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Abstract: Nature has evolved several molecular machineries to promote the formation at physio-
logical conditions of inorganic materials, which would otherwise be formed in extreme conditions.
The molecular determinants of this process have been established over the last decade, identifying
a strong role of electrostatics in the first steps of the precipitation. However, no conclusive, structure-
based evidence has been provided so far. In this manuscript, we test the binding of lysozyme with
silica and titania potential precursors. In contrast with the absence of structural information about
the interaction with the silica precursor, we observe the interaction with a mononuclear titanium(IV)
species, which is found to occur in a region rich of positive charges.
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1. Introduction

The formation of inorganic oxides usually proceeds under harsh chemical conditions
of extreme pH and high temperatures [1,2]. However, biological systems have evolved
a vast array of machineries to promote the formation of inorganic oxides under conditions
compatible with life (neutral pH and room temperature) [3,4]. Some of them are specific for
one oxide (e.g., silica) but show competence towards formation of other oxides as well [5,6].
In 2006, Luckarift et al. [7] demonstrated that lysozyme is able to template the formation of
silica and titania nanoparticles from the aqueous solutions of their precursors. From this
seminal paper, other applications demonstrating the tunability of this preparation method
have appeared in the literature [8], opening “de facto” a totally new field in nanotechnology
(see references [9–14] and references therein). The potential applications of these composites
are many, from cosmetics [15] to photocatalysis applications [6,8].

Proteins and biomolecules that template the formation of silica and titania tend to
be polycationic [16–30], and this appears to point towards a role for the electrostatics of
the interaction of the protein with the precursors. However, no structural evidence has
been provided so far. In this manuscript, we explore the interaction of silica and titania
precursor with lysozyme using X-ray crystallography.

2. Materials and Methods
2.1. Crystallization, Data Collection, and Structure Solution

Hen-Egg White Lysozyme (HEWL) has been purchased from Sigma-Aldrich (Milan,
Italy) and used without any further purification.

Biomolecules 2021, 11, 43. https://doi.org/10.3390/biom11010043 https://www.mdpi.com/journal/biomolecules

https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0001-7708-9208
https://orcid.org/0000-0002-7963-6241
https://orcid.org/0000-0003-2271-8921
https://doi.org/10.3390/biom11010043
https://doi.org/10.3390/biom11010043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biom11010043
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/2218-273X/11/1/43?type=check_update&version=2


Biomolecules 2021, 11, 43 2 of 9

Crystals of HEWL were obtained in hanging drop by adding an aliquot of 2 µL of
protein solution (0.5 mol/dm3 Tris-HCl, 8 mg/mL HEWL, pH 8.5) to 2 µL of reservoir
buffer (0.5 mol/dm3 Tris-HCl, 0.7 mol/dm3 NaCl, pH 8.5) and stored at 4 ◦C. The protein
concentration in the sample was 8 mg/mL.

The crystals were afterwards soaked in tetraoxosilicic(IV) acid and titanium(IV)
bis(ammonium lactato)dihydroxide (TiBALDH) solution, in different concentrations (20–
100 mmol/dm3 in buffer at pH 8.5 for both precursors and 1.7 mol/dm3 for TiBALDH
only) for 5 days. The dataset was collected in-house, using a BRUKER (Milan, Italy)
D8 Venture diffractometer equipped with a PHOTON II detector, at 100 K; the crystal
used for data collection were cryo-cooled using 25% ethylene glycol in the mother liquor.
The crystal is diffracted up to 1.8 Å resolution; it belongs to space group P43212 with
one molecule in the asymmetric unit, a solvent content of about 50%, and a mosaicity
of 0.3◦. The data were processed keeping Friedel mates separate using the program
XDS [31], reduced and scaled using XSCALE [31], and amplitudes were calculated using
XDSCONV [31]. The structure was solved using the molecular replacement technique
and showed the presence of one molecule in the asymmetric unit; the successful model
used was 2W1X. The successful orientation and translation of the molecule within the crys-
tallographic unit cell was determined with MOLREP [32]. The refinement was carried
out using PHENIX [33], applying TLS restraints and using anisotropic B-factors for Na,
Cl, and Ti only. In between the refinement cycles, the model was subjected to manual
rebuilding using COOT [34]. Water molecules have been added using the standard proce-
dures within the ARP/WARP [35] suite. The quality of the refined structure was assessed
using the program MOLPROBITY [36]. Data processing and refinement statistics are
shown in Table 1. Coordinates and structure factors have been deposited at the PDB under
the accession code 7A70.

