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Abstract: With zinc acetate and butyl titanate as raw materials, pure ZnO and ZnTiO3/ZnO composite
photocatalysts were synthesized by a sol–gel method and calcined at 550 ◦C. The crystal structure,
morphology, surface area, optical property, and element valence states of samples were characterized
and the photocatalytic activity of the prepared photocatalysts were assessed by the degradation of
rhodamine B. Results show that the crystal structure of ZnO is a hexagonal wurtzite phase with a
band gap of 3.20 eV. When the Zn/Ti molar ratio reaches 0.2, ZnTiO3 phase appears and ZnTiO3/ZnO
composite forms, which advances the transfer of photogenerated charges. ZnTiO3/ZnO (Ti/Zn = 0.2)
exhibits the highest photocatalytic activity, and the degradation degree of RhB reaches 99% after
60 min, which is higher than that of pure ZnO (90%). An exorbitant Ti/Zn molar ratio will reduce
the crystallinity and form more amorphous components, which is not conducive to photocatalytic
performance. Therefore, when the Ti/Zn molar ratio exceeds 0.2, the photocatalytic activities of
ZnTiO3/ZnO composites decrease.

Keywords: ZnO; ZnTiO3/ZnO; photocatalytic performance; sol–gel

1. Introduction

Environmental pollution is a major issue related to the sustainable development of
society and economy. In recent years, the use of photocatalytic technology to degrade
sewage has been rapidly developed [1–3]. Among many photocatalytic materials, ZnO
has attracted extensive research attention due to its low cost, good chemical stability, and
high electron mobility [4–6]. Pure ZnO will encounter some problems when it is directly
applied to photodegradation. The forbidden bandwidth of ZnO is large (Eg = 3.37 eV),
which can only absorb a small amount of ultraviolet rays in the sunlight. On the other hand,
the photogenerated electrons generated by excitation are apt to reunite with holes [7,8]. It
is necessary to modify ZnO to improve its photocatalytic activity by ion doping [7,9,10],
precious metal deposition [11,12], semiconductor compounding [13], and so on.

Due to the different positions of the conduction band and the valence band, the
photo-generated charges can quickly migrate between the two-phase interfaces, reducing
the recombination probability of photogenerated electrons and holes, and prolonging the
carrier lifetime. Therefore, combining ZnO with other semiconductors to form hetero-
junctions is helpful to generate more free radicals and improve the photodegradation
effect [14]. The most studied ZnO semiconductor composite systems are TiO2/ZnO [1,15],
ZnS/ZnO [16], Cu2O/ZnO [17,18], Fe2O3/ZnO [19], and CdS/ZnO [20]. He et al. [17] pre-
pared Cu2O/ZnO composite photocatalyst and found that—compared with pure ZnO—the
visible light absorption was increased, the photogenerated charge separation was improved,
and its photocatalytic activity was higher than that of pure ZnO and pure Cu2O.

The present work adopts the sol–gel method, with zinc acetate as the precursor,
and pure ZnO and ZnTiO3/ZnO composite materials with different Ti/Zn molar ratios
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were obtained at a calcination temperature of 550 ◦C. The crystal structure, morphology,
surface area, optical property and element composition of the obtained photocatalysts
were characterized, and their photocatalytic performance was studied by assessing the
degradation degree of rhodamine B (RhB).

2. Experimental Section
2.1. Material Preparation

Zinc acetate (Analytical Reagent, AR), butyl titanate (AR), anhydrous ethanol (AR),
and rhodamine B (AR) were purchased from Chengdu Chron Chemicals Co., Ltd. (Chengdu
city, Sichuan province, China). All the chemical reagents were used directly without
further purification.

An appropriate amount of zinc acetate was dissolved in a 5:3 volume ratio of anhy-
drous ethanol and deionized water mixed solution, placed in a 70 ◦C water bath, stirred
for 2 h to obtain a gel, and then aged for 48 h to obtain a dry gel. After milling, it was
heat-treated at 550 ◦C for 1 h to obtain pure ZnO powder.

