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Abstract

Understanding how complex patterns of temporal and spatial expression are regulated is central to deciphering genetic
programs that drive development. Gene expression is initiated through the action of transcription factors and their
cofactors converging on enhancer elements leading to a defined activity. Specific constellations of combinatorial occupancy
are therefore often conceptualized as rigid binding codes that give rise to a common output of spatio-temporal expression.
Here, we assessed this assumption using the regulatory input of two essential transcription factors within the Drosophila
myogenic network. Mutations in either Myocyte enhancing factor 2 (Mef2) or the zinc-finger transcription factor lame duck
(lmd) lead to very similar defects in myoblast fusion, yet the underlying molecular mechanism for this shared phenotype is
not understood. Using a combination of ChIP-on-chip analysis and expression profiling of loss-of-function mutants, we
obtained a global view of the regulatory input of both factors during development. The majority of Lmd-bound enhancers
are co-bound by Mef2, representing a subset of Mef2’s transcriptional input during these stages of development. Systematic
analyses of the regulatory contribution of both factors demonstrate diverse regulatory roles, despite their co-occupancy of
shared enhancer elements. These results indicate that Lmd is a tissue-specific modulator of Mef2 activity, acting as both a
transcriptional activator and repressor, which has important implications for myogenesis. More generally, this study
demonstrates considerable flexibility in the regulatory output of two factors, leading to additive, cooperative, and
repressive modes of co-regulation.
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Introduction

Development is driven by precise patterns of spatio-temporal gene

expression, which are regulated through the action of transcription

factors and cell signaling cascades converging on cis-regulatory

modules (CRMs). CRMs are typically bound by multiple transcription

factors, whose concentrations and interactions change dynamically

over time. It is this combinatorial and dynamic property of CRM

occupancy which makes regulatory output difficult, if not impossible,

to predict based on information from a single transcription factor (TF)

[1]. Understanding the regulation of complex developmental

processes requires linking combinatorial binding at the molecular

level to the regulation of these processes at the phenotypic level. We

have assessed the contribution of two well-studied TFs, Mef2 (Myocyte

Enhancing Factor 2) and Lmd (Lame duck) to the cellular process of

myogenesis during Drosophila development. Although the phenotypic

defects in myoblast fusion are almost identical in Mef2 or lmd loss-of-

function mutant embryos [2–4], the molecular relationship between

these TFs activity is poorly understood.

Members of the Mef2 family of MADS-box proteins were first

characterized in vertebrates as important regulators downstream

of the MyoD family of transcription factors, and have since been

identified as part of an evolutionarily ancient regulatory network

driving myogenesis from flies to man [5]. In vertebrates, Mef2

transcription factors act as central regulators of cell proliferation,

survival, apoptosis and differentiation in a range of cell types,

including skeletal, cardiac and smooth muscle, brain, neural crest,

lymphocytes and bone (reviewed in [5]). This diversity in Mef2

function is achieved through regulation by extracellular signals

and cooperative activity with specific co-regulators. In skeletal

muscle, for example, Mef2 acts together with bHLH transcription

factors to regulate the expression program that drives myogenic

differentiation [6,7]. In neural crest cells, Mef2c acts cooperatively

with the DLX5 and DLX6 homeodomain TFs to regulate

craniofacial development [8,9], while in smooth muscle cells

Mef2 acts together with myocardin [10]. Thus, Mef2 TFs have

little inherent instructive potential by themselves but rather act

together with tissue-specific TFs to drive specific gene expression
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programs. Given the diverse roles of the Mef2 gene family during

development, many more co-regulators are likely to be required to

generate the spectrum of transcriptional responses elicited by these

factors.

In Drosophila embryos, the single Mef2 ortholog is expressed

exclusively in mesoderm and its muscle derivatives. Even in this

relatively simple model system, Mef2 regulates distinct batteries of

target genes in precise spatial patterns (e.g. in the dorsal vessel, the

somatic mesoderm and visceral mesoderm [11,12]), and in a

specific temporal order [11,13]. Global in vivo occupancy

experiments revealed dynamic Mef2 enhancer binding; although

Mef2 is expressed continuously, it binds to one group of enhancers

only early in development and to another group only at late

developmental stages [11]. The temporal shift in the expression

onset of Mef2 target genes [11,13] as well as their spatial diversity,

indicates a requirement for co-regulators, similar to the mecha-

nism of Mef2 action in vertebrates [5]. holes-in-muscle (him) was

recently identified as a potential repressor of Mef2-dependent

transcriptional activation via the recruitment of the general co-

repressor Groucho [14]. Regulation by Him therefore provides

one mechanism to alter the temporal output of Mef2 activity once

it is bound to an enhancer. However, other co-regulators are

clearly required to modulate Mef2’s temporal enhancer occupancy

and to restrict its spatial activity.

The Drosophila body wall muscle or somatic muscle is formed

from two heterogeneous populations of cells- the founder cells

(FCs), which represent 30 distinct cells in each hemisegment of the

embryo, and the fusion competent myoblasts (FCMs) [15]. Once

specified, a single FC will fuse with a defined number of FCMs to

give rise to a syncytial myotube of distinct identity, defined by its

size, shape and attachments. Mef2 is required to initiate a program

that regulates myoblast fusion and drives the differentiation

program of the resulting myotube into a contractile myofiber

[2]. The zinc-finger transcription factor Lame duck maintains

Mef2 expression in FCMs, and like Mef2, is also essential to

regulate a program of muscle differentiation, the first step of which

is myoblast fusion [3,4,16]. lmd mutant embryos have defects in the

specification or maintenance of FCMs [4], which results in an

expansion of Zfh1-expressing pericardial cells and adult muscle

precursor-like cells [17]. In contrast to Mef2, the molecular

function of Lmd is more poorly understood; its only known direct

target gene being Mef2 itself [3].

