). Appropriate choices of

Q(m,p,z) result in

dSzT
dt

~kz{czSzT,
dSmT

dt
~kmSBmTz=SzT{cmSmT,

dSpT
dt

~kpSmT{cpSpT
ð14aÞ

dSz2T
dt

~kzzczSzTz2kzSzT{2czSz2T ð14bÞ

dSm2T
dt

~kmSB2
mTSzT=SzTz

cmSmTz2kmSBmTSmzT=SzT{2cmSm2T
ð14cÞ

dSp2T
dt

~kpSmTzcpSpTz2kpSmpT{2cpSp2T ð14dÞ

dSmpT
dt

~kpSm2TzkmSBmTSpzT=SzT{cpSmpT{cmSmpTð14eÞ

dSmzT
dt

~kzSmTzkmSBmTSz2T=SzT{cmSmzT{czSmzT ð14fÞ

dSpzT
dt

~kzSpTzkpSmzT{cpSpzT{czSpzT, ð14gÞ

which yield the steady-state variability in protein level as

CV2
burst{freq:~

SBmTz1

SmT

cp

cpzcm

z
1

SpT

zCV2
z

cmcp(cmzcpzcz)

(cmzcp)(cmzcz)(czzcp)
:

ð15Þ

The first two terms on the right-hand-side of (15) represent the

noise level with fixed parameters (Eq. (10)). The third term is the

additional noise due to burst frequency fluctuations. Next, (15) is

decomposed into intrinsic and extrinsic noise components as

measured by the two-color reporter assay (Figure 1).

Computation of Intrinsic and Extrinsic Noise
Extrinsic noise can be approximated by the coefficient of

variation squared of the protein level in a deterministic gene

expression model with corresponding parameter fluctuations [42].

The deterministic counterpart to the stochastic model is the set of

ordinary differential equations

dm(t)

dt
~

kmSBmTz(t)

SzT
{cmm(t) ð16aÞ

dp(t)

dt
~kpm(t){cpp(t) ð16bÞ

driven by the stochastic process z(t) defined in (11). For this hybrid

model, where some states are continuous and other are discrete,

the time derivate of SQ(m,p,z)T is given by (see Theorem 1 in [59])

dSQ(m,p,z)T
dt

~Sczz½Q(m,p,z{1){Q(m,p,z)�T

zSkz½Q(m,p,zz1){Q(m,p,z)�T

zS
LQ(m,p,z)

Lm

kmzBm

SzT
{cmm

� �
z

LQ(m,p,z)

Lp
kpm{cpp
� �

T

ð17Þ

and leads to moment dynamics identical to (14) except for

dSm2T
dt

~2kmSBmTSmzT=SzT{2cmSm2T ð18aÞ

dSp2T
dt

~2kpSmpT{2cpSp2T: ð17Þ

Intrinsic and Extrinsic Noise in Gene Expression
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Quantification of protein noise level from (14) (with (14c)–(14d)

replaced by (18a)–(18b)) gives the extrinsic noise, which is

subtracted from (15) for the intrinsic noise. This analysis results in

Total noise~CV 2
burst{freq:

~Intrinsic noisezExtrinsic noise
ð19aÞ

Intrinsic noise~CV 2
fixed~

SBmTz1

SmT

cp

cpzcm

z
1

SpT
ð19bÞ

Extrinsic noise~CV 2
z

cmcp(cmzcpzcz)

(cmzcp)(cmzcz)(czzcp)
: ð19cÞ

As expected, extrinsic noise increases with extent of parameter

fluctuations CV 2
z . On the contrary, intrinsic noise is independent

of CV 2
z and is equal to CV2

fixed . An important limit considered

previously is the case where parameter values (in this case

transcription burst frequency) are drawn from a static distribution

[36]. In our model, this corresponds to a scenario where the time-

scale of fluctuations in z(t) are slow compared to mRNA/protein

turnover rates. When cz%cm,cp, Eq. (19c) reduces to

Extrinsic noise~CV2
z , and this result is consistent with previous

calculations of extrinsic noise for parameter values drawn from a

static distribution (see Eq. 25 in [36]).

