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A B S T R A C T

Most of effluents discharged to the environment contain toxic contaminants such as aromatic compounds and
heavy metals which are considered hazardous to the nature and living organisms. In this study, Bacillus subtilis
resistant to anthracene and lead was isolated from Persian Gulf sediments. Biosurfactant production was de-
monstrated using three methods, drop collapse, blood agar and oil spreading. Evaluation of optical density by
spectrophotometer showed the bacterial growth in presence of 30mg/l of anthracene and 50mg/l of lead.
Considerable proportion of anthracene (69.95%) was reduced after 120 h and the maximum percentage of lead
absorption (82%) was observed after 150min. The results indicated that the isolated bacterium was capable of
removing anthracene and lead.

1. Introduction

The entrance of huge amounts of contaminants such as oil com-
pounds and heavy metals via the wastewaters of industries to the
coastal and aquatic ecosystems have caused serious problems [1]. Poly-
cyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic or-
ganic compounds with two or more benzene rings. The Environmental
Protection Agency has introduced these compounds as dangerous pol-
lutants because of their high stability and toxicity [2]. Anthrancene is
an aromatic hydrocarbon, with low solubility in the water and high
accumulation affinity in organism tissues [3,4]. Allowable limit of an-
thrancene identified by Canadian Council of Ministers of the Environ-
ment [5] for sediment is 46.9 μg/kg.

Heavy metals are also considered as a large group of environmental
pollutants. Increases in heavy metal concentration, to levels higher than
standard amounts identified by CCME, may lead to adverse effects on
aquatics and humans [6,7]. Lead is an unnecessary toxic metal that may
cause erythrocyte abnormality and reproductive disorders in aquatics.
Damages to the nervous system and gills are considered the chronic and
acute effects of lead, respectively [8]. Furthermore, human osteoporosis
may resulted from calcium replacement by lead in bones [9,10]. Al-
lowable limit of lead identified by W.H.O. (World Health Organization)
[11] for seafood and C.C.M.E. (Canadian Council of Ministers of the
Environment) [5] for sediment is 0.5 and 30.2 mg/kg dry weight (dw),
respectively.

Using biological techniques for eliminating of heavy metals and

aromatic compounds from marine ecosystems could be reasonable.
Many studies have been conducted on the biosorbents ability such as
fungi, yeasts, algae and bacteria [12–14]. However, bacteria re-
presented more absorption ability due to their small size, high rate of
growth and reproduction and active biosorption sites like pepti-
doglycan [1].

Persian Gulf is one of the main ways of energy and goods transition.
Decrease in the distribution and dispersion of contaminants due to the
low depth and limited contact of the Persian Gulf with other aqueous
ecosystems cause to pollutants to remain in the Persian Gulf for a long
time. This research is structured on isolation and identification of an
indigenous bacterium and evaluation of its ability in removal of lead
and anthracene.

2. Materials and methods

Samples were collected from the surface layer of sediments using
grab in the Persian Gulf. Sediment samples were transported to la-
boratory in sterile glass containers on ice. Mineral salt medium (MSM)
(containing 30mg/l concentration of anthracene) and nutrient agar
(containing 100mg/l of the metal) were used for isolation of anthra-
cene and lead resistant bacteria, respectively [15–17].

2.1. Identification procedures

Morphological characteristics of bacterial colonies were examined
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macro-microscopically. Initial identification of isolates was done using
Gram-staining. Moreover, biochemical tests were used such as the po-
tassium hydroxide test (KOH), D-carboxylase test, catalase test, oxidase
test, lactose test, Simon citrate test, Voges Proskauer test (VP), Methyl
Red test (MR), Triple Sugar Iron Agar test (TSI), Sulfur Indole Motility
Media test (SIM), phenylalanine test, urease test and mac-Conkey test
were used [18].

2.2. Biosurfactant production

To determine surfactant-producing bacteria, three methods in-
cluding drop collapse, blood agar and oil spread were applied. Plating
cells on blood agar showed the blood hemolysis, production of bio-
surfactant and a bright halo around the colonies [19–22]. For drop
collapse test, 2 μl of mineral oil was placed in each well of micro plates.
After an hour, 5 μl of culture medium was added to each well. The
potential of surfactant production was determined based on distribution
of oil drops on mineral oil surface [23]. Distilled water (50ml) was
poured in the plate and 20 μl of crude oil was added to the plate. Then
10 μl of the culture medium was added on the surface of crude oil. The
surfactant production was identified based on the diameter of produced
halo [19].

2.3. The measurement of bacterial growth in the presence of anthracene

MSM with 30mg/l of anthracene and 3ml of bacterial suspension
was incubated at 30 °C [24]. The optical density was measured in 24 h
intervals for 5 days using spectrophotometer (UV/Vis 2100, UNICO
company, USA) [16]. The optical density of the bacterial suspension
increase with the increase in anthracene consumption by the bacteria
and bacterial growth.

