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Metabolomic spectra 
for phenotypic prediction 
of malting quality in spring barley
Xiangyu Guo1,2*, Ahmed Jahoor3,4, Just Jensen1 & Pernille Sarup3

We investigated prediction of malting quality (MQ) phenotypes in different locations using 
metabolomic spectra, and compared the prediction ability of different models, and training population 
(TP) sizes. Data of five MQ traits was measured on 2667 individual plots of 564 malting spring barley 
lines from three years and two locations. A total of 24,018 metabolomic features (MFs) were measured 
on each wort sample. Two statistical models were used, a metabolomic best linear unbiased prediction 
(MBLUP) and a partial least squares regression (PLSR). Predictive ability within location and across 
locations were compared using cross-validation methods. For all traits, more than 90% of the total 
variance in MQ traits could be explained by MFs. The prediction accuracy increased with increasing TP 
size and stabilized when the TP size reached 1000. The optimal number of components considered in 
the PLSR models was 20. The accuracy using leave-one-line-out cross-validation ranged from 0.722 
to 0.865 and using leave-one-location-out cross-validation from 0.517 to 0.817. In conclusion, the 
prediction accuracy of metabolomic prediction of MQ traits using MFs was high and MBLUP is better 
than PLSR if the training population is larger than 100. The results have significant implications for 
practical barley breeding for malting quality.
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VP	� Validation population
WC	� Wort color
WV	� Wort viscosity

Brewing for alcohol production is the major end use of malt, and barley is the primary cereal used in production 
of malt because of optimal content of carbohydrates, dietary fibers, protein, vitamins and minerals1. In the process 
of brewing, the cereal needs to be malted. Under specific controlled conditions, cereal grains are sprouted and 
the young seedlings are grown for four to six days in order to produce malt2. This process ensure a physical and 
biochemical transformation within the grain that is defined as malting1. During the process of malting, the cell-
wall is degraded and protein is broken-down by hydrolytic enzymes such that the physical and the biochemical 
structure of the barley grain is modified in order to allow malt to be used in the subsequent stages of brewing3.

The quality of malt can directly affect the quality and quantity of brewed beer, thus malting quality (MQ) traits 
are important traits in breeding of barley to be used for malting. A series of MQ traits are defined in the malting 
industry. These include traits as extract yield and grain protein; alpha-amylase, beta-glucanase, beta-glucan, 
soluble protein, and free amino nitrogen in wort; and some physical properties such as diastatic power, viscos-
ity, taste, flavor, haze and foam head retention4. Measurement of MQ traits is expensive and labor-intensive and 
the MQ traits have been demonstrated to have complex inheritance5,6. A detailed analysis of genetic variation 
in MQ traits in spring barley was provided by a previous study6, where a population of 1329 spring barley lines 
from four breeding cycles were investigated and medium to high narrow sense heritabilities were found for the 
MQ traits included in this study.

The organic compounds in a plant are mostly produced by the plant itself so that the photosynthetic and 
metabolic capacity of a plant is the primary factor determining its growth potential7. Metabolites are typical 
intermediates of biochemical reactions during the growth and development at all stages of plant life8. A com-
prehensive view of cellular metabolites can be provided by metabolomics, which is an approach to quantify 
the endogenous metabolites in cells and organisms. The development of metabolomics has contributed to the 
molecular and biological characterization of various organisms. Especially in the area of crops, compared with 
animals and microorganisms, metabolomics is of great importance since the crops produce very large array of 
metabolites collectively9. Omics technologies like genomics, transcriptomics, and metabolomics can be used in 
the investigation for the biological background in different organisms10.

Nuclear magnetic resonance (NMR) spectroscopy is one of the technologies used to analyze many metabo-
lites simultaneously11. NMR can produce signal intensities, which can be treated as an indicator of metabolites 
in a biological sample, were defined as metabolomic features (MFs)12. A total of 24,018 MFs from barley wort 
were investigated in a previous study where the genetic variation in the MFs was investigated using a univariate 
model and 8,604 MFs were found to be significantly heritable13. NMR has been recognized as one of the most 
powerful analytical techniques which allows detailed investigation of qualitative and quantitative characteristics 
of complex chemical and biological samples14.

The most popular regression method in the field of chemometrics is partial least squares regression (PLSR)15,16. 
PLSR was first developed for the modelling of information-scarce situations in social sciences by Wold17. It is 
a latent variable approach which has been used to find fundamental relationships between two matrices by 
modelling the inner covariance structures18. Similar with traditional regression, PLSR relates two matrices by a 
linear multivariate model, but compared with traditional regression, the structure of two matrices can also be 
modelled when using PLSR19. The use of PLSR in chemistry first started in 1980s and has increased steadily for 
about 40 years, due to its appealing mathematical properties20. PLSR is able to analyze data sets with a large num-
ber of explanatory variables compared to the number of observations, in cases of noisy data, multi-collinearity, 
and incomplete variables in both the matrix of dependent variables and the matrix of predictor variables19,21.