While adding zinc acetate and different contents of butyl titanate, the remaining steps
are the kept same to prepare the ZnTiO3/ZnO composite photocatalysts. In this study, the
molar ratios of Ti/Zn were 0.2, 0.4, 0.6, 0.8, and 1.0. ZnTiO3/ZnO composite materials
with different Ti/Zn molar ratios were marked as TZ-0.2, TZ-0.4, TZ-0.6, TZ-0.8, and
TZ-1, respectively.

2.2. Characterization

The crystal structure of the photocatalysts was analyzed by X-ray diffraction (DX-2700
X-ray diffractometer, Dandong Haoyuan Instrument Co. Ltd., Dandong, China, XRD).
The test current was 30 mA, the voltage was 40 kV, the scanning angle was 20–70◦, and
the scanning speed was 0.06◦/s. The morphology (SEM and TEM) was observed using
a FEI-Inspect F50 scanning electron microscope and a FEI-Tecnai G2-F20 transmission
electron microscope (FEI Company, Hillsboro, OR, USA). The BET specific surface area was
measured by a Mike ASAP2460 analyzer (Mike Instrument Company, Atlanta, GA, USA).
The recombination of photo-generated charges was measured by a F-4600 fluorescence spec-
trometer with an excited wavelength of 300 nm (F-4600, Shimadzu Group Company, Kyoto,
Japan, PL). The optical absorption was analyzed by a UV-3600 UV–vis spectrophotome-
ter (UV-3600, Shimadzu Group Company, Kyoto, Japan, DRS). The element composition
and valence state were measured by a Thermo Scientific K-Alpha multifunctional surface
analysis system (Thermo Scientific K-Alpha, Kratos Ltd., Manchester, Britain, XPS).

2.3. Photocatalysis Experiment

Taking 100 mL (10 mg/L) RhB aqueous solution as the target pollutant, 0.1 g of sample
was added into a beaker containing 100 mL RhB aqueous solution. The mixture was stirred
for 30 min to achieve adsorption and desorption equilibrium. A 250 W xenon lamp was
used as the UV–vis light source (300–800 nm). Samples were taken every 15 min and the
absorbance (A) was measured at λ = 553 nm. The formula (A0 − At)/A0 × 100% was
adopted to calculate the degradation degree, where A0 and At are the initial absorbance
and the absorbance at time t, respectively.

3. Results and Discussion
3.1. XRD Analysis

Figure 1 gives the XRD patterns of samples. The diffraction peaks in the XRD pattern
of pure ZnO appearing at 31.8◦, 34.4◦, 36.3◦, 47.6◦, 56.6◦, 62.9◦, 66.4◦, 67.9◦ are indexed to
the ZnO hexagonal phase, with corresponding reflections (100), (002), (101), (102), (110),
(103), (200), (112), indicating that ZnO shows a hexagonal wurtzite structure [21]. Pure
ZnO exhibits high diffraction peak intensity and good crystallinity. In the patterns of
ZnTiO3/ZnO samples, in addition to the peaks of ZnO, the diffraction peaks at 32.8◦,
35.3◦, 40.5◦, 48.9◦, 53.4◦, 61.8◦, 63.4◦ are indexed to the ZnTiO3 phase, with corresponding
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reflections at (104), (110), (113), (024), (116), (214), (300). As the Ti/Zn molar ratio increases,
the peak intensity of ZnTiO3 gradually increases, indicating that a ZnTiO3/ZnO composite
materials form in the samples. It is worth noting that with the increasing Ti/Zn molar ratio,
the peak intensity of ZnO is significantly reduced, indicating that the crystallinity declines
and the amorphous component gradually increases [22–24]. The average grain size can
be calculated by the Sherrer formula as follows: D = 0.89 λ/βcosθ. Where D, λ, β, and
θ are the average crystalline size (nm), wavelength of the X-ray (CuKα = 1.54056 Å), full
width at half maximum (fwhm) intensity of the peak, and the diffraction angle, respectively.
The grain sizes of pure ZnO, TZ-0.2, TZ-0.4, TZ-0.6, and TZ-0.8 are 36.2, 24.1, 28.3, 24.0,
and 27.8 nm, respectively [25]. Particularly, the diffraction peak intensity of TZ-1 is very
weak. It is difficult to distinguish specific diffraction peaks, implying that the amorphous
component further increases.
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Figure 1. XRD patterns of samples.