2.4. The measurement of bacterial growth in the presence of lead

Bacterial suspension (1ml) was added to 20ml of lysogeny broth
(LB) containing 50mg/l of lead concentration. Control samples (free of
metal) were also considered. All samples were incubated at 30 °C with
shaking [25].

Blank solution (LB broth) (3 ml) was applied for calibration of
spectrophotometer. Then 0.6 ml of the solutions containing different
concentrations of lead was diluted with 2.4ml of LB broth. Bacterial
growth was determined at 600 nm wave length for 5 days in triplicates
[25].

2.5. Anthracene degradation

The bacterial suspension (500 μl) was inoculated with 100ml of
MSM medium (containing 30mg/l of anthracene. The flasks then were
agitated on the shaker at 150 rpm for 5 days [26]. The remained
amount of anthracene in the culture medium was monitored with High-
Performance Liquid Chromatography (HPLC) (K2000 model, Knauer
Co) according to MOOPAM (1999) method. Briefly, the samples were
performed by adding 250ml hexan/dichloromethane for 8 h and 20ml
potassium hydroxide (2M) for two additional hours. The normal
hexane then was added to the mixture. The organic phase (extract) was
filtrated through glass wool. Next, it was dried with anhydrous sodium
sulfate and was concentrated to about 1ml using a rotary evaporator
(Heidolph 2, Germany). For anthracene measuring, the extract was
loaded onto a silica/alumina column. Finally two fractions (F1: aquatic
phase and F2: organic phase) were separated. F2 separately was con-
centrated to about 1–1.5 ml under a moderate nitrogen flow. Then,
samples were dried under a pure nitrogen flow and 20ml acetonitrile
was added to concentrate F2. Finally, F2 was injected to the HPLC.

2.6. Lead biosorption experiment

Metal solutions amended with 50mg/l of lead were prepared in
250ml erlenmeyer flasks and pH was adjusted on 6 using HNO3 and
NaOH. Then one ml of bacterial suspension was inoculated and the
flasks were put on shaker incubator at 160 rpm. 5ml of metal solutions
was taken in 30min time intervals and centrifuged at 4000 rpm for
10min [27,28]. Finally the evaluation of metal absorbance was per-
formed by atomic absorption spectrophotometer (Savanta AA∑ model)
for 150min. The potential of isolated bacterium in removal of lead was
determined by reduction of remained lead concentration in flasks from
the initial metal concentration.

2.7. Statistical analysis

Parametric (One Way ANOVA, Tukey post-hoc) and Non-parametric
(Kruskal–Wallis and Mann–Whitney U) tests were performed to de-
termine the significant differences between groups. Statistical analysis
was performed using SPSS16.00. Significance level was set at 0.05.

3. Results

The isolated bacterium which resisted to both lead and anthracene
was Gram-positive and belong to Bacillus sp. Table 1 shows the results
of biochemical tests used for bacterium identification.

The ability of Bacillus subtilis to produce biosurfactant was con-
firmed using three techniques. The results were presented in Table 2.

B. subtilis started its growth on the first day of incubation with
30mg/l of anthracene. The optical density reached 0.51 after 8 days.
However, the bacterial growth in the control sample was 0.2.

The bacterium in presence of 50mg/l lead grew more quickly and
the maximum optical density was observed 72 h after the inoculation.
There was no significant difference in optical density between the
control sample and lead solution.

According to Fig. 1, reduction of the anthracene concentration in a
solution inoculated with B. subtilis was similar to that in the control
sample at the first day. After 24 h, the biological removal of anthracene
was quickly continued up to 48 h later. Anthracene degradation
reached to 9.015 ± 1.393mg/l after 120 h of incubation.

The isolated bacterium started to absorb lead at the first moments of
measurement and most of the metal was removed from solution in the
first 30min. Bacterial absorption of lead at a concentration of 50mg/l
was observed until the last minutes and the metal decreased to
9 ± 0.3mg/l. The maximum percentage of lead removal was

Table 1
Biochemical features of the bacterium.

Bacillus subtilis (Rods-Gram-positive)

LD –
SIM +
TSI +
MR –
VP –
KoH –
catalase +
oxidase +
PD –
Urease –
Citrate +
Lactose –
MC –

Lysine Decarboxylase test (LD), Sulphide Indole Motility
medium (SIM), Triple Sugar Iron test (TSI), Methyl Red test
(MR), Voges-Proskauer Test (VP), Potassium hydroxide test
(KOH), Phenylalanine Deaminase test (PD), MacConkey test
(MC).
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calculated as 82% (Fig. 2).