Table 1. Data collection and refinement statistics.

Diffraction Source BRUKER D8 Venture

Wavelength (Å) 1.541
Temperature (K) 100

Detector PHOTON II
Crystal-detector distance (mm) 50

Oscillation range (◦) 0.5
Total rotation range (◦) 360

Exposure time/image (s) 30
Space group P43212

a, b, c (Å) 78.1, 78.1, 37.3
Mosaicity (◦) 0.3

Resolution range (Å) 50.00–1.80 (1.91–1.80)
Total reflections 274,135 (24,437)

Unique reflections 20,052 (2909)
Completeness (%) 97.8 (89)

CC1/2 99.9 (45.1)
I/(σI) 16.1 (1.7)

Rmerge † 0.12 (0.91)
Wilson B factor (Å2) 29.9

Rcryst/Rfree ‡ (%) 19.6/25.6
Protein atoms 1001

Water molecules 82
Ligand atoms 13

RMSD bond lengths (Å) 0.010
RMSD bond angles (º) 1.950

† Rmerge =
∑hkl ∑i|Ii(hkl) − 〈I(hkl)〉|

∑hkl ∑i Ii(hkl)
, (1)
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where Ii(hkl) is the mean intensity of the i-th observation of symmetry-related reflections hkl.

‡ R =
∑hkl ||Fobs| − |Fcalc||

∑hkl |Fobs|
, (2)

where Fcalc is the calculated protein structure factor from the atomic model (Rfree was
calculated with a randomly selected 5% of the reflections).

2.2. DFT Calculations

The structure of Ti(OH)4 was taken from the present structure and subjected to re-
finement at the DFT level of theory, with the B3LYP functional [37–40], using Ahlrichs
polarized basis set def2-TZVP [41,42] and Grimme’s dispersion correction D3 [43,44].
The resolution of identity approximation [45,46] was employed with auxiliary basis set
def2-TZVP/J in order to speed up the calculations. CPCM implicit solvent (water) was
used [47]. All calculations were carried out using the ORCA 4.2.1 quantum chemistry
package [48,49].

3. Results and Discussion

The aim of the present study is to find structural evidence of interaction between
inorganic precursors and HEWL in the initial steps of bioinspired oxide formation and
is framed on a wider research that aims at elucidating the structure–activity relations
in bioinspired preparation of inorganic oxides [27,29,50–52].

We performed an NMR titration with the precursor under the conditions that are used
for the bioinspired mineralization, as described in reference [7].

For tetraoxosilicic(IV) acid, the only apparent perturbation at the highest precursor
concentration is a 5% decrease in the signal intensity, with no detectable shift alteration
(Figure S1). The superposition of the spectra in the absence and presence of tetraoxosili-
cic(IV) acid shows no significant differences.

For TiBALDH, shifts in the signals of residues 101–110 can be observed (Figure S2),
but this area is known to be susceptible to variations in response to minor changes in the ex-
perimental conditions such as pH, ionic strength, etc. [53,54] and are often unresolved
in some crystal forms as well [55,56]. Given that the pH has decreased from 8.5 to 5.1
during the addition, these results cannot be interpreted reliably.

HEWL is not only the prototypical templating molecule in bioinspired mineralization
of silica and titania [7] but also particularly suitable for an X-ray crystallographic character-
ization, i.e., it easily crystallizes in a variety of conditions. (there are as many as 871 HEWL
entries in the PDB as of September 2020, with 26 deposited in 2020) and because the quality
of the crystals is usually high enough to allow for high-resolution in-house data collections.

The crystallization conditions were chosen to respect the pH at which the polymeriza-
tion occurs (8.5) and to minimize the number of additives.

Soaking with the tetraoxosilicic(IV) acid solution (buffered at pH 8.5) resulted in fast
disruption of the crystals, proportional to the concentration of tetraoxosilicic(IV) acid added
to the drop. At the concentrations that are compatible with the crystals, no conclusive
evidence of the presence of silicon species in the crystals can be found. The situation is
markedly different for the titania precursor, as higher concentrations of the precursor do
not disrupt the crystal order.