Transcription Burst Size Fluctuations

Consider an alternative scenario of a fixed transcription burst

frequency but varying burst size. Assume mRNAs are produced in

geometrically distributed bursts with mean SBmTz(t)=SzT, where z(t)
is the level of the cellular factor inside the cell at time t. This implies

ProbabilityfBm~ig~ai~(1{s(t))is(t), i~f0,1,2, . . .g, ð20Þ

and mean burst size

X?
i~0

ai i~
1{s(t)

s(t)
~

SBmTz(t)

SzT
[s(t)~

1

1z
SBmTz(t)

SzT

: ð21Þ

Computation of Total Noise
Time derivative of statistical moments is obtained from

dSQ(m,p,z)T
dt

~Sczz½Q(m,p,z{1){Q(m,p,z)�T

zSkz½Q(m,p,zz1){Q(m,p,z)�T

zScpp½Q(m,p{1,z){Q(m,p,z)�zkpm½Q(m,pz1,z){Q(m,p,z)�T

zScmm½Q(m{1,p,z){Q(m,p,z)�T

zS
X?
i~0

kmai Q(mzi,p,z){Q(m,p,z)½ �T,

ð23Þ

where ai is given by (21). Equation (24) yields moment dynamics

identical to (14) except for the time derivative of Sm2(t)T. For

Q(m,p,z)~m2,

dSm2T
dt

~cmSmT{2cmSm2TzkmS
X?
i~0

ai i
2Tz2kmSm

X?
i~0

aiT:ð23Þ

Using the fact that for a geometric distribution

X?
i~0

ai i
2~2

X?
i~0

ai i

 !2

z
X?
i~0

ai i ð24Þ

and (21), (23) is written as

dSm2T
dt

~cmSmT{2cmSm2Tz

kmSBmT

SzT
2

2SBmTSz2TzSzTSzTz2SmzTSzT
� �

:

ð25Þ

Steady-state analysis of (14) (with (14c) replaced by (25)) results in

CV 2
burst{size~

SBmT(1zCV 2
z )z1

SmT

cp

cpzcm

z

1

SpT
zCV 2

z

cmcp(cmzcpzcz)

(cmzcp)(cmzcz)(czzcp)
,

ð26Þ

the total protein noise level for transcriptional burst size

fluctuations. As expected when CV 2
z ~0 (no parameter fluctua-

tions) (26) reduces to (10). Comparison of (26) with (15) reveals that

for a given CV 2
z , burst size fluctuations generates larger variability

in protein level than burst frequency fluctuations.

Computation of Intrinsic and Extrinsic Noise
For burst size fluctuations, the deterministic model used for

quantifying extrinsic noise will be identical to (16). Since both

transcriptional burst size and frequency appear together, replacing

kmz(t)=SzT with km, and SBmT with SBmTz(t)=SzT in (16) does

not alter the model. Thus, extrinsic noise is same irrespective of

whether fluctuations are in the transcriptional burst size or

frequency. Using (19c) and (26)

Total noise~CV 2
burst{size~Intrinsic noisezExtrinsic noise ð27aÞ

Intrinsic noise~
SBmT(1zCV2

z )z1

SmT

cp

cpzcm

z
1

SpT
wCV 2

fixedð27bÞ

Extrinsic noise~CV2
z

cmcp(cmzcpzcz)

(cmzcp)(cmzcz)(czzcp)
: ð27cÞ

In contrast to (19), intrinsic noise linearly increases with CV 2
z for

burst size fluctuations (Figure 3).

Intrinsic and Extrinsic Noise in Gene Expression
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Translation Rate Fluctuations

Next, we consider mRNA translation rate fluctuations and set it

equal to kpz(t)=SzT. From Figure 2, this implies that the

propensity function for the translational event is now nonlinear

and given by kpz(t)m(t)=SzT. Since mRNA production is no

longer dependent on Z, z(t) and m(t) are independent random

processes.