3.2. SEM and TEM Analyses

Figure 2 gives the SEM images of pure ZnO (Figure 2a,b) and TZ-0.2 (Figure 2c,d). It
can be seen that the pure ZnO is granular, and the size of a single particle is between 40 and
100 nm. The particle morphologies of TZ-0.2 were irregular and the size distribution is
broad. Figure 2e–h shows the element distribution of TZ-0.2. The sample contains three
elements (Ti, Zn, O), which are basically uniformly distributed in the matrix.

TEM and HRTEM images of pure ZnO (Figure 3a,b) and TZ-0.2 (Figure 3c,d) are
shown Figure 3. The pure ZnO particles are relatively dispersed; however, the average size
is significantly higher than that of TZ-0.2. The interplanar spacing in Figure 3b is 0.25 nm,
which corresponds to the (101) plane of the ZnO hexagonal phase [26]. In Figure 3d, the
marked interplanar spacing of 0.28 nm corresponds to the (100) plane of the ZnO hexagonal
phase [27].



Nanomaterials 2022, 12, 1345 4 of 11
Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 12 
 

 

Figure 2. SEM images of pure ZnO (a,b), TZ-0.2 (c,d), and elemental mapping images of TZ-0.2 (e–

h). 

TEM and HRTEM images of pure ZnO (Figure 3a,b) and TZ-0.2 (Figure 3c,d) are 

shown Figure 3. The pure ZnO particles are relatively dispersed; however, the average 

size is significantly higher than that of TZ-0.2. The interplanar spacing in Figure 3b is 0.25 

nm, which corresponds to the (101) plane of the ZnO hexagonal phase [26]. In Figure 3d, 

the marked interplanar spacing of 0.28 nm corresponds to the (100) plane of the ZnO hex-

agonal phase [27]. 

Figure 2. SEM images of pure ZnO (a,b), TZ-0.2 (c,d), and elemental mapping images of TZ-0.2 (e–h).
Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

Figure 3. TEM and HRTEM images of pure ZnO (a,b) and TZ-0.2 (c,d). 

3.3. BET Analysis 

It is observed from the TEM images that the particle size of TZ-0.2 is smaller than 

that of pure ZnO, and the morphology has changed significantly, thus their specific sur-

face areas may be quite different. Figure 4 presents the nitrogen adsorption–desorption 

isotherms and pore size distribution curves of pure ZnO (Figure 4a) and TZ-0.2 (Figure 

4b). The pore size of TZ-0.2 is smaller than that of pure ZnO, and is concentrated within 

10 nm. The specific surface area of pure ZnO is 23.5 m²/g, and it is 67.1 m²/g for TZ-0.2. 

Compared with pure ZnO, the grain size of TZ-0.2 decreases obviously, which favors in-

creasing the specific surface area. The larger surface area is beneficial to improving the 

photocatalytic activity as there are more active sites [20,28]. 

 

Figure 4. Nitrogen adsorption–desorption isotherms and pore size distribution curves of samples: 

(a) pure ZnO, (b) TZ-0.2. 

3.4. Optical Property 

When the photogenerated electrons are excited to the conduction band, leaving holes 

in the valence band, they are easy to return to the valence band and recombine with the 

holes. Simultaneously, the photon will be released, which constitutes the PL peak. There-

fore, the lower the PL peak intensity, the less recombination of photogenerated electrons 

Figure 3. TEM and HRTEM images of pure ZnO (a,b) and TZ-0.2 (c,d).