TiBALDH as a precursor for bioinspired titania synthesis is routinely employed
because it is reported to be water-soluble and stable at neutral pH and ambient condi-
tions [5–7,57–60]. TiBALDH solutions contain several species that are in equilibrium among
themselves and with TiO2, including mononuclear species. At neutral or slightly basic pH,
mononuclear hydrated titanium species also include Ti(OH)4 [5,61–64].

Soaking with buffered solutions at moderate concentrations of TiBALDH
(20–100 mmol/dm3) did not cause alterations in the resulted crystal structures that in-
deed did not reveal a clear presence of titanium species. This was not fully expected
because there is a report of a clear binding of a titanium species to the same crystal form of
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lysozyme (PDB entry: 6G5C) [65]. However, a very careful inspection of this entry casts
doubts in terms of the presence of titanium (a putative TiO2 species in this case) for at least
three reasons: the first one is that the supposed position of titanium perfectly corresponds
to the position of a chloride ion in all lysozyme structure belonging to the same space group.
The second one is the shape of the 2Fo-Fc density of the putative titanium that is perfectly
spherical and fits way better with the chloride ion. The third one is that mononuclear TiO2
species do not exist as such in solution [61,66].

For this reason, the last attempt was to perform a soaking with 2 µL of 50% w/w
TiBALDH solution (1.69 mol/dm3, pH 8, subject to change upon the hydrolysis of the com-
ponents). At variance with tetraoxosilicic(IV) acid and lower concentrations of TiBALDH,
this did not cause a complete disruption of the crystals but slightly decreased the maxi-
mum resolution reached by these crystals. The data obtained with this last sample had
a maximum resolution achievable of 1.8 Å instead of the typical 1.4–1.5 Å in the same
diffractometer. Nevertheless, despite the lower resolution, the quality of the data remains
very good and this has indeed allowed what is presented hereafter.

Considering the crystallization conditions, the only atoms which could have anoma-
lous effect at the diffractometer wavelength are sulfur, chlorine, and titanium, with the last
being the one with the largest expected value. For this reason, the data were processed
keeping the Friedel mates separate with the hope to have some useful hints through
anomalous difference maps.

In fact, these maps contoured at 3.0 σ value show clear peaks for all sulfur atoms and
for the expected chloride atoms but, interestingly, they also show a peak in an unexpected
position, which we interpreted as the hydrolyzed titanium compound in the form of
Ti(OH)4.

There are several reasons that led us to assess the presence of titanium with an occu-
pancy of about 0.7:

(i) the presence of an anomalous signal is slightly higher than those attributed to sulfurs
and chlorides;

(ii) the shape of the 2Fo-Fc density is clearly not spherical as one would expect for chloride
ion but rather tetrahedral as shown in Figure 1, and this becomes even more apparent
when slightly lowering its contour value;

(iii) the Ti-O distances refine well at about 1.9 Å, which is in agreement with the theoretical
value expected for such bond;

(iv) the Fo-Fc density in that position is absent at ±3.0 σ contour;
(v) the B-factor values for the refined atoms of the titanium moiety have values coherent

with those of the other labile or loosely bound atoms in the structure;
(vi) the comparison with several other lysozyme structures with the same space group

shows that no density is present in the position that we attributed to the mononuclear
titanium species.

With this result at hand, we have re-examined the data collected on the crystal soaked
with 100 mmol/dm3 TiBALDH solution. These data show, ex post, a weaker but clear
anomalous signal in the same position where we have identified titanium in the crystal
soaked with the pure ligand.

The position and the binding mode of the ligand suggests that its presence is likely
to be an artifact due to the crystal packing and to its very high concentration. In fact,
the titanium compound is placed in the region between two symmetry-related molecules
and has no direct chemical interaction with any of the protein atoms. It is held in place
by hydrogen bond interactions with two well-defined water molecules that are, in turn,
in close interaction with the protein (one with the backbone amide of Glu7 and the other
one with the sidechain of Arg14 of a symmetry mate). The pattern is completed by two
more interactions with two more labile water molecules, one of which interacts with
the backbone amide of Cys6.
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Figure 1. Cross-eye stereo representation of the electron density detail of the mononuclear titanium species and its
environment. Water molecules are represented as red spheres. In blue is the 2Fo-Fc contoured at 1.2 σ level, and in yellow is
the anomalous difference map contoured at 3.0 σ value.