Given the extensive co-expression of lmd and Mef2 and the

similarity in the myoblast fusion phenotype observed in their loss-

of-function mutants, we hypothesized that Lmd may act as an

FCM-specific modulator of Mef2 activity. To assess this, we have

systematically compared the in vivo enhancer occupancy of Lmd

and Mef2 and identified a large number of combinatorially bound

enhancers during myogenesis. Expression profiling of loss-of-

function lmd and Mef2 mutants revealed that, although these TFs

co-occupy the same enhancer region, they have different

regulatory effects on the expression of the target genes. We used

a combination of in vivo and in vitro approaches to demonstrate

differential integration of regulatory input from Lmd and Mef2 at

individual CRMs. Taken together, these data emphasize the

diversity of transcriptional responses that can be generated by two

transcription factors and identify Lmd as a new context-specific

modulator of Mef2 activity.

Results

Obtaining a systematic map of Lmd-bound enhancer
regions in vivo

As a first step towards understanding the phenotype of lmd

mutant embryos and its potential combinatorial regulation with

Mef2, we set out to identify Lmd-bound enhancer regions and

directly regulated target genes. To identify Lmd-bound enhancers

within the developing embryo, we used chromatin immunopre-

cipitation followed by microarray analysis (ChIP-on-chip) during

defined stages of muscle development. Lmd-associated DNA was

precipitated from tightly staged embryos at two consecutive

developmental time points, spanning most of the developmental

stages when lmd is expressed (stages 10–13). To obtain data with

high sensitivity and specificity we performed a total of eight

independent chromatin immunoprecipitations per time-point

using two different anti-Lmd antibodies for each time point

(Materials and Methods). The enriched DNA sequences were

analyzed on microarrays containing overlapping 3 kb fragments

tiling across ,50% of the Drosophila genome [11]. Genomic

regions were considered bound by Lmd if they were significantly

enriched with both antibodies, thereby reducing potential false

targets caused by non-specific antibody effects.

Lmd binding was detected at 154 unique genomic regions at

one or both developmental time points (Table S1), including the

only known Lmd-binding site upstream of the Mef2 locus ([3];

Figure 1A). In addition, Lmd binds to a previously characterized

enhancer of sns ([18]; Figure 1B), a transmembrane protein that

requires lmd for its expression in FCMs [3] indicating that Lmd

directly regulates sns expression. The expression of the bHLH

transcription factor twist persists longer in lmd loss-of-function

mutants than in wild-type embryos [4]. As the DNA-binding

domain of Lmd is similar to the Gli-family of transcription

factors, which can act both as transcriptional activators and

repressors, it was proposed that Lmd may directly repress Twist

[4]. However, no significant Lmd-binding was detected in the

twist locus (data not shown). Although we cannot exclude low-

level Lmd occupancy below the detection limit of our assay, this

result suggests an indirect regulatory connection between Lmd

and twist.

The recovery of enhancers of both Mef2 and sns, genes known to

be genetically downstream of lmd, underscores the accuracy of the

Author Summary

While genetic studies are essential to reveal the pheno-
typic relationships between genes, it is often very difficult
to disentangle the molecular mechanism of two genes
that phenocopy each other. In this study, we used global
scale and single gene analysis to investigate the relation-
ship between two transcription factors whose mutant
embryos have a similar defect in myogenesis. In Drosoph-
ila, Mef2 mutant embryos display a block in myoblast
fusion, which is very similar to what is observed in mutant
embryos for lmd, a zinc-finger transcription factor. To
understand the underlying nature of these defects we
used ChIP-on-chip analysis to obtain a global view of their
co-regulated enhancers, and we used expression profiling
of mutant embryos to reveal their downstream transcrip-
tional response. The results indicate that Lmd acts as a
tissue specific modulator of Mef2 activity. Using in vivo and
in vitro reporter assays, we show that co-binding to the
same enhancer element can lead to diverse regulatory
responses. The presence of Lmd has an additive, cooper-
ative, or repressive effect on Mef2 activity, demonstrating
that it acts as a molecular switch for gene expression
during muscle differentiation. More broadly, our results
highlight the difficulty in translating information on
combinatorial binding data into a functional regulatory
response.

Lmd Is a Tissue-Specific Modulator of Mef2
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ChIP-on-chip results. Moreover, a number of Lmd-bound regions

overlap previously characterized muscle enhancers, including

betaTub60D [19], Act57B [20], CG14687 and CG9416 [11] (Figure

S1 and Table S2) and are dependent on Lmd for their activity (see

below). In addition, we have characterized the activity of four

previously unknown Lmd-bound enhancers that are responsive to

Lmd both in vivo (Figure 2) and in vitro (see below).

Combinatorial binding of Lmd and Mef2 to shared cis-
regulatory modules

The activities of Lmd and Mef2 are required for the initiation

of myoblast fusion, presumably due to the regulation of a battery

of genes essential for this process or for the identity of the FCMs

themselves. To investigate potential co-regulation of target genes,

we compared the enhancer binding data from Lmd (presented

here) to our previously reported ChIP-on-chip data for Mef2

performed at the same developmental time points [11]. 106 out

of 154 (68.8%) Lmd-bound regions are co-bound by Mef2

during muscle development (Figure 1C), suggesting that the

majority of these regions are co-regulated by both TFs. This is

likely to be a conservative estimate as regions bound by one or

both transcription factors just below our thresholds are not

considered. Nevertheless, the extensive level of enhancer co-

occupancy (Figure 1C) indicates that combinatorial regulation by

these two TFs is an important feature within the myogenic

program. In many cases the temporal profile of Lmd and Mef2

binding to shared enhancers is identical, again indicating that

these two TFs act together to co-regulate enhancer output. For

example, both TFs only bind to the ttk (tramtrack) enhancer at

stages 10–11, but not later, while the blow (blown fuse) and

CG5080 enhancers are co-bound at stages 12–13, and not earlier

(Figure 3).