Computation of Total Noise
Statistical moments of z(t),m(t),p(t) are obtained from (13) with

kmz(t)=SzT replaced by km, and kp replaced by kpz(t)=SzT. Using

the fact that z(t) and m(t) are independent yields

dSzT
dt

~kz{czSzT,
dSmT

dt
~kmSBmT{cmSmT,

dSpT
dt

~kpSmTSzT=SzT{cpSpT
ð28aÞ

dSz2T
dt

~kzzczSzTz2kzSzT{2czSz2T ð28bÞ

dSm2T
dt

~kmSB2
mTSzTzcmSmTz

2kmSBmTSmzT{2cmSm2T
ð28cÞ

dSp2T
dt

~kpSmTSzT=SzTzcpSpT

z2kpSmpzT=SzT{2cpSp2T
ð28dÞ

dSmpT
dt

~kpSm2TSzT=SzTz

kmSBmTSpzT=SzT{cpSmpT{cmSmpT
ð28eÞ

Figure 3. Gene expression variability for individual-parameter fluctuations. Intrinsic and extrinsic noise measured in two-color assay as a
function of CV2

z (extent of parameter fluctuations) for fluctuations in the transcription burst frequency (left), transcription burst size (middle) and
mRNA translation rate (right). Intrinsic noise is independent of CV2

z for transcription burst frequency fluctuations. However, for transcription burst

size or translation rate fluctuations, intrinsic noise increases with CV2
z . Extrinsic noise always increases with CV2

z and is the largest for translation rate
fluctuations.
doi:10.1371/journal.pone.0084301.g003
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dSpzT
dt

~kzSpTzkpSmTSzT2=SzT{cpSpzT{czSpzT: ð28fÞ

Note that the moment dynamics is not closed, in the sense that,

the time derivative of the second order moments Sp2(t)T depends

on the third order moment Sm(t)p(t)z(t)T: This phenomenon

occurs due to nonlinear propensity functions and typically closure

methods are needed to solve for the moments [56,57]. The

independence of z(t) and m(t) is exploited for moment closure.

More specifically,

dSmpzT
dt

~kzSmpTzkmSBmTSpzTz

kpSm2z2T=SzT{czSmpzT{cpSmpzT{cmSmpzT
ð29Þ

which is dependent on the fourth order moment Sm2z2T. As

Sm2z2T~Sm2TSz2T, ð30Þ

equations (28)–(30) form a closed system of equations that yield

total variability in protein level as

CV 2
translation{rate~

CV 2
z cp

cpzcz

z

SBmTz1

SmT

cp

cmzcp

z
CV 2

z cp

cmzcpzcz

 !
z

1

SpT
:

ð31Þ

Computation of Intrinsic and Extrinsic Noise
Strategy for decomposing (31) into its intrinsic/extrinsic

components is similar to previous sections: extrinsic noise is first

computed from a deterministic model and then subtracted from

(31) for the intrinsic noise. Consider the differential equation

model

dm(t)

dt
~kmSBmT{cmm(t) ð32aÞ

dp(t)

dt
~kpm(t)z(t)=SzT{cpp(t): ð32bÞ

with translation rate fluctuations. Replacing kmz(t)=SzT by km,

and kp by kpz(t)=SzT in (17), we obtain moment dynamics

identical to (28) except for

dSm2T
dt

~2kmSBmTSmzT{2cmSm2T ð33aÞ

dSp2T
dt

~2kpSmpzT=SzT{2cpSp2T: ð33bÞ

Steady-state analysis of (28)–(30) (with (28c)–(28d) replaced by

(33a)–(33b)) yields

Total noise~CV 2
translation{rate

~Intrinsic noisezExtrinsic noise
ð34aÞ

Intrinsic noise~
SBmTz1

SmT

1z
CV 2

z (cmzcp)

cmzcpzcz

 !
cp

cmzcp

z
1

SpT

ð34bÞ

Extrinsic noise~
CV 2

z cp

cpzcz

: ð34cÞ

As in (27), fluctuations in the translation rate enhance both

intrinsic and extrinsic noise (Figure 3).