4. Discussion

In the last decades, the possibility of using microorganisms such as
fungi, alga, yeast and bacteria to eliminate pollutant from aquatic en-
vironments has been subjected in many researches [29–31]. In the
present study, B. subtilis was identified as a bacterium resistant to an-
thracene and lead. The Bacillus genus has been isolated and purified
from the soil, water and sediment contaminated with different pollu-
tants such as oil compounds and heavy metals by several researchers
[1,32]. Obuekwe et al. [33], presented Bacillus as one of the major
degraders in the desert of Kuwait due to its high ability to clean the oil
compounds using its different degrading enzymes. Four bacterial genus
including Bacillus, Pseudomonas, Alcaligenes and Vibrio, with ability of

crude oil degrading, were isolated by Zahed et al. [34] from the water
samples collected from coastal areas of the north west of Malaysia.
Bacillus genus was introduced by several researchers as the bacteria
resistant to different heavy metals such as lead [35,36].

The results also showed that B. subtilis could grow in a medium
containing 30mg/l of anthracene after adaptation to culture conditions.
This was in agreement with other studies which have also represented
that some native bacteria such as B. subtilis from the tidal areas were
able to grow on anthracene [37,38]. In the present study the growth of
B. subtilis in lead solutions was entered to log phase without any delay
and reached to maximum optical density after 72 h. Kim et al. [27]
studied the growth of Bacillus spp CPB4 in solutions with 50, 100, 200
and 400mg/l of lead. These researchers reported that this bacterium
grow rapidly in a solution with 50mg/l of lead and the maximum OD
achieved after 62 h of the inoculation. This result was in agreement
with those obtained in the present study.

In this study, the biosurfactant production ability of different bac-
teria was assessed using three techniques and B. subtilis was introduced
as a biosurfactant producer. Das et al. [39] found that Bacillus sp. could
produce biosurfactant in solution with anthracene as a sole source of
carbon. Actually, in the aqueous medium coated by the oil (organic
phase), the bacteria caught inner the oil droplets and therefore, it could
not obtain the oxygen required for metabolism. But the surfactant
producer bacteria could release the biosurfactant that in turn emulsify
the oil compounds [40]. Additionally, various carbon resources have a
significant influence on the biosurfactant production. They also can
effect on the bacterial activity and may inhabit the bacterial growth and
surfactant production. Then, the increase in the bacterial ability to
produce surfactant strongly depends on the medium nutrients and the
growth rate of the microorganism [41].

The present study demonstrated the B. subtilis ability to use an-
thracene as a sole source of carbon and degrade 69.95% of that in
120 h. The ability of B. subtilis to decompose different hydrocarbons
such as pyrene, crude oil and phenanthrene has been also presented in
previous studies [42–44]. This high capacity of the bacterium may be
due to the species diversity and its spores in the environment which
guarded the bacteria from severe environmental conditions. Anthracene
and other organic matters are considered as a nutritional source for
bacteria. Specific sensors activated in the bacteria in medium con-
taining hydrocarbons, enabled them to bind to these organic com-
pounds and emulsify and transport them into their body [45]. Gen-
erally, biodegradation of hydrocarbon compounds closely relate to
production of biosurfactant by the organism. Several researchers have
indicated the increase in degradation ability of different organisms in
presence of biosurfactant [46–50].

According to previous studies, the Bacillus genus has a considerable
capability in the heavy metals removal [27,36,51]. This genus include
Gram-positive, aerobic, spore producers bacteria with the ability of
heavy metal absorption because of the special binding sites in their cell
wall (such as Teichoic and Teichronic acids) [52]. In the present study,
the isolated bacterium from the sediment samples was able to eliminate
82% of lead concentration in 2.5 h. The maximum absorption of lead
was occurred after 30min of the inoculation. Tunali et al. [35] also
reported the fast adsorption of copper and lead ions by Bacillus oc-
curred in the first 15 and 30min of measurement.

5. Conclusion

In general, various species of Bacillus have been isolated and re-
ported by several investigators possibly due to its high resistance to
wide range of oil hydrocarbons and heavy metals. Based on the men-
tioned characteristics of B. subtilis in this paper, the authors offer the
use of this species in oil and heavy metal pollution removal in aquatic
ecosystems such as the Persian Gulf.

Table 2
The ability of Bacillus subtilis to produce bio-
surfactant.

Blood agar ++
Drop collapse +
Oil spreading 1.8 cm

+ Incomplete hemolysis.
++ complete hemolysis with diameter< 1cm.

Fig. 1. Biodegradation of anthracenen by B. subtilis at a concentration of
30mg/l.

Fig. 2. Biosorption of lead by B. subtilis at a concentration of 50mg/l.
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