Best linear unbiased prediction (BLUP), which is a method allowing prediction of random effects in a mixed 
model, was originally developed in animal breeding for prediction of breeding values (BVs) 22. In the area of 
animal breeding, the selection of animals with highest BV was usually based on predicted/expected BVs (EBVs) 
derived from the records on the animals themselves and their relatives using BLUP. The use of BLUP is also 
widely studied in many other areas of research where the use of mixed linear models are relevant such as plant 
breeding23.

BLUP can be used in general linear mixed models that include both fixed and random effects. The simplest 
case is BLUP without pedigree, where genotypic effect is treated as an independent unobservable normally dis-
tributed random variable and no relationships between individuals are considered23. Compared with a model 
based on individual performance, pedigree based BLUP leads to more accurate predictions and result in larger 
genetic gain because it efficiently uses information from all relatives by constructing an additive genetic relation-
ship matrix (A), under the circumstances where genetic relationships between relatives exists24. The higher the 
additive genetic relationship between the genotype of interest with its relatives, the more information can be 
gained from records of these related genotypes23. With the rapid development of biochip technology, genomic 
BLUP (GBLUP) has been developed and widely applied because it is easy and straightforward to be implemented 
since technically it just needed the replacement of the A matrix in pedigreed based BLUP by a genomic matrix 
(G)25. More recently, metabolomic BLUP (MBLUP) has been proposed by replacing the A or G matrix by a 
metabolomic similarity matrix (M) and MBLUP has been shown as an promising method26.

In our previous study, around 36% of MFs were found having significant heritability and among which 
many were found to be correlated with MQ traits in spring barley13. With this information, it is worthwhile to 
investigate the role of MFs involved in the prediction of phenotypes for MQ traits. PLSR is a popular method 
used in the studies of metabolic profiles27, and using metabolomic BLUP (MBLUP) model gave better prediction 
accuracies than the BLUP model using genomic information for four of five quantitative traits investigated28.
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The objectives of this study were to: (1) investigate the possibility of prediction of phenotypes of malting 
quality traits using metabolomic information; (2) compare the ability of predictions using PLSR and MBLUP 
models; (3) study the effect of different training population size on the accuracy of prediction; (4) explore the 
possibility of metabolomic prediction within and across location; and (5) compare different number of compo-
nents considered in the PLSR model.

Materials and methods
All the data used are available in a public accessible repository29.

Field trials.  In this study, a total of 2667 plots of 564 spring barley malting lines were included. These lines 
were part of the standard breeding program from Nordic Seed A/S. All experiments in this study were conducted 
on land owned by Nordic Seed. There were no animal or human experiments conducted for this research, the 
study also did not contain any GMO. Standard farm operating procedures were used and therefore no ethical 
approval was needed for this study. All the experiments involving plants adhered to plant ethics guidelines. 
Samples from two locations in Denmark were used, and samples were taken from each plot individually and the 
data covered three years from 2014 to 2016. The two locations are Dyngby (55° 56′ 57.2″ N 10° 15′ 13.8″ E) and 
Holeby (54° 42′ 03.1″ N 11° 27′ 07.6″ E). In both locations, the fields were divided into trials, which included 
52–106 plots (8.25 m2). Each trial was designed as a randomized complete block comprising 20–45 lines with 
three replicates of each line30. The capacity of trials varied so that 564 lines were not exactly equally distributed 
into all the trials. The breeders reference of the lines involved in this study was not provided in the published 
repository29 in order to comply with business rules. Each trial included two control lines in three replications. As 
a consequence, testing was conducted in a number of trials within each year-location combination. In total there 
were 139, 214 and 215 lines tested in 2014, 2015, and 2016, respectively. Two lines were tested in all three years 
as standards and the 2667 plots were distributed on 564 inbred lines.