Simultaneous Model Parameter Fluctuations

Previous sections focused on expression variability generated by

fluctuations in individual parameters. However, stochasticity in the

abundance of certain cellular factors (such as ATP) can

simultaneously affect both transcription and translation. Motivated

by this scenario, we investigate how perfectly correlated fluctua-

tions in the transcription rate (measured by either the transcrip-

tional burst frequency or burst size) and translation rate affect

intrinsic and extrinsic noise.

Transcription Burst Frequency and Translation Rate
Fluctuations

Assume transcriptional bursts occur at a rate kmz(t)=SzT with a

geometrically distributed burst size independent of z(t) and given

by (4). Each mRNA produces proteins at a rate kpz(t)=SzT, which

is perfectly correlated with burst frequency. Let

m~½SzT,SmT,SpT,Sz2T,Sm2T,Sp2T,SmzT,SpzT,SmpT�T ð35Þ

be a vector containing all the first and second order moments of

the population counts. Then, using (13) with kp replaced by

kpz(t)=SzT, time evolution of m can be compactly represented as

dm

dt
~âa1zA1mzB1�mm, �mm~½SmpzT,Spz2T,Sm2zT,Smz2T,Sz3T�Tð36Þ

where vector âa1, matrices A1, B1 depend on model parameters

and m is a vector of third order moments. As one would expect,

nonlinear propensity function for the translation event leads to

unclosed moment dynamics. It turns out that incorporating certain

higher order moments in m can close moment equations. More

specifically, the time derivative of

m̂m~½mT ,�mmT ,Sm2z2T,Smz3T,Sz4T�T ð37Þ

is closed and is given by

dm̂m

dt
~âa3zA3m̂m ð38Þ

for some vector âa3 and matrix A3. Steady-state analysis of (38)
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results in an exact analytical formula for the total steady-state

protein noise level. In previous sections (individual parameter

fluctuations), average protein copy number was invariant of CV 2
z

and given by (8). However, simultaneous transcription/translation

rate fluctuations enhance mean protein level from (8) to

SpT~
kmkpSBmT

cmcp

1z
CV 2

z cm

cmzcz

� �
: ð39Þ

To resolve total noise into its intrinsic/extrinsic components the

following deterministic model is used

dm(t)

dt
~

kmSBmTz(t)

SzT
{cmm(t) ð40aÞ

dp(t)

dt
~

kpm(t)z(t)

SzT
{cpp(t): ð40bÞ

For (40), the moment generator equation is obtained by

replacing kp with kpz(t)=SzT in (17). Performing an identical

analysis as (36)–(38) for the hybrid model (40) yields the extrinsic

noise, which is subtracted from the total noise to obtain the

intrinsic noise. Unfortunately, these expressions are too complex to

be listed here but are illustrated in Figure 4. Interestingly,

simultaneous fluctuations in the burst frequency and translation

rate can either increase or decrease intrinsic noise depending on

model parameters.

To further elucidate the relationship between intrinsic noise and

CV 2
z , the case of slow fluctuations in z(t) compared to mRNA/

protein turnover rates (i.e., cz%cm,cp) is considered. In this case

noise expressions reduce to

Intrinsic noise~
SBmTz1

SmT
1z

CV 2
z

1zCV2
z

� �2

 !
cp

cmzcp

z
1

SpT
ð41aÞ

Extrinsic noise~
CV2

z 4z6CV2
z zCV 4

z

� �
1zCV 2

z

� �2
ð41bÞ

where the mean mRNA and protein levels are given by (see (39))

SmT~
kmSBmT

cm

, SpT~
kmkpSBmT

cmcp

1zCV2
z

� �
: ð42Þ

Equation (41a) reveals that when

Figure 4. Gene expression variability for multiple-parameter fluctuations. Intrinsic noise measured in two-color assay as a function of CV2
z