Figure 1. A global comparison of Lmd and Mef2 activity. (A) Schematic overview of a genomic region within an intron of the Mef2 locus: An
exon (located on the antisense strand) is shown in orange. Genomic fragments on the tiling arrays are indicated as stacks of two horizontal bars in
their corresponding genomic position. The top bar represents the results from the 6–8 hour (stages 10–11) ChIP-on-chip time point, the lower one
corresponds to the 8–10 hour (stages 12–13) time point. Significantly enriched regions are indicated in blue for Lmd (top) and in green for Mef2
(bottom). The black bar indicates the location of the previously identified Lmd-binding site. Both Lmd and Mef2 are co-bound to genomic regions
overlapping the known Lmd binding site at the 6–8 hr time point, as well as to other sites in this area. (B) Schematic overview of the genomic
region upstream of the sns locus (exons show in orange): The known sns enhancer (black bar) partially overlaps with tiling array probes bound by
Lmd (at both time points, blue bars) and Mef2 (at 8–10 hour time point, green bar). Additionally, Mef2 binds to other locations upstream and
intronic of the sns locus. (C) Lmd and Mef2 co-occupy many genomic locations: Venn diagram displaying the number of non-overlapping regions
significantly enriched in Lmd ChIPs (blue) and significantly enriched in Mef2 ChIPs at the same stages of development (green). Both factors co-
occupy a large number of regions (overlap). (D) Co-regulation of common direct target genes by Lmd and Mef2: The majority of Lmd target genes
(blue) are co-regulated by Mef2 (overlap), while Mef2 regulates a large number of additional genes (green). (E) Differential gene expression in lmd
and Mef2 loss-of-function mutants [log2]: differences in expression between mutant and wt embryos were recorded in a timecourse for lmd (left) or
Mef2 (right) mutant embryos. Shown are all direct target genes of Lmd that are significantly misregulated at one or more time points in either
mutant background (fold change .1.6, q,1%). K-means clustering was used to highlight similar downregulation (top) in both mutants, similar
upregulation (centre) or divergent expression changes (bottom). Color scale indicates fold changes [log2]. Genes studied in more detail are marked
in grey.
doi:10.1371/journal.pgen.1001014.g001

Lmd Is a Tissue-Specific Modulator of Mef2
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Differential requirements of Lmd and Mef2 activity for
target gene expression

The combinatorial binding of Lmd and Mef2 to shared CRMs

raises several interesting questions. How much regulatory input

does each factor contribute to the activation of an enhancer? Are

Lmd and Mef2 acting in a co-operative or additive manner to

regulate target gene expression? Are both transcription factors

required for enhancer activation, or do they act redundantly? We

have used several approaches, both in vivo and in vitro, to address

these questions. First, we used global expression profiling to

determine which genes require Lmd and Mef2 activity for their

correct expression in vivo (Figure 1E).

We performed a developmental time-course of gene expression,

comparing the transcriptional state of wild-type embryos to that of

lmd-mutant embryos at six consecutive one-hour windows of

development, providing a high-resolution map of lmd-dependent

changes in gene expression. These experiments identified 640

genes that are genetically downstream of lmd during the stages of

myoblast fusion and the initiation of terminal muscle differenti-

ation (Table S3). By integrating this differential gene expression

data with information on Lmd enhancer occupancy (ChIP-chip

data) and muscle-specific gene expression patterns (from BDGP in

situ hybridizations, [21]) we defined a high-confidence set of 74

target genes [11] that are likely to be directly regulated by Lmd

(Table S1 and Table S4). Among these are a number of genes

known to be involved in myoblast fusion, including Mef2, sns and

blow, as well as genes with characterized roles in other aspects of

muscle development, suggesting that Lmd may have a broader

role in myogenesis than previously anticipated.

In a previous study, we used ChIP-on-chip experiments and

expression profiling to identify a stringent set of Mef2 direct target

genes at multiple stages of development [11]. Comparing these

Figure 2. Ectopic expression of Lmd and Mef2 reveals differential regulatory influence on target gene expression. Left hand panels:
Colorimetric in situ hybridization (black and white images). (A–I) In situ hybridization of wild-type embryos with probes specific for (A) bTub60D, (B)
act57B, (C) CG5080, (D) blow, (E) sug, (F) sns, (G) CG14687, (H) CG9416 and (I) gol, detecting specific expression in the mesoderm. No specific staining
was observed in the ectoderm (red brackets). An engrailed-Gal4 driver line was used to ectopically express (A9–I9) UAS-Lmd, (A0–I0) UAS-Mef2-HA or
(A90–I90) both UAS-Mef2-HA and UAS-Lmd in ectodermal stripes. Lmd and Mef2 show differential ability to activate ectopic target gene expression
(red arrows). Expression of 8 of 9 genes can be induced in the ectoderm when both factors are present (A90–H90), while gol expression was never
observed in the ectoderm (I90). Right hand panels: Double fluorescent in situ hybridization of the same genotypes with probes specific for the
corresponding genes (green) and wingless (red). A high magnification of the ectodermal wingless staining reveals adjacent ectopic staining in the
engrailed domain (white arrows), not detected in wild-type embryos. Full embryos are shown in Figure S2.
doi:10.1371/journal.pgen.1001014.g002

Lmd Is a Tissue-Specific Modulator of Mef2
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data to that of Lmd revealed that a large (79.7%) and highly

significant (p,2.2610216, Fisher’s exact test) proportion of Lmd

direct target genes are also directly regulated by Mef2 (Figure 1D).

Thus the majority of the regulatory input provided by Lmd is

mediated in conjunction with Mef2, which is not the case in the

other direction. Mef2 regulates many target genes independently

of Lmd, reflecting its broader expression and role in muscle

development (Table S4).