Measurements of malting quality traits.  Malt sample from each plot was milled and extracted in water 
in order to produce a wort as described in the previous study13. The wort was used to measure five MQ traits 
which included filtering speed (FS), extract yield (EY), wort color (WC), beta glucan content (BG), and wort 
viscosity (WV). The wort samples needed to be filtered first, and 20 min after filtering begun, FS was scored by 
measuring the height of the liquid surface in the glass (cm flow-through in 20 min). EY was the percentage of dry 
matter in the filtered wort. Spectrophotometer was used to determine WC following the method of European 
Brewery Convention (EBC)31. After the filtration, the wort samples were separated in two parts and all wort phe-
notypes were obtained according to the Analytica-EBC 2004 manual. Briefly, one sample of 25 ml of wort was 
used for WV (mPa/s, Analytical-EBC 8.4) and EY (Analytical-EBC 8.3). A second sample of 3–4 ml of wort was 
used for BG (mg/l, Analytical-EBC 8.13.1) and WC (Analytical-EBC 8.5). Detailed description of MQ traits also 
can be found in a previous study by Sarup, et al.6, where the heritability estimates for MQ traits were reported as 
0.51 for EY, 0.31 for FS, 0.64 for WC, 0.55 for BG, 0.49 for WV.

Metabolomic features and NMR intensities.  The preparation of NMR analysis is described in detail in 
Guo, et al.13. MFs used in this study were 24,018 NMR intensities which obtained from one-dimensional (1D) 
1H NMR spectra. The NMR intensities were integrated over small chemical shift (δ) intervals and expressed in 
parts per million (ppm) in the frequency range of 0.00–11.00 ppm. An in-house custom Matlab script was used 
to process the spectra32. First an exponential apodization function equivalent to 0.5 Hz line-broadening was used 
and then Fourier transformation was applied. Afterwards, all spectra were referenced to the DSS-d6 signal, auto-
matically phased, and baseline corrected. After visual inspection data below 0.70 ppm and above 9.00 ppm was 
removed as it did not contain any signal. The water peak which was in the range of 4.7–4.9 ppm, and the region 
of the added standard which was − 0.2 ppm to 0.2 ppm, were also excluded. The raw data was then normalized 
using the probabilistic quotient method33, and the spectra were aligned using icoshift34,35. Finally, the MFs were 
centered and standardized to a mean of 0 and standard deviation as 1 in order to equalize the contribution from 
each observation independent of signal intensity12.

Statistical models and methods.  Two models were involved in the statistical analyses. The models were 
a metabolomic best linear unbiased prediction (MBLUP) model and a partial least squares regression (PLSR) 
model.

Metabolomic best linear unbiased prediction (MBLUP).  MBLUP model was as follows:

where y referred to the vector of each MQ trait, µ was intercept, m was the vector metabolomic effects, and e was 
a vector of residual terms that could not be explained by the other effects in the model. In this model, µ was a 
fixed parameter, m was a random vector with m ∼ N

(

0,Mσ
2
m

)

 , and e was a random vector with e ∼ N
(

0, Iσ 2
e

)

 . 
The reason for only µ taken as fixed parameter, instead of following the model in our previous study to consider 
more fixed parameters13, was because metabolomic information include environmental factors in addition to 
genomic information. M denoted the metabolomic similarity matrix built from MFs using the method as for 
building a genomic relationship matrix (G) computed using VanRaden method 125. Specifically, M =

QQ′

m
 , where 

Q is a n × m matrix of adjusted, centered and scaled NMR intensities with m = 24,018 (equal to number of MFs) 

y = 1µ+m+ e,
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and n = 2667 (equal to number of samples). Both the build of M and the MBLUP analysis were carried out by 
using the “qgg” R-package36.

The (co)variance components in the MBLUP model described in the previous section were estimated by 
restricted maximum likelihood using “qgg” R-package36.

The total variation of each MQ trait was calculated as the sum of variance components in MBLUP model:

where M  was the average diagonal of M, which equal to 1. The relative variance component due to effects of m 
was RVCm =

Mσ
2
m

σ
2
P

 which describe the proportion of total variation (across fixed effects) in MQ traits that can 
be described by the MFs.

Partial least squares regression (PLSR).  The PLSR model decompose Q, the matrix of MFs, into 
orthogonal scores T and loadings P:

  so that regressing y not on Q itself but on the first t columns of the scores T, t is the number of components fitted 
in the model when using the package mentioned below. The number of principal component (PCs) were 2667 
which was the number of observations in the metabolomic data. PC1 explained large proportion of variance in 
MFs and 99.99% of variance in MFs is explained by first 20 PCs as shown in Figure S2. Detailed description of 
PLSR method can be found in the documentation of the “pls” package21, which was used in the current study 
to carry out the PLS analysis.

Cross‑validation.  Three different leave-set-out (LSO) cross-validation strategies, in which the whole data-
set was divided into a training population (TP) and a validation population (VP), were investigated in this study 
based on three different hypotheses regarding factors that influence prediction accuracies. The first strategy, 
named SIZE, was to randomly leave out VP in order to create TP of different size; the second strategy, named 
LINE, was to leave out VP according to line i.e. all observations of a specific line; the third strategy, named LOC, 
was to leave out VP according to location.