(extent of parameter fluctuations) for simultaneous fluctuations in the transcription burst frequency/translation rate (left), and transcription burst
size/translation rate (right). The latter case generates larger intrinsic noise and also yields different qualitative trends compared to burst frequency/
translation rate fluctuations. Depending on parameter regimes, intrinsic noise can increase, decreases or change non-monotonically with CV2

z . High,
medium, low protein populations correspond to an average of 300, 30 and 10 protein copies per cell, respectively. Other model parameters taken as
mRNA half-life = 2 hours, protein half-life = time-scale of parameter fluctuations = 10 hours, mean transcriptional burst size = 10 and mean mRNA copy
number per cell = 50.
doi:10.1371/journal.pone.0084301.g004
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SBmTz1

cmzcp

ƒ

1

kp

, ð43Þ

intrinsic noise monotonically decreases with CV 2
z . On the other

hand when

SBmTz1

cmzcp

w

1

kp

ð44Þ

intrinsic noise first increases with CV 2
z , reaches a maximum at

CV 2
z ~

SBmTz1

cmzcp

{
1

kp

SBmTz1

cmzcp

z
1

kp

, ð45Þ

and then decreases with increasing CV 2
z .

Transcription Burst Size and Translation Rate Fluctuations
Let transcriptional bursts occur at a constant rate km with a

geometrically distributed burst size that is dependent on z(t) and

given by (21). mRNA translation rate is assumed to be perfectly

correlated with burst size and is set equal to kpz(t)=SzT. The time

evolution of moments is obtained from (22) with kp replaced by

kpz(t)=SzT. As in the previous section, although the time

derivative of m (Eq. (35)) is not closed, the evolution of m̂m (Eq.

(37)) is given by a closed system of linear equations that yield an

exact expression for the total protein noise level. Recall that

extrinsic noise is similar for transcription burst size and burst

frequency fluctuations. Hence, calculation of extrinsic noise for

model (40) is used to resolve the total noise into its intrinsic and

extrinsic components. These results show that simultaneous

transcription burst size/translation rate fluctuations not only

generate a larger intrinsic noise but also have qualitatively

different trends compared to burst frequency/translation rate

fluctuations (Figure 4).

For slow fluctuations in z(t) compared to mRNA/protein

turnover rates

Intrinsic noise~
SBmTz1

SmT

1z
CV2

z 1zSBmT 4z6CV2
z zCV4

z

� �� �
(1zSBmT) 1zCV2

z

� �2

 !
cp

cmzcp

z
1

SpT

ð46aÞ

Extrinsic noise~
CV 2

z 4z6CV 2
z zCV 4

z

� �
1zCV2

z

� �2
, ð46bÞ

where SmT and SpT are given by (42). Analysis of (46a) shows that

when

4SBmTz1

cmzcp

w

1

kp

ð47Þ

intrinsic noise increases with CV2
z . However, when

4SBmTz1

cmzcp

ƒ

1

kp

ð48Þ

intrinsic noise first decreases with increasing CV2
z and then

increases (Figure 4).

Discussion

Given the different functional roles of gene expression noise

inside cells [3,32], much work has focused on understanding how

variations in the level of a protein arises between otherwise

identical cells. A class of models were introduced where

stochasticity arises from two sources: i) Random production and

degradation of individual mRNA transcripts/protein molecules

stemming from the inherent probabilistic nature of biochemical

reactions and ii) Fluctuations in model parameters that correspond

to randomness in cell-specific factors. Exact analytical formulas for

total variability in protein level were derived, in spite of the fact

that in many cases parameter fluctuations lead to nonlinear

propensity functions. These formulas were decomposed into

intrinsic and extrinsic noise components as measured by the

two-color reporter assay (Figure 1).

Which Mechanism Generates the Largest Gene
Expression Noise?

Individual-parameter fluctuations. Comparison of (19),

(27) and (34) shows that for low values of SBmT, fluctuations in the

translation rate create the most variability in protein copy

numbers. On the other hand for high SBmT, burst size fluctuations

generate the most variability. Burst frequency fluctuations always

generate the lowest noise.