To assess the regulation of Lmd direct target genes we first

examined their transcriptional response to loss of regulatory input

from either Lmd or Mef2. 57 of the 74 Lmd direct target genes are

differentially expressed in lmd and/or Mef2 mutant embryos

compared to stage-matched wild-type controls (visualized by K-

means clustering in Figure 1E). This analysis revealed an

unanticipated diversity in transcriptional responses, despite the

fact that the majority of genes have an enhancer bound by both

transcription factors. One group of genes (cluster I, Figure 1E) is

downregulated in both lmd and Mef2 mutants compared to the

stage matched wild-type embryos. This group contains many

genes coding for structural muscle proteins, including Act57B,

Act87E and betaTub60D (Figure 1E). As Mef2 expression is also

strongly reduced in lmd mutant embryos [3], these target genes

either depend on input from Mef2 alone or on a combination of

Mef2- and Lmd-mediated activation. Other genes are affected

differently in the two mutants. Several are upregulated in lmd

mutants (e.g. CG9416 and CG30035), but are either unchanged or

have slightly decreased or increased levels in Mef2 mutants (cluster

II, Figure 1E). In contrast, a third cluster of genes, including blow,

goliath (gol) and tramtrack (ttk), have decreased expression at the late

time points in lmd mutants and increased expression in Mef2

mutants, suggesting activation by Lmd and repression by Mef2

(Figure 1E). We note that, although we have used several methods

to assess the role of Mef2 in regulating the expression of these

genes (see below), we have not found any evidence that Mef2 may

act as a transcriptional repressor. Therefore the apparent de-

repression of these genes is most likely due to a secondary effect

within the Mef2 mutant embryos. Despite this, the vast majority of

genes known to be genetically downstream of Mef2 had

significantly reduced expression, indicating that the expression

profiling data accurately recapitulates what is expected from

genetic studies [11].

Different combinations of Lmd and Mef2 trigger
divergent gene expression

As a complementary approach to assess the regulatory inputs of

Lmd and Mef2, we asked if these transcription factors are

sufficient, either alone or in combination, to induce target gene

expression in vivo. The transcription factors were ectopically

expressed in parasegmental stripes under the control of the

engrailed-Gal4 driver [22] (Figure 2). Lmd has been reported to

activate Mef2 expression in the CNS but not in the remainder of

the ectoderm under these conditions [16], allowing us to assess the

contribution of the two transcription factors independently. As the

transcription factors are acting outside of their normal cellular

context, this is a stringent assay to investigate regulatory

connections.

The transcriptional response of shared target genes to ectopic

TF expression was examined using colorimetric in situ hybridiza-

tion (ISH) (Figure 2), and confirmed by double fluorescent ISH

(Figure 2, Figure S2). This analysis revealed a range of regulatory

responses. We examined three genes that showed reduced

expression in both lmd and Mef2 mutant embryos (Figure 1E,

cluster I). betaTub60D and Act57B are ectopically induced by Mef2

alone, but not by Lmd alone (Figure 2A–2B0). As expected, co-

expression of both transcription factors also led to ectopic

expression (Figure 2A90, 2B90). A third gene, CG5080, was neither

ectopically activated by Lmd nor Mef2 alone (Figure 2C9–2C0).

However, when both transcription factors were co-expressed, their

combined activity was sufficient to drive ectopic expression,

revealing a synergistic regulation of this target gene (Figure 2C90).

Ubiquitous over-expression of Mef2 using a daughterless-Gal4 driver

was previously reported to ectopically activate CG5080 in the head

mesoderm [13]. The fact that Mef2 is sufficient to regulate

CG5080 expression in this context, but not in ectodermal stripes,

strongly suggests that Mef2 requires additional tissue-specific co-

activators also in other tissues of the embryo.

The expression levels of blow and sug were also strongly reduced

in lmd mutants, and weakly reduced in Mef2 mutants (Figure 1E,

cluster III). Similar to CG5080, neither expression of lmd nor Mef2

alone was sufficient to activate expression of blow, sug or sns, yet

ectopic activation was detected upon co-expression of both

transcription factors (Figure 2D–2F90). Although Mef2 is not

required for sns expression [23], our data demonstrates that Mef2,

in combination with Lmd, is sufficient to activate the expression of

sns in ectodermal cells. CG14687 showed the opposite response to

bTub60D and act57B, in that it could be activated by Lmd alone,

but not by Mef2 (Figure 2G9–2G0). These data correlate with the

expression profiling data, showing a strong requirement of lmd

activity for CG14687 expression (Figure 1E, cluster IV). Although

Figure 3. ChIP–bound regions function as enhancer elements
capable of activating mesodermal expression in vivo. (A–D)
Schematic overviews of the tiling array probes covering the (A) blow, (B)
CG5080, (C) gol and (D) ttk loci. Regions significantly enriched in Lmd
ChIPs (blue) and Mef2 (green) were selected and intergenic sequences
(black bars) assayed for regulatory activity in vivo. (A9–D0) Immuno-
histochemistry using an anti-GFP antibody to detect reporter gene
expression. All four enriched sequences were able to specifically
activate GFP expression in transgenic embryos in the mesoderm as
early as (A9–D9) stage 11, with persistent GFP-presence at (A0–D0) stage
13.
doi:10.1371/journal.pgen.1001014.g003

Lmd Is a Tissue-Specific Modulator of Mef2
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in situ hybridization is not quantitative, the fluorescent ISH

suggests a higher level of expression when both Lmd and Mef2 are

co-expressed (Figure 2G, fluorescent panels, Figure S2).

The gene CG9416 revealed yet another mode of regulatory

integration: Mef2 activated ectopic expression of CG9416 in the

absence of Lmd, but this effect appears to be attenuated when

both transcription factors were co-expressed (Figure 2H–2H90,

fluorescent panel, Figure S2), indicating opposing regulatory

inputs from Mef2 (activation) and Lmd (inhibition). The repressive

effect of Lmd is consistent with the dramatic increase in CG9416

expression in lmd mutant embryos (Figure 1E). Finally, the gol gene

represents the only example tested where even the combination of

both Mef2 and Lmd was not sufficient to induce ectopic expression

(Figure 2I90).