In the SIZE strategy, since the TP samples and VP samples were randomly selected, the TP contained obser-
vations on the same lines, locations and years as in VP—although not the same combinations of lines, locations 
and years. In the LINE strategy, one out of 564 lines was left out so that the accuracy of predicting one line from 
all the other lines could be investigated, this strategy is similar to prediction of new lines. In the LOC strategy, 
one out of two locations was left out, which means the accuracy of predicting one location based on data from 
the other one location could be investigated.

For each strategy, cross-validation was carried out to evaluate the accuracy of metabolomic prediction of 
five MQ traits using MFs. In order to study the effect of different size of TP in SIZE strategy, eight scenarios 
were investigated in this study. These scenarios varied on TP having the size of 50, 100, 200, 500, 1000, 1500, 
2000, and 2500. Since the selection of TP was random, 15 replicates were carried out when selecting the TP. 
For the strategy of LINE, data from 564 lines were left out separately so that 564 replicates were carried out in 
this strategy. For the strategy of LOC, data from one of the two locations were left in turn so each location were 
predicted based on the other location.

In each round of the cross-validation, according to the setup of TP size, a certain number of the pheno-
types were selected and then the rest of phenotypes were masked. The phenotypes of the masked samples were 
predicted based on the TP together with the metabolomic information. Thereafter, the correlation between 
phenotypes and the predicted values was calculated as the accuracy of prediction. The accuracies obtained from 
strategy LINE and LOC were computed based on both plot level and line mean level where means were com-
puted both for MQ and predicted MQ. This means, two accuracies were obtained for each model in LINE and 
LOC strategies. In each round of the prediction in LINE and LOC strategies, the predicted values for VP in this 
round were collected, and then when all the rounds of prediction completed, predicted values were collected for 
the whole population. Afterwards, the accuracy on plot level in LINE and LOC strategies was calculated as the 
correlation between observed phenotypes and the predicted values of each plot, and the accuracy of line mean 
was calculated as correlation between average observed phenotypes and the average predicted values of each line.

When applying PLSR model, compared with MBLUP model, a leave-one-sample-out (LOO) cross-validation 
was carried out within the TP to train the model first, and afterwards the LSO cross-validation was processed 
using the trained model from the preliminary LOO cross-validation. In this study, different number of compo-
nents considered in the PLSR model was also compared, and the number of components were 5, 10, 20 and 50. 
The cumulated proportion of MF variance explained by first 60 components are shown in Figure S2.

Software and setup.  The cross-validation procedure using MBLUP was carried out by “qgg” package36 and 
the procedure using PLSR model was carried out by “pls” package21. In all three strategies, both MBLUP and 
PLSR models were applied, and the datasets utilized in each round of the cross-validation were same for MBLUP 
and PLSR models to make sure they were comparable.

σ
2
P = Mσ

2
m + σ

2
e ,

Q = TP,
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Results
In this study, the proportion of total phenotypic variance across fixed effects in malting quality (MQ) traits that 
can be explained by effects of metabolomic features (MFs) was evaluated. Then the phenotype of MQ traits was 
predicted by using MFs through MBLUP and/or PLSR models. Different size of TP, and the different number of 
components considered in the PLSR models, prediction across line and location were also investigated.

Descriptive statistics for malting quality traits.  Table 1 gives descriptive statistics of all the MQ traits 
analyzed in this study. There were 2667 records analyzed for five MQ traits. The average of all the traits were 4.83 
for FS, 82.66 for EY, 5.83 for WC, 217.10 for BG, and 1.47 for WV. The coefficient of phenotypic variance ranged 
from 2.21% for EY to 53.07% for BG.

Estimates of total variance of malting quality traits explained by metabolomic features.  A 
univariate MBLUP model was applied to estimate the proportion of the total variance including potential fixed 
effects in each MQ trait that can be explained by the MFs. The estimates were indicators for the proportion of 
total variance in MQ traits that is associated with metabolites.

Figure 1 shows the estimated relative amount of total variance explained by MFs (RVCm) and error in five 
MQ traits. The RVCm ranged from 0.93 ± 0.01 in FS to 0.98 ± 0.00 in BG.

For all the MQ traits, the effect of MFs explained very large proportions of the total variance. RVCm in WC, 
BG and WV were similar and larger than RVCm in FS and EY.