Multiple-parameter fluctuations. Equations (41) and (46)

reveal that simultaneous fluctuations in translation and transcrip-

tion rates can dramatically increase expression variability. For

example, consider protein half-life = time-scale of parameter

fluctuations = 24 hours, mRNA half-life = 8 hours, mean mRNA

count/cell = 100, SBmT~40 and SpT&SmT. Then, for constant

parameters, CV 2
fixed~0:1 (Eq. (10)). Assuming ATP affects

transcriptional burst size and translation rate, 10% variability in

ATP abundance (CV 2
z ~0:1) enhances noise level three-fold from

0:1 to 0.32. In comparison, burst size fluctuations of similar

magnitude only increase 0.1 to 0.16. These results reinforce recent

observations that intercellular variation in ATP abundance can be

a major driver of gene expression noise [43]. An implicit

assumption in this analysis is that protein and mRNA degradation

is insensitive to ATP. Since both ATP-dependent and ATP-

independent degradation pathways exist within cells, further work

on ATP-sensitive degradation rates is clearly needed.

Relationship between Intrinsic Noise and CV 2
z

Using Monte Carlo simulation techniques previous studies had

shown that parameter fluctuations can alter intrinsic noise

measurements in a two-color assay [42,60]. Building up on these

results, a systematic analytical analysis of how fluctuations in both

individual and multiple model parameters affect randomness in

protein populations counts was performed. Main findings are as

follows:

N Intrinsic noise is invariant of fluctuations in the transcription

burst frequency (i.e., how often mRNA bursts occur from the

promoter).
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N Intrinsic noise increases with CV 2
z (extent of parameter

fluctuations) for fluctuations in the transcription burst size

(i.e., mean number of mRNAs produced in each burst) or

mRNA translation rate.

N For simultaneous fluctuations in the burst frequency and

translation rate, intrinsic noise decreases with CV 2
z for low

protein abundance (Figure 4). Intuitively, for low protein

abundance (as determined by (43)), the Poissonian term

1=mean has a significant contribution to intrinsic noise

(second term on the right-hand-side of (41a)). Simultaneous

fluctuations increase mean protein level (see (39)), decreasing

intrinsic noise. For high protein abundance, ignoring the

second term in (41a) yields

Intrinsic noise~
SBmTz1

SmT
1z

CV2
z

1zCV 2
z

� �2

 !
cp

cmzcp

ð49Þ

which first increases, and then decreases with CV2
z . The

maximal value is achieved at CV 2
z ~1.

N Simultaneous fluctuations in the transcription burst size and

translation rate typically increases intrinsic noise. However, for

low protein abundance intrinsic noise exhibits a U-shape

profile with CV 2
z (Figure 4).

N In contrast to intrinsic noise, extrinsic noise always monoton-

ically increases with CV 2
z .

We comment on how these trends change if Fano factor

(variance/mean), instead of coefficient of variation, is used for

quantifying noise. This is particularly important in the case of

multiple-parameter fluctuations, where mean protein levels are

dependent on CV2
z (see (39)). Our analysis shows that in contrast

to the above trends, the intrinsic noise Fano factor always

monotonically increases with CV 2
z for simultaneous fluctuations in

the transcription and translation rates.

Recall that our results correspond to a model where mRNAs are

produced in instantaneous transcriptional bursts. For a promoter

that stochastically toggles between active and inactive states, this

approximation corresponds to an unstable active state [47], where

the promoter quickly transitions back to the inactive state after

producing a burst of mRNA transcripts form the active state. It

turns out that some of the above intrinsic noise versus CV2
z trends

are also valid outside the instantaneous burst limit. For example,

Monte Carlo simulations have shown that for fluctuations in the

translation rate or transcription burst size, intrinsic noise increases

with CV 2
z when promoter spends a finite amount of time in active

and inactive states [60]. Future work will extend analytical

formulas for intrinsic and extrinsic noise to cases where the

promoter stochastically transitions between different transcription-

al states.