In summary, although all genes investigated are directly co-

regulated by Lmd and Mef2, ectopically supplying one or both

factors revealed considerable flexibility in how information is

integrated at each individual locus. In higher eukaryotes, many

genes have multiple regulatory elements, which collectively

contribute to the complete expression pattern of a gene. To

investigate whether the different transcriptional responses to Lmd

and Mef2 activity are reflected by the integration of inputs at

single enhancers or by the combined activity of multiple cis-

regulatory elements, we next studied regulatory integration at the

CRM level.

Delimiting enhancer regions co-bound by Lmd and Mef2
Individual enhancer regions in Drosophila commonly range from

0.5 to 1 kb in size. The Lmd-bound DNA fragments immuno-

precipitated in our ChIP experiments were in a similar size range,

however the genomic tiling arrays used in this study limited our

resolution to overlapping 3 kb sequences. To achieve higher

resolution, we used quantitative real-time PCR to assay the

enrichment of shorter sequences within individual 3 kb-bound

regions using both the Lmd and Mef2 chromatin immunoprecip-

itates. In all eight cases examined, the highest enrichment of Mef2

and Lmd binding coincided within a common 0.1 to 1 kb region

(data not shown), suggesting that the transcription factors co-

occupy a single enhancer element. In addition, each refined

sequence was found to contain at least one Mef2 consensus

binding site conserved in Drosophila pseudoobscura (data not shown).

We tested the ability of the refined Lmd-Mef2-bound regions to

regulate expression in vivo by generating transgenic reporter lines.

All tested enhancer regions specifically activated GFP-reporter

expression in the developing muscle (Figure 3 and Figure S1). At

stage 11, when both lmd and Mef2 are co-expressed in fusion-

competent myoblasts, the enhancers of blow (Figure 3A9) and gol

(Figure 3C9) activated GFP-expression broadly in the visceral and

somatic mesoderm. At the same stages, the CG5080 (Figure 3B9)

and tramtrack enhancers (ttk, Figure 3D9) induced GFP-expression

in a subset of myoblasts. At stage 13, when myoblast fusion is in

progress, all four enhancers showed almost identical expression

patterns throughout the somatic muscle (Figure 3A0–3D0). We also

re-examined the spatio-temporal activity of the previously

characterized Act57B [20], betaTub60D [19] and CG14687 [11]

enhancers (Table S2 and Figure S1) and included them in the set

of combinatorially-bound enhancers investigated in the remainder

of this study.

Lmd and Mef2 are differentially required for enhancer
activity in vivo

We used the in vivo enhancer-reporter lines to study the

integration of Lmd and Mef2 regulatory input by comparing

CRM activity in wild-type and mutant embryos. Six transgenic

reporter lines (Figure 3, Table S2) were placed in the genetic

background of lmd1 and Mef222.21, two characterized loss-of-

function alleles for these transcription factors [2,3] (Figure 4,

Figure S3).

The expression of the betaTub60D gene is controlled by several

independent cis-regulatory modules [19,24,25]. An upstream

enhancer, 59 to the betaTub60D gene, requires Mef2 activity for

its full activation [24]. In contrast, the intronic betaTub60D

enhancer under study here, although co-occupied by Mef2 and

Lmd, appeared unaffected in Mef2 mutant embryos while having

strongly reduced expression in lmd mutants (Figure 4A9 and 4A0).

The strong reduction in the expression of the betaTub60D gene in

Mef2 and lmd mutant embryos detected by expression profiling

(Figure 1E) therefore reflects the combined activity of at least two

enhancers: one strongly responsive to Mef2 levels and a second

one depending on Lmd (but not Mef2) for activation.

The Act57B enhancer drives GFP-expression in somatic and

visceral muscles in wild-type embryos at stage 13 (Figure 4B). This

expression was completely lost in lmd mutant embryos (Figure 4B9),

while Mef2 mutant embryos showed reduced, but detectable

reporter expression, as observed previously [20] (Figure 4B0). In

contrast, expression driven by the CG5080 enhancer was reduced

in lmd (Figure 4C and 4C9) and to a lesser extent in Mef2 mutant

embryos (Figure 4C and 4C0). Similarly, reporter expression in the

somatic muscle driven by the blow enhancer was lost in both lmd

and Mef2 mutant embryos (Figure 4D–4D0). Enhancer expression

in the hindgut visceral muscle persisted in Mef2 mutant embryos

Figure 4. Shared enhancers have differential requirements for
Mef2 and Lmd in vivo. In situ hybridization of GFP-reporter mRNA in
(A–F) wt embryos, (A9–F9) homozygous lmd1 mutant embryos and (A0–
F0) homozygous Mef2P544 mutant embryos. The intronic bTub60D
enhancer requires Lmd enhancer activity (A9), but remains active in
Mef2 mutants (A0). Similarly, activity of the act57B enhancer is strongly
dependent on Lmd (B9), but only mildly reduced in Mef2 mutants (B0).
CG5080 reporter expression is clearly reduced in both background
(C9,C0), while activity of the blow enhancer is not detectable in the
absence of either Lmd or Mef2 (D9,D0). The CG14687 enhancer show
different requirements in different muscle types: while expression in
somatic muscles requires Lmd (E9), expression in the visceral muscle is
not affected in neither Lmd nor Mef2 mutants (E0). The gol enhancer
requires Lmd activity (F9) but is active normally in Mef2 mutants (F0).
doi:10.1371/journal.pgen.1001014.g004
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(Figure 4D0), indicating additional tissue-specific input at this

enhancer.