Nanomaterials 2022, 12, 1345 5 of 11

3.3. BET Analysis

It is observed from the TEM images that the particle size of TZ-0.2 is smaller than that
of pure ZnO, and the morphology has changed significantly, thus their specific surface areas
may be quite different. Figure 4 presents the nitrogen adsorption–desorption isotherms
and pore size distribution curves of pure ZnO (Figure 4a) and TZ-0.2 (Figure 4b). The pore
size of TZ-0.2 is smaller than that of pure ZnO, and is concentrated within 10 nm. The
specific surface area of pure ZnO is 23.5 m2/g, and it is 67.1 m2/g for TZ-0.2. Compared
with pure ZnO, the grain size of TZ-0.2 decreases obviously, which favors increasing the
specific surface area. The larger surface area is beneficial to improving the photocatalytic
activity as there are more active sites [20,28].
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3.4. Optical Property

When the photogenerated electrons are excited to the conduction band, leaving holes
in the valence band, they are easy to return to the valence band and recombine with the
holes. Simultaneously, the photon will be released, which constitutes the PL peak. There-
fore, the lower the PL peak intensity, the less recombination of photogenerated electrons
and holes [29–31]. Figure 5 shows the PL spectra of samples. The PL peak intensity of
ZnTiO3/ZnO composites varies greatly with the molar ratio of Ti/Zn. The peak intensity of
TZ-0.2 is lower than that of pure ZnO, indicating that the recombination of photogenerated
charges in TZ-0.2 is lower than that of pure ZnO, and exhibits higher quantum utilization.
When the heterojunctions are formed between the two semiconductors, it is beneficial
to the migration of photogenerated charges at the phase interfaces, which inhibits the
recombination with a lower PL peak intensity [14,32]. Unexpectedly, when the Ti/Zn mole
ratio reaches 0.4, the PL peak intensity of ZnTiO3/ZnO composites is higher than that of
pure ZnO, showing lower separation of photoinduced charges. It is generally believed
that appropriate defects are beneficial to capturing photogenerated charges and inhibiting
the recombination. However, excessive defects will introduce new recombination centers,
which is not conducive to improving quantum efficiency [26,33]. According to the XRD
results, with the increasing Ti/Zn molar ratio, the diffraction peak intensity of ZnTiO3/ZnO
composite decreases and the peak width increases, implying that the crystallinity decreases
and the amorphous composition increases, which leads to the formation of excessive defects.
Consequently, the separation of photogenerated charges decreases [34,35].

The UV–vis absorption spectra (a) and band gap (b) of pure ZnO and TZ-0.2 in the
wavelength range of 200–800 nm is shown in Figure 6. Pure ZnO shows strong absorption
in ultraviolet region. However, the absorption declines sharply in visible region. The band
gap of pure ZnO is determined to be 3.20 eV. Compared with pure ZnO, the absorption edge
of TZ-0.2 does not move appreciably, which also exhibits a band gap of 3.20 eV. It is worth
noting that the absorptions of TZ-0.2 in both ultraviolet and visible regions increase slightly.
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3.5. Element Composition and State

To examine the chemical states and surface compositions of ZnO and ZnTiO3/ZnO
composite, XPS testing was performed and the results are shown in Figure 7. Take TZ-0.2
as an example to analyze the element composition and chemical state. The overall survey
spectra indicated that TZ-0.2 contains Zn, O, C, and Ti elements. Figure 7b is the spectrum
of O 1s, with two peaks appearing at 530.2 eV and 531.4 eV, corresponding to lattice oxygen
and surface hydroxyl groups [36,37]. Figure 7c shows the spectrum of Zn 2p, which can be
decomposed into two peaks at 1021.3 eV and 1044.3 eV, corresponding to Zn 2p3/2 and Zn
2p1/2, implying that Zn exists in the form of Zn2+ [27,36]. Figure 7d shows the spectrum of
Ti 2p. The peaks at 458.5 eV and 463.6 eV are attributed to Ti 2p3/2 and Ti 2p1/2, indicating
that Ti in the sample is in a +4 state [38].
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Figure 7e shows the total spectra of pure ZnO and ZnTiO3/ZnO composites. The
binding energies are listed in Table 1. Compared to pure ZnO, the binding energies of
ZnTiO3/ZnO composites shift, which is due to the interaction of Ti element with Zn and O
elements [39,40].

Table 1. Binding energies of the samples.