Metabolomic prediction using MBLUP model.  A univariate MBLUP model was used for metabolomic 
prediction of the five MQ traits. The cross-validation results from MBLUP model at each SIZE scenario are 
shown in Fig. 2. As shown in Fig. 2, averaged across 15 replicates in the strategy of SIZE, the maximum predic-
tion accuracies using MBLUP model were 0.76 ± 0.03 for FS, 0.74 ± 0.05 for EY, 0.84 ± 0.03 for WC, 0.78 ± 0.03 

Table 1.   Descriptive statistics for malting quality traits. Trait: FS = filtering speed, EY = extract yield, 
WC = wort color, BG = beta glucan, WV = wort viscosity; CV is coefficient of phenotypic variance.

Trait No. of records Unit Average SD Min Max CV (%)

FS 2667 cm/20 min 4.83 0.61 2.30 6.30 12.72

EY 2667 % 82.66 1.82 70.38 92.39 2.21

WC 2667 EBC units 5.83 0.83 3.59 8.99 14.23

BG 2667 mg/L 217.10 115.23 70.00 751.19 53.07

WV 2667 mPa s 1.47 0.06 1.29 1.73 4.27

Figure 1.   Proportion of total variance explained by metabolomic features and error in malting quality traits. 
Trait: FS = filtering speed, EY = extract yield, WC = wort color, BG = beta glucan, WV = wort viscosity; y-axis is 
relative variance component; m is relative variance of metabolomic effects and e is relative variance of residuals.
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for BG and 0.82 ± 0.03 for WV. In addition, for all traits, the maximum accuracy were obtained in the scenarios 
with 2500 as TP size.

Metabolomic prediction using PLSR model.  There were four PLSR models compared regarding the 
number of components utilized in the model. The number of components considered were 5, 10, 20 and 50. 
As shown in Fig. 3, averaged across 15 replicates, the maximum prediction accuracies using PLSR model were 
0.74 ± 0.03 for FS, 0.73 ± 0.05 for EY, 0.83 ± 0.02 for WC, 0.76 ± 0.03 for BG and 0.81 ± 0.03 for WV. In addition, 
all the maximum accuracy were obtained when using PLSR model with 20 components, except FS, for which the 
maximum accuracy was provided by the PLSR model with 10 components, but it was very close to the accuracy 
provided by PLSR model with 20 components.

When the PLSR model considered 5 components, the prediction accuracy was low for all the MQ traits. With 
increase in the number of components considered in the PLSR model, the accuracy also generally increased. 
The accuracy kept increasing until the number of components reached 20. However, when the number of com-
ponents increased further to 50, the accuracy decreased and in some cases even smaller than the accuracy from 
5 components.

Comparison of MBLUP and PLSR models.  The accuracy from MBLUP and the maximum accuracy 
among four PLSR models are plotted for each SIZE scenario in Fig. 2. The accuracy obtained from MBLUP 
model was smaller than at the maximum accuracy from PLSR model when the TP size was small. When the TP 
size was 50, MBLUP yielded smaller accuracy in all the five MQ traits. With the increase of TP size, the accuracy 
from MBLUP increased rapidly and was larger than for the PLSR model. For example, in FS, MBLUP yielded 
higher accuracy than PLSR when the TP size just increased to 100. For all the traits, MBLUP yielded higher or 
same accuracy compared with all the PLSR models when the TP size reached 500.

Figure 2.   Accuracy of prediction for malting quality traits using MBLUP and PLSR models with different 
training population size. Trait: FS = filtering speed, EY = extract yield, WC = wort color, BG = beta glucan, 
WV = wort viscosity; x-axis is training population size, y-axis is accuracy of prediction which is the correlation 
between observed and predicted phenotypes; MBLUP is metabolomic best linear unbiased prediction model, 
PLSR is partial least squares regression model; PLSR at each point are the results from PLSR model with best 
number of components.
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Metabolomic prediction with different training population size.  A total of eight sizes, including 
50, 100, 200, 500, 1000, 1500, 2000, and 2500, of TP were compared. With the increase of TP size, the prediction 
accuracy increased regardless of the model used. When the TP size was small, PLSR could provide better predic-
tions than MBLUP model, while along with the increase of TP size, the MBLUP outperformed PLSR models as 
soon as the data size reached 500 samples. As can be observed from Fig. 2, though the general trend was higher 
accuracy obtained in the scenario of largest TP size. When the TP was increased beyond 1000, the increase in 
accuracy was limited.

Metabolomic prediction of new lines.  The second cross-validation strategy investigated in this study 
was LINE, in which the data from one line were masked as VP and the data from the other lines were treated as 
TP to predict the VP. This corresponds to predicting a new line based on metabolomic information only. There 
were 564 lines in the whole dataset, one line was left out and then predicted based on all other lines. This process 
was repeated until all lines were predicted. Since PLSR model with 20 components generally yielded highest 
accuracy, only this PLSR model was conducted and compared with MBLUP model in this strategy. As shown in 
Fig. 4, when using MBLUP model, the accuracy of plot ranged from 0.72 ± 0.01 for EY to 0.83 ± 0.01 for WC, and 
the accuracy of line mean ranged from 0.80 ± 0.03 for EY to 0.87 ± 0.02 for WV. The MBLUP surpassed PLSR 
model though the difference are small.