The CG14687 enhancer is activated in somatic and visceral

muscle in wild-type embryos (Figure 4E). Expression in somatic

muscle required lmd expression (Figure 4E9), but is unaffected in

Mef2 mutant embryos (Figure 4E0). Interestingly, expression in the

visceral muscle was independent of both lmd and Mef2 expression

(Figure 4E9 and 4E0), implicating additional tissue-specific factors

in the activation of this enhancer. Both the homeodomain

transcription factor bagpipe (bap) and the fork head domain

transcription factor biniou are recruited to this enhancer in vivo

[26] and most likely activate gene expression in this tissue. Finally,

the gol enhancer required lmd activity (Figure 4F and 4F9), but

robustly activated gene expression in the absence of Mef2

(Figure 4F0).

In summary, all six muscle enhancers examined showed

reduced activity in one or both mutant conditions, demonstrating

that the in vivo occupancy of these modules by Mef2 and Lmd has

regulatory function. lmd mutants generally displayed a stronger

reduction in enhancer activity compared to Mef2 mutant embryos.

As Lmd is required to maintain Mef2 expression, lmd mutant

embryos are effectively double mutants for both transcription

factors. This is reflected by the stronger reduction in enhancer

activity in this genetic background and underscores the combina-

torial regulation of these enhancers by both transcription factors.

Cooperative, additive, and repressive effects of Lmd and
Mef2 on CRM activity

We next assessed if the combined regulatory inputs of Lmd and

Mef2 on these enhancers are integrated in an additive, cooperative

or repressive manner. Drosophila S2 cells, which express neither

endogenous lmd nor Mef2 [27], were used to study the regulatory

logic of the different enhancers in vitro. Eight regulatory regions

that are co-bound by Lmd and Mef2 in vivo were placed upstream

of a minimal Hsp70 promoter driving a firefly luciferase reporter

and co-expressed with increasing amounts of Lmd and/or Mef2

expression vectors.

Co-transfection of either Lmd or Mef2 alone was sufficient to

activate the CG14687, CG5080 and gol enhancers (Figure 5A–5C),

while co-expression of both regulators led to an approximately

additive level of reporter activity. For example, transfection of

10 ng of the Lmd expression vector led to a 3.6 fold increase in the

luciferase activity driven by the CG14687 enhancer, while 1 ng of

the Mef2 expression vector led to a 2.4 fold increase in expression.

Co-expression of both factors resulted in a 5 fold increase in

enhancer activity (Figure 5A).

In contrast, Lmd and Mef2 acted cooperatively to regulate the

ttk, blow and betaTub60D enhancers (Figure 5D–5F). For example,

expression of either Lmd or Mef2 alone yielded only low levels of

reporter gene activity via the blow enhancer (Figure 5E). However,

co-expression of both transcription factors resulted in much higher

levels of activity, indicating a cooperative interaction between Lmd

and Mef2 in the context of this enhancer.

Conversely, the CG9416 enhancer is readily activated by Mef2,

but cannot be induced by Lmd (Figure 5G). Instead, co-expression

of both transcription factors revealed that Lmd counteracts the

positive input of Mef2 to this module, essentially blocking

activation by Mef2 in a dose dependent manner. This repressive

activity, in combination with the in vivo occupancy of Lmd on this

enhancer (Figure S1), the increase in CG9416 gene expression in

lmd mutant embryos (Figure 1E) and the ability of Lmd to

attenuate the ectopic activation of CG9416 by Mef2 (Figure 2H,

fluorescent panels), provides strong evidence that Lmd can provide

direct inhibitory input to enhancer activity. Similar to CG9416, the

expression of endogenous CG30035 was de-repressed in lmd

mutant embryos (Figure 1E). The Lmd-Mef2 bound enhancer

region close to the CG30035 locus displayed a similar dose-

dependent inhibitory effect of Lmd on Mef2-mediated transcrip-

tional activation (Figure 5H).

Figure 5. Different modes of co-regulation by Lmd and Mef2 in vitro. Minimal regions required for Firefly luciferase reporter activity in vitro
were identified in the (A) CG14687, (B) CG5080, (C) gol, (D) ttk, (E) blow, (F) bTub60D, (G) CG9416 and (H) CG30035 enhancers which were cloned and
assayed for activity in vitro. Expression plasmids encoding for Lmd or Mef2 proteins were co-transfected with the reporter plasmids and a Renilla
normalization control at different concentrations (1 ng/10 ng) alone or in combination (x-axis). Dual-luciferase readout was normalized to reporter-
only controls and fold changes are indicated as mean +/2 1 standard error (at least three biological replicates, each done in triplicate). Informative
combinations of transcription factor transfections are indicated (brackets). (A–C) Both Lmd and Mef2 can activate the CG14687, CG5080 and gol
reporters. Co-transfection of both transcription factors leads to roughly additive fold changes (brackets). (D–F) Presence of both Lmd and Mef2 yields
higher activity from the ttk, blow and Tub60D enhancers than expected by summing the individual fold changes (brackets), indicating cooperative
regulation. (G, H) The CG9416 and CG30035 reporters can readily be activated by Mef2, but show reduced activity upon co-transfection with Lmd,
revealing its inhibitory influence in this context. The regulatory interactions are highly significant (unpaired, two-tailed student9s t-test, (*) p,0.05,
(**) p,0.01, (***) p,0.001).
doi:10.1371/journal.pgen.1001014.g005

Lmd Is a Tissue-Specific Modulator of Mef2

PLoS Genetics | www.plosgenetics.org 7 July 2010 | Volume 6 | Issue 7 | e1001014



Collectively, our results demonstrate that Lmd and Mef2 can

induce different regulatory responses depending on the context

of the enhancer. This may reflect differences in the relative

positioning of Mef2 and Lmd binding to each other or the

recruitment of additional unknown factors. As there is no

consensus binding site known for Lmd, we used de novo motif

discovery [28] to identify possible Lmd binding motifs. Since we

observed that Lmd and Mef2 are commonly bound within close

proximity to each other, we reduced the search space to a

400 bp window around each predicted Mef2 site within the

group of 57 co-bound regions. This analysis did not reveal any

candidate motifs matching the only known site occupied by

Lmd [3], precluding further analysis of individual Lmd binding

sites.