Estimation of Model Parameters from Noise
Measurements

Gene expression noise is often used to calculate the mean

transcriptional burst size and frequency for a specific gene or

promoter [40,48,51,52]. Recall from (10) that for fixed model

parameters

CV2
fixed~

SBmTz1

SmT

cp

cpzcm

z
1

SpT
,

SmT~
kmSBmT

cm

, SpT~
kpSmT

cp

:

ð50Þ

Given measurements of CV 2
fixed and SpT, a priori knowledge of

cp, cm, kp, mean burst size SBmT and frequency km can be

computed from (50). Typically, CV2
fixed is assumed to be equal to

the intrinsic noise measured in a two-color assay. However, our

results show that this is only valid for transcription burst frequency

fluctuations. For all other cases, CV2
fixed=intrinsic noise, and

using intrinsic noise for CV 2
fixed in (50) will lead to erroneous

parameter estimates [42].

Analytical formulas developed here can be used to back

calculate CV2
fixed from intrinsic and extrinsic noise measurements.

This point is illustrated for the physiologically relevant parameter

regime

SBmT&1 (Large burst size), ð51aÞ

SpT&SmT (High protein abundance), ð51bÞ

CV 2
z %1 (Small parameter fluctuations): ð51cÞ

In this regime, intrinsic noise is expressed as

Intrinsic noise~CV2
fixed 1zf |Extrinsic noiseð Þ,

CV 2
fixed&

SBmT
SmT

cp

cpzcm

,
ð52Þ

where f ~0 for burst frequency fluctuations and f w0 in all other

cases. Analytical expressions for f are provided in the Text S1, and

it depends only on mRNA, protein turnover rates and time-scale

of parameter fluctuations (more specifically on ratios cp=cz and

cp=cm). Consider a stable reporter protein where cp~cz = time-

scale of cell division, and cm~4cp, then

f ~1:8

(Simultaneous fluctuations in burst size and translation rate)
ð53aÞ

f ~0:4

(Simultaneous fluctuations in burst frequency and translation rate)
ð53bÞ

f ~1:6 (Translation rate fluctuations) ð53cÞ

f ~2:1 (Transcription burst size fluctuations) ð53dÞ
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f ~0 (Transcription burst frequency fluctuations): ð53eÞ

Therefore, if extrinsic noise~0:5 in an experiment, from (52)

and (53d), CV2
fixed&intrinsic noise=2 for burst size fluctuations.

Traditional approach of assuming CV 2
fixed~intrinsic noise would

overestimate CV 2
fixed by 100%. Using f ~0:4 for simultaneous

burst frequency/translation rate fluctuations gives CV2
fixed~

0:83|intrinsic noise, and CV2
fixed~intrinsic noise may not be

a bad approximation in this case. It can be shown that

0ƒf ƒ

(cpzcm)(cpzcz)(czzcm)

cpcm(cpzcmzcz)
ð54Þ

with upper (lower) bound being realized for burst size (frequency)

fluctuations. Without prior knowledge on the source of extrinsic

noise, (54) yields the following bounds on CV 2
fixed :

Intrinsic noise

1zExtrinsic noise|
(cpzcm)(cpzcz)(czzcm)

cpcm(cpzcmzcz)

ƒCV2
fixedƒIntrinsic noise,

ð55Þ

for the physiologically relevant parameter regime (51). Thus, our

results provide the necessary correction factors for accurately

determining CV2
fixed from two-color reporter experiments, which

would be useful for estimating SBmT and km.

In conclusion, our analysis reveals how stochastic synthesis and

degradation of biomolecules combines with parameters fluctua-

tions to generate heterogeneity in protein level across a clonal cell

population. These results will help understand how stochastic

variability is regulated inside cells, and for extracting meaningful

information from single-cell gene expression measurements.

Future work will consider scenarios where randomness in cellular

factor levels simultaneously affects synthesis and degradation

pathways, or only degradation. Unfortunately, exact solutions are

unavailable in many of these cases. However, preliminary analysis

has found moment closure techniques useful for obtaining closed-

form solutions for the statistical moments. A recent study has

generalized notions of intrinsic and extrinsic noise from statistical

moments to temporal correlations [61]. In particular, the auto-

correlation function of p(t) can be decomposed into intrinsic and

extrinsic components based on the two-color assay [61]. Future

will work will derive analytical expressions for protein auto-

correlation and cross-correlation functions in stochastic models

with parameter fluctuations, and study how noise signature within

them can be used for probing genetic systems.
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