Metabolomic prediction across location.  The third cross-validation strategy investigated in this study 
was LOC, in which the data from one location were masked as VP and the data from the other location were 
treated as TP to predict the VP. There were two locations in the whole dataset, therefore, this strategy had two 
rounds of prediction by treating each location as VP in each round. Same with LINE strategy, both MBLUP 
and the PLSR with 20 components were carried out in this strategy. As shown in Fig. 5, the accuracy of plot 
ranged from 0.52 ± 0.02 for EY to 0.68 ± 0.01 for FS, the accuracy of line mean ranged from 0.71 ± 0.03 for WC to 
0.82 ± 0.02 for BG, when using MBLUP model. The accuracy provided by PLSR model were similar with MBLUP.

Figure 3.   Accuracy of prediction for malting quality traits using PLSR models with different training 
population size. Trait: FS = filtering speed, EY = extract yield, WC = wort color, BG = beta glucan, WV = wort 
viscosity; x-axis is training population size, y-axis is accuracy of prediction which is the correlation between 
observed and predicted phenotypes; PLSR is partial least squares regression model; PLSR_05–PLSR_50 are 
partial least squares regression models with different number of components (5, 10, 20, 50).
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Discussion
Metabolomic prediction using 24,018 metabolomic features (MFs) were carried for a total of 2667 plots of 564 
spring barley malting lines each phenotyped for five malting quality (MQ) traits. MBLUP and PLSR models 
were compared. Accuracy of cross-validation was investigated by varying size of training population, also using 
leave-one-line-out and leave-one-location-out strategies. In addition, the number of components in the PLSR 
model was also studied.

Figure 4.   Accuracy of prediction for malting quality traits across line using MBLUP and PLSR models. 
Trait: FS = filtering speed, EY = extract yield, WC = wort color, BG = beta glucan, WV = wort viscosity; y-axis 
is accuracy of prediction which is the correlation between observed and predicted phenotypes; MBLUP is 
metabolomic best linear unbiased prediction model; PLSR is partial least squares regression model with 20 
components; plot is accuracy of plot, mean is accuracy of line mean.

Figure 5.   Accuracy of prediction for malting quality traits across location using MBLUP and PLSR models. 
Trait: FS = filtering speed, EY = extract yield, WC = wort color, BG = beta glucan, WV = wort viscosity; y-axis 
is accuracy of prediction which is the correlation between observed and predicted phenotypes; MBLUP is 
metabolomic best linear unbiased prediction model; PLSR is partial least squares regression model with 20 
components; plot is accuracy of plot, mean is accuracy of line mean.
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Descriptive statistics for malting quality traits.  The descriptive statistics for MQ traits in the current 
study were similar with the previous study though the number of observations in the previous study was around 
three times larger than in the current study6. The standard deviation of most of the MQ traits in the current study 
were smaller than the previous study and it is expected because in the previous study, 1,329 spring malting barley 
lines were involved and the harvest was done in four different years and three locations6, so that the samples 
from the current study was a subset of the previous study. The more variation in the year and location compared 
with the current led to the larger variation in phenotypes.

Estimates of total variance of malting quality traits explained by metabolomic features.  The 
variance of five MQ traits explained by MFs was explored by using a univariate model integrating a metabolomic 
similarity matrix and the proportion of metabolomic effects were larger than 90% for all the five traits.

The utilization of metabolomic similarity matrix in the model aimed at dissection of the total variance into a 
metabolomic part and a random error. The proportion of the variance of MFs shows the extent that MFs can be 
used to predict total variance in MQ traits. In our previous study, WC, BG, and WV were found to have signifi-
cant phenotypic and genetic correlation to a large proportion of the MFs13, similarly to a large extent, their total 
variance could be explained by MFs. Potentially MQ traits of WC, WV, and BG can be predicted from the MFs 
because MFs explains almost all the variance in these MQ traits. While among the two traits (FS and EY) having 
relative lower correlation with MFs, they could not be explained to the same very high degree by variation in 
metabolites. One of the reasons that there was a very large proportion of total variance in BG could be explained 
by MFs, can be due to that BG itself is a metabolite included in the NMR peaks.