However, even if this interaction mode would be impossible if the protein was free
in solution, it allows us to observe experimentally that the titanium species is mainly
surrounded by positively charged residues. An electrochemical analysis of mononuclear
titanium(IV) species present in aqueous solution as a function of the pH indicates that
the species Ti(OH)4 is prevailing at the working pH [61], and a simple DFT calculation
in implicit solvent indicates that the oxygen atoms can have up to 0.87 e- partial charge,
which can easily account for a preference for forming hydrogen bonds as acceptor.

A plausible explanation for this fact could be the very high concentration of tita-
nium(IV). This could cause the diffusion of Ti(OH)4 at a higher rate in the solvent channels,
until the complex reaches a narrower channel where it forcibly stopped because of steric
hindrance and charge accumulation (as illustrated in Figure 2).

Figure 2. Surface representation (calculated with PyMOL APBS plugin) of the environment in which the titanium species is
found, colored by electrostatic potential showing chloride ions in green and sodium in purple.

At this point, the ligand can establish favorable interactions with water molecules that
are kept in position by strong interactions with the charged amino acid residues around.
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This could, in turn, explain why the interactions that it establishes are not specifically
targeted to some protein residues.

It is also possible to speculate that the strongly positive environment in which
the mononuclear titanium(IV) species is found makes it easier a further proton disso-
ciation from the hydroxyl groups. This speculation could be supported by the interaction
with a water molecule (wat11, Figure 3), which, in fact, establishes strong hydrogen bonds
with Arg14 and with one of the hydroxyl groups of the titanium species. Since Arg14 is
positively charged, then it must be the negative side of wat11 dipole to be responsible for
the interaction with arginine, whereas the positive side of the water dipole interacts with
the oxygen of one hydroxyl groups of the titanium, where the oxygens have a rather large
negative partial charge.

Figure 3. Detail of the two hydrogen bonds stabilizing the position of the titanium species through two water molecules
represented as red spheres. Distances are expressed in Å. The 2FoFc map is contoured at 1.0 σ level.

4. Conclusions

The interest in bioinspired materials preparation notwithstanding, the interaction
between the precursor of inorganic oxides and polycationic biological macromolecules has
resulted elusive so far.

In this work, we tested the binding of lysozyme with silica and titania potential
precursors. The silica precursor does not show any interaction with lysozyme in NMR
experiments and causes the disruption of the protein crystals impeding X-ray diffraction
studies. The situation is markedly different for the titania precursor. NMR spectra pro-
vide, in fact, detectable shifts but they cannot assess the binding beyond any reasonable
doubt and, on the other side, the addition of TiBALDH to the crystals does not disrupt
them, allowing for good resolution data collection. In this manuscript, we thus provide
the first structure-based experimental evidence that among the possible mononuclear
titanium species considered in the literature [62], Ti(OH)4 does interact with lysozyme
before precipitation starts and that the interaction is electrostatic in nature. The interaction
appears, in line with expectation, to be directed in an area where several arginine residues
are present but, unexpectedly, appears to be mediated by an intervening water molecule;
in fact, during its diffusion into the crystal, the titanium(IV) species happens to be trapped
in a solvent channel created by symmetry mate molecules, because of steric hindrance
and charge accumulation in the channel. This interaction is likely not occurring as such
in solution under the usually applied reaction conditions. Nevertheless, our observation
is a clear structure-based evidence of the existence of electrostatic interactions between
the protein and one mononuclear titanium(IV) species and can be a proxy of those in-
teractions that drive the initial steps of the oxide formation. We thus expect that this
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result will be a relevant starting point for detailed (e.g., computational [67–69]) studies of
the structural basis of the bioinspired titania precipitation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-2
73X/11/1/43/s1, Figure S1: 1H NMR spectra of lysozyme titration with tetraoxosilicic(IV) acid,
Figure S2: 1H NMR spectra of lysozyme titration with TiBALDH. References [70,71] are refered to
in Supplementary Materials.
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