Discussion

Metazoan cells must activate and inactivate the expression of

large cohorts of genes in a precise spatio-temporal manner to

progress through development. To achieve a molecular under-

standing of the regulatory networks controlling cellular decision-

making, it is essential to understand how inputs from different

regulators are being integrated to give rise to defined patterns of

gene expression. In this study, we approached this challenge from

a genomic perspective by examining the combinatorial input of

two key myogenic regulators, Mef2 and Lmd. ChIP-on-chip

experiments and expression profiling of loss-of-function mutants

were used to systematically identify the direct target genes of the

zinc-finger protein Lmd, an important regulator of myogenesis, for

which only a single target gene had previously been identified.

Integrating these data with data previously obtained for Mef2

revealed that Lmd regulates the majority of its targets in a

combinatorial manner together with Mef2. In a few cases these

two transcription factors target the same locus through different

regulatory regions (e.g. ladybird-early, PAK-kinase or short stop),

however in the majority of cases Lmd- and Mef2-binding could be

mapped to the same genomic location (Table S1, Table S4).

Examining the contribution of both Lmd and Mef2 to regulatory

activity, at both the enhancer and gene level, revealed a number of

important insights into the contribution of both transcription

factors to the myogenic developmental program.

Combinatorial binding to enhancers leads to diverse
regulatory responses

Genes that are co-regulated by the same two (or more)

transcription factors are generally expected to have very similar

spatio-temporal expression profiles. In fact, this assumption has

been used by many studies to computationally predict the location

of enhancer elements by searching for common TF binding motifs

in the vicinity of clusters of co-expressed genes (or synexpression

groups) [29–32]. It was therefore surprising when our comparison

of experimentally-identified enhancer regions bound by the same

two transcription factors uncovered a diverse range of regulatory

responses. The 59 genes with enhancer elements co-bound by

Lmd and Mef2 at the same stages of development are regulated

either in a cooperative, additive or repressive manner depending

on the individual enhancers. These data suggest that enhancer

regions integrate regulatory inputs more flexibly than previously

anticipated. By focusing on individual enhancer elements, we

evaluated how Lmd and Mef2 influence regulatory activity in

different contexts both in vivo and in vitro. Combining a number of

complementary approaches allowed us to identify three different

modes of TF integration at developmental enhancers leading to

additive, cooperative or repressive regulation.

Lmd and Mef2 operate under additive, cooperative, and
repressive regulatory logic

Mef2 and Lmd provide an additive positive input to the

regulation of the Act57B locus. Ectopic Mef2 expression in the

ectoderm is sufficient to induce Act57B expression, while providing

Lmd alone is not (Figure 2B–2B0). Conversely, enhancer-reporter

gene expression is completely lost in lmd mutant embryos and only

slightly reduced in Mef2 loss-of-function mutant embryos

(Figure 4B–4B0). Together, these data reveal a role for both

transcription factors at this enhancer. Previous studies demon-

strated that the initiation of Act57B expression at stage 11 requires

Mef2 for its activation. Yet, artificially increasing Mef2 levels at

this stage does not lead to premature activation of this locus [13].

Our findings offer an explanation for this result: at this stage of

development, combined input from Lmd and Mef2 is required to

drive gene expression, while the presence of Mef2 alone is not

sufficient to activate transcription. At later stages, when lmd

expression is lost, Mef2 concentration has increased sufficiently to

maintain Act57B expression. Conversely, the CG14687 locus can

be activated by ectopic Lmd in the ectoderm, but not by Mef2

alone (Figure 2G9–2G90) and requires lmd, but not Mef2, for its

expression in the somatic muscle (Figure 4E9–4E0). Combined

ectopic expression of the two TFs, on the other hand, leads to a

marked increase of reporter signal, again indicating combinatorial

positive regulation by both TFs (Figure 2G, fluorescent panels).

These findings are supported by the ability of both Lmd and Mef2

to separately activate reporter gene expression in vitro and to yield

additive reporter activity in combination (Figure 5A).

The blow enhancer shows a different mode of regulation and is

synergistically activated by both factors. While neither Mef2 nor

Lmd alone are sufficient to activate ectopic gene expression in vivo,

supplying both factors simultaneously leads to robust target gene

expression (Figure 2D–2D90). Assaying for reporter gene activation

in the two mutant backgrounds yields a complementary result;

Mef2 and Lmd activity is required to activate transcription in the

somatic mesoderm via the blow enhancer (Figure 4D–4D0).

Moreover, the in vitro reporter assay reveals a positive interaction

between the two proteins (Figure 5E), indicating that the blow

enhancer functions as a cooperative switch.

Analysis of the CG9416 enhancer revealed an antagonistic

interaction between Lmd and Mef2. While ectopic expression of

Mef2 leads to enhancer activation (Figure 2H–2H0), simultaneous

expression of Lmd markedly attenuates the transcriptional output

from this locus (Figure 2H, fluorescent panels, Figure S2H). This

effect can be reproduced in vitro: while providing Mef2 alone leads

to robust activation of the CG9416 enhancer, Lmd is not able to

activate gene expression (Figure 5G). Instead, Lmd antagonizes

the activating input of Mef2 in a concentration-dependent

manner. To our knowledge, this is the first example of direct

negative regulation by Lmd. To identify additional examples of a

repressive role for Lmd, we re-examined the expression profiles of

lmd and Mef2 mutant embryos (Figure 1E). CG9416 is markedly

upregulated in lmd mutants, but shows reduced expression in

embryos lacking Mef2 (Figure 1E). We selected another direct

target gene with similar expression changes in these genetic

backgrounds, CG30035 (Figure 1E) and after determining the

limits of the ChIP-enriched region we assayed its ability to drive

reporter gene expression in vitro. Similar to the CG9416 enhancer,

the CG30035 enhancer is robustly activated by Mef2, and this

activation is inhibited by Lmd in a dose-dependent manner

(Figure 5H). This provides a second, independent example for

Lmd-mediated repression of gene expression.