The direct link between metabolites and phenotypic records in biological systems provide the potential of 
utilizing metabolomic features as an objective proxy for phenotype data37. The fact that almost all the variation 
in MQ can be explained by the MFs confirmed that the MFs could be used as the objective proxy for phenotype 
of interest and even more valuable and meaningful when the phenotype of interest is difficult or expensive to 
be obtain.

Metabolomic prediction using MBLUP model.  The MBLUP model used for estimation of variance 
components was then used for metabolomic prediction of five MQ traits. The prediction accuracies using 
MBLUP model were quite promising as the maximum accuracy were all above 0.7. This is higher than the previ-
ous reported prediction accuracies for metabolomic prediction of plant phenotypes7,38–41. The higher prediction 
accuracy in this study is probably due to a larger number of unique genotypes in the study and the fact that the 
NMR was performed directly on wort and not on, for example, leaves of the developing plant. When utilizing 
genomic information and fitting a genomic BLUP (GBLUP) model, the accuracies of genomic prediction for 
MQ traits were reported as from 0.28 to 0.686. The accuracy of GBLUP in the previous study was lower than the 
accuracy of MBLUP in the current study can be due to metabolomic data included information on both genetic 
factors as well as environmental factors. Thus the metabolomic information was closer related with phenotype 
observations than the genomic information. Though the spring barley lines involved in the current study were 
from the same breeding program as the lines in the previous study6, the number of lines studied in the current 
study was a subset from the previous one, which can also lead to the difference in prediction accuracy. However 
the accuracy of GBLUP is expected to be even lower if using the same dataset as in the current study, which is 
smaller than and be a subset of the dataset in the previous study6.

One of the reasons for the high prediction accuracy using MBLUP could be because the total variance 
explained by MFs were large in all the five MQ traits. The phenotypes of MQ traits can be predicted very well and 
better than when using GBLUP, because most variation in MQ is expected to be reflected in the NMR spectra. 
The high accuracy also shows that there is no overfitting and MBLUP can explain and predict large part of the 
variation in MQ. In addition, our previous study on the genetic and phenotypic correlation between MFs and 
MQ traits also showed a significant correlation between them, which can also be the reason for the high predic-
tion accuracy using metabolomic information13. A subset of MFs were detected as significantly heritable, and a 
further subset of these had significant genetic correlation with MQ traits in our previous study13.Therefore, we 
carried out extra analysis in order to compare the performance of MBLUP using different subsets of MFs. Three 
matrices were built regarding to MFs included, the matrix using all the 24,018 MFs was M, the matrix using 
significant heritable MFs was Ms, and the matrix using MFs which were significant heritable and also had sig-
nificant genetic correlation with each trait was Mgs (varied across traits). The estimation of variance due to MFs 
were quite similar among the MBLUP models using M, Ms and Mgs. The accuracy of prediction for using these 
three MBLUP models with different training population size are shown in the Supplementary Figure S1. Very 
similar results obtained from three MBLUP models (M, Mgs, Ms) indicated that selecting the significant herit-
able MFs and/or MFs having significant genetic correlation with traits did not improve the prediction accuracy 
of MBLUP. When applying MBLUP in the breeding system, breeders can directly utilize all the MFs instead of 
filtering out some part of MFs which may involve more work, cost, and potential for errors.

The performance of GBLUP and MBLUP was investigated in Drosophila, where the prediction accuracy for 
two behavioral traits was below 0.1 when based on GBLUP and then increased to above 0.4 when using MBLUP. 
Such an increase have also been found for two environmental stress resistance traits in Drosophila28. In the plant 
field, metabolic information was introduced into prediction of complex traits by Riedelsheimer, et al.38, where 
the authors presented a complementary approach to exploit large-scale genomic and metabolic information in 
hybrid testcrosses. The MBLUP was also investigated in a previous study42, where metabolomics data were used 
to predict the performance agronomic traits in wheat, and metabolomic information were found as providing 
strong predictive power for number of grains per spike and plant height42.
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Metabolomic prediction using PLSR model.  Four PLSR models were compared with different the 
number of components considered in the model. The maximum accuracies provided by PLSR models were 
smaller than for the MBLUP model. Increasing the number of components considered in the PLSR models 
generally led to the increase of prediction accuracy while when the number of components reached 50, the 
prediction accuracy was not larger than the one provided by the models only considered 20 components. These 
results indicated that the non-linear relationship between the number of components and the performance of 
the prediction. For all the MQ traits investigated in the current study, 20 components were already enough to 
provide good prediction accuracy though the exact number of components varied a bit from trait to trait. In a 
study of genomic selection for pork pH traits, 30 was found as the optimal number of components considered 
in the PLSR analysis43.