Zn O Ti

Sample 2p1/2 2p3/2 O2− OH− 2p1/2 2p3/2

ZnO 1044.9 1021.8 530.2 531.8
Ti-0.2 1044.3 1021.3 530.2 531.4 463.6 458.5
Ti-0.4 1044.5 1021.4 530.1 531.9 463.9 458.5
Ti-0.6 1044.5 1021.4 530.0 531.6 464.0 458.4
Ti-0.8 1044.5 1021.4 529.9 531.0 463.1 458.3
Ti-1.0 1044.3 1021.2 529.6 530.9 463.8 458.0
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The element compositions, Ti/Zn molar ratios, as well as [O]/([Ti] + [Zn]) molar ratios
are summarized in Table 2. The results show that there is a certain deviation between the
element composition obtained by XPS results and the theoretical values. XPS is a typical
surface analysis method for qualitative and semi quantitative analysis. The test area is
generally the sample information with a size of hundreds or even tens of microns on the
sample surface and the depth of 1–10 nm, which does not represent the overall properties
of the sample. However, with the increase in the theoretical value of Ti/Zn molar ratio, the
Ti/Zn molar ratio of XPS results also shows an increasing trend.

Table 2. Element compositions of the samples.

Sample O (at%) Ti (at%) Zn (at%) [Ti]/[Zn] [O]/([Ti] + [Zn])

pure ZnO 53.78 0 46.22 0 1.16
TZ-0.2 55.42 5.64 38.94 0.14 1.24
TZ-0.4 58.47 9.46 32.07 0.29 1.40
TZ-0.6 49.20 13.37 37.43 0.36 0.97
TZ-0.8 57.36 14.14 28.50 0.50 1.34
TZ-1 54.38 20.45 25.17 0.81 1.19

3.6. Photocatalytic Activity

Figure 8 shows the degradation curves of samples against rhodamine B. After 60 min,
the degradation degrees of pure ZnO and TZ-0.2 are 90% and 99%, respectively. With the
increase in Ti/Zn mole ratio, the degradation degree first increases and then decreases.
When the molar ratio of Zn/Ti reaches 0.2, a new phase ZnTiO3 appears and a ZnTiO3/ZnO
semiconductor composite structure forms. The migration of photogenerated charges
between semiconductor interfaces inhibits the recombination, which is beneficial to the
separation of photogenerated charges [16,20]. The photodegradation results are consistent
with the PL spectra. It must be mentioned that a high Ti/Zn molar ratio is not conducive
to photocatalytic performance. When the Ti/Zn molar ratio exceeds 0.2, the degradation
degrees of ZnTiO3/ZnO composites are less than pure ZnO. XRD analysis shows that the
intensity of ZnO diffraction peaks decreases significantly with the rising Ti/Zn molar ratio,
implying that the crystallinity decreases and the amorphous composition increases, which
is not conducive to photocatalytic performance [3,41].
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The first-order kinetics curves of photodegradation of RhB are shown in Figure 9. Ln
(Ct/C0) shows a linear relationship with the reaction time t, and the reaction rate constant
k can be calculated by the formula kt = −ln(Ct/C0) (t is the reaction time, Ct represents the
concentration of RhB at time t, and C0 represents the initial concentration). The k value of
pure ZnO is 0.033 min−1, and the k value of TZ-0.2 is the highest, reaching 0.046 min−1,
which exhibits the fastest reaction rate.
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4. Conclusions

Pure ZnO and ZnTiO3/ZnO composite photocatalysts were prepared by sol–gel
method. The crystal structure, surface morphology, specific surface area, optical properties,
elemental composition, and state were analyzed. ZnO exhibits hexagonal wurtzite structure
after calcination at 550 ◦C. With the increase in the Ti/Zn molar ratio, the grain size of
ZnO decreases. When the Zn/Ti molar ratio reaches 0.2, a new phase ZnTiO3 appears
and ZnTiO3/ZnO semiconductor composites form. ZnTiO3/ZnO(Ti/Zn = 0.2) shows the
best photocatalytic performance. After 60 min of xenon lamp irradiation, the degradation
degree of RhB reaches 99%, and the k value reaches 0.046 min−1, which is higher than 90%
and 0.033 min−1 of pure ZnO. When the Ti/Zn molar ratio exceeds 0.2, the degradation
degrees of ZnTiO3/ZnO composites decrease, which can be attributed to the reduced
crystallinity at a high Ti/Zn molar ratio, generating more amorphous components, forming
the recombination centers, and reducing the separation of photogenerated charges.
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