PLSR has also been suggested as an efficient method to analyze genomic data, because of its ability to handle 
large data sets and its prediction ability, and the PLSR approach is particularly suitable to predict dependent vari-
ables from a very large number of predictors and especially the predictors might be highly correlated with each 
other44. The accuracy of prediction for yield traits in French dairy cattle were similar between PLSR and GBLUP 
models but in no case PLSR provided higher accuracy than GBLUP44. It was also reported that an increase in 
the number of relevant variables and observations contributed to the improvement in the precision of the model 
parameters, which was one desirable property of PLSR model19.

Comparison of MBLUP and PLSR models.  The comparison of MBLUP and PLSR models showed that 
MBLUP generally outperformed PLSR for all traits, when the TP size larger than 500. PLSR could be a better 
choice than MBLUP only when the TP was small. In a previous study Xu et al.26 analyzed a hybrid population 
of rice, and showed that the MBLUP model was superior to PLSR model26. A similar situation was also found 
when utilizing genomic information instead of metabolomic information. For example, a study on rice also 
investigated the GBLUP model and PLSR using genomic information, showed that the GBLUP outperformed 
PLSR26. The superiority of BLUP model was also found in the study on genomic prediction in French Holstein 
and Montbéliarde breeds45. In addition to the better performance of MBLUP, it is also easy to implement, needs 
low demands regarding computation power, time and skill for the breeder, which makes MBLUP is more attrac-
tive in the practical breeding. For example, the time spent on the analysis of MBLUP when predict phenotypes 
of one year from the other two years was around 20 s per trait, while was around 5 min when using PLSR model 
with 20 components. The analysis of MBLUP model was realized by applying public available R package to our 
data, which can be easily found online together with example codes, which do not need very complicated skills 
from the breeders.

Metabolomic prediction with different training population size.  A total of eight TP sizes from 50 
to 2500 were compared in this study. The results showed that the prediction accuracy generally increased with 
increasing TP size. Though the accuracy increased all the way from smallest TP until the largest dataset, the 
increase in accuracy was much smaller when the TP were larger than 1000. The impact of TP size on the predic-
tion accuracy had been demonstrated in the genomic prediction while rare in the metabolomic prediction using 
metabolomic information46,47. For example, the accuracy of genomic prediction in wheat has been investigated 
regarding to different population sizes and the results indicated that TP of around 700 lines were enough to yield 
the highest prediction accuracy48.

Metabolomic prediction across line/location.  In addition to the first cross-validation strategy which 
selecting TP randomly within the whole population, two more strategies were investigated either predict the VP 
from different lines or growing in different locations. The accuracy of predicting plot MQ from these two strate-
gies were smaller than when the TP randomly selected from the whole population. The reason is because when 
selecting TP from the whole population randomly, the observations on the same lines and/or locations were 
involved in TP and VP, which increased the degree of the metabolomic similarity between TP and VP.

In this study, 564 lines were harvested in three years separately, which means there was almost no lines 
involved in two or three years. This design created difficulty in the metabolomic prediction across year based on 
the current dataset. The across year metabolomic prediction could be better investigated when a dataset includ-
ing overlap of lines been planted in different years is available.

Conclusion
Records of five malting quality (MQ) traits and metabolomic features (MFs) for 2667 plots of 564 spring malt-
ing barley lines that were grown in two locations were studied. The ability of prediction based on metabolomic 
information was investigated.

The proportion of variance in MQ traits that can be explained by effects of MFs was above 0.9 for all traits 
when using all the records. The phenotype of MQ traits could be predicted by MFs through MBLUP and/or 
PLSR models. The prediction accuracy when using MBLUP was larger than 0.7 and generally surpassed PLSR 
models when size of training population (TP) larger than 500. When the size of TP smaller than 500, PLSR pro-
vided better accuracy than MBLUP. The prediction accuracy increased along with increasing TP size but when 
the population size reached 1000, the rate of increase was very small. The number of components considered in 
the PLSR models can affect the performance of PLSR models and 20 was the optimal number. In addition, the 
prediction accuracy was also explored regarding to using the TP to predict the validation population (VP) in a 
different year or location. The results showed that it was possible carry out the prediction across line/location 
with the accuracy of plot ranged from 0.5 to 0.8, and the accuracy of line mean ranged from 0.7 to 0.9.
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In conclusion, it is possible to carry out prediction of phenotypes of malting quality traits using metabolomic 
information. MBLUP is an ideal model for the prediction when TP size larger than 500. The results from the 
current study indicate that barley breeders can predict MQ based on MFs from the wort and have significant 
implications for the practical barley breeding.

Data availability
All the data used are available in a public accessible repository with the direct link as https://​data.​mende​ley.​
com/​datas​ets/​s3s4f​t92wj/1.
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