In summary, starting from a genomic perspective, we have

identified a large cohort of genes co-regulated by a pair of tissue-
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specific transcription factors. Lmd modulates the activity of Mef2

at different enhancers in a context-dependent fashion, allowing for

additive, cooperative or antagonistic interactions in the same cells.

In this way, the timing and expression levels of Mef2 target genes

can be further refined, as exemplified by the Act57B locus, which

may owe its early activation during embryonic development to the

combined activity of both proteins. Lmd shows homology with the

Gli superfamily of transcription factors [3], which can act both as

transcriptional activators and repressors, depending on proteolytic

cleavage regulated by the hedgehog signaling pathway. To date,

there is no evidence for proteolytic cleavage of Lmd and an

irreversible conversion of Lmd from a transcriptional activator to

an inhibitor is difficult to reconcile with our observation that Lmd

can perform both roles at different loci at the same time, in the

same tissue. For the same reason, we also consider it unlikely that

Lmd interferes with transcriptional activation simply by binding to

Mef2 and sequestering the protein in the cytoplasm. Instead, we

propose that Lmd exerts a dominant inhibitory influence over a

transcriptional activator, either by locally quenching Mef2’s

activity or through direct repression of the locus, similar to

transcriptional repressors described in other developmental

networks [33,34]. Our results provide a molecular understanding

for the genetic observation that restoring Mef2 activity in lmd

mutant embryos is not sufficient to rescue muscle differentiation

[4]. Both transcription factors are required to provide different

regulatory inputs to a large number of co-regulated target genes

during myogenesis. Their associated enhancers have revealed

considerable flexibility in integrating regulatory inputs from these

two TFs at individual cis-regulatory regions.

Materials and Methods

Chromatin immunoprecipitation and DNA amplification
Embryo collections and chromatin immunoprecipitations were

performed as described previously [11,35]. Two antisera were

raised against the amino terminus of Lmd and purified from E. coli

by poly-His tag affinity purification. Four independent staged wild-

type embryo populations were collected at 6–8 and 8–10 hrs after

egg-laying and fixed with formaldehyde. For each time point,

chromatin from all four populations was precipitated with both

antisera as well as the respective preimmunesera, leading to a total

of 16 reactions (8 mock, 8 anti-Lmd) per time point. DNA

amplification, labeling and hybridizations were performed as

described previously [11,35] and dye swaps were included to

account for possible dye biases.

Expression profiling of lmd loss-of-function mutants
The assayed lmd1 [3] line was outcrossed to wild-type flies

(Canton S) twice to remove any spurious mutants. Six one-hour

embryo collections were assayed in an expression profiling

timecourse (between 5 and 11 hours after egg-laying). At each

time point, 4 independent populations of lmd mutant and stage-

matched Canton S embryos were collected and aged. Homozy-

gous mutants were selected with an automated embryo sorter

[16,36]. The staging of all collections was verified by formaldehyde

fixation of a small sample to ensure that wild-type and mutant

embryos were tightly stage matched. Total RNA was extracted

using Trizol (Invitrogen, Carlsbad, US), amplified, reverse-

transcribed and labeled as described previously [11].

Microarray data analysis
For expression profiling analysis, mutant and stage-matched

control cDNA was hybridized directly against each other. Raw

data was normalized using print-tip LOESS. Differentially

expressed genes were identified using Significance analysis of

microarrays (SAM) [37]. Genes with a q,1% and a fold change

.1.6 (log2.0.7 or ,20.7) were considered to be differentially

regulated (Table S5). Immunoprecipitated DNA from Lmd-

specific or mock precipitations was hybridized against a total

genomic reference DNA sample. Sequences significantly enriched

by the anti-Lmd-antibodies were identified by comparing rank

products [38] and the false-discovery rate was estimated. Only

fragments with an FDR ,2% and a fold enrichment .1.5

(log2 .0.58 or ,20.58) were considered to be significantly

enriched (Table S1).

Automatic assignment of ChIP-enriched fragments to target

genes was performed as described previously [11]. The majority of

regions co-occupied by Mef2 and Lmd was independently

assigned to the same target genes using either Mef2-mutant or

lmd-mutant expression profiling data. For a small number of

regions, data from this study indicated a more likely target gene

than had been assigned previously with Mef2 data alone [11]; in

these cases, we chose the updated target prediction for further

analysis. A complete list of ChIP-enriched regions, expression

profiling results and target assignments are available in Tables S1,

S3, S4, S5. All raw microarray data is available from ArrayExpress

(Lmd ChIP (E-TABM-895) and lmd expression profiling (E-

TABM-894). Lmd- and/or Mef2-bound regions and mutant

expression data can be visualized at http://furlonglab.embl.

de/data/.

Generation of transgenic reporter strains
Fragments within the following coordinates (based on BDGP

genome release 5) were cloned into the pH-stinger (AF242365)

vector for germline transformation [39]: chr2R:16831306-

16831372 (actin57B), chr2R:20197035-20197429 (betaTub60D),

chr3R:6619371-6620063 (CG14687), chr3R:27529661-27530409

(ttk), chr2R:3472616-3473387 (blow), chr3R:27538572-27539618

(ttk), chr2R:8813219-8814579 (sug), chr2R:20966587-20969610

(gol). For all constructs at least two independent transgenic lines

were obtained and assayed. The UAS-Mef2 line used in this study

has been described previously [11]. The UAS-lmd line was

previously referred to as UAS-gfl [16].

Histological techniques
Double fluorescent in situ hybridizations were done as described

previously [16]. To minimize experimental differences, the

embryo fixations and the in situ hybridizations were done in

parallel and the confocal imaging was performed with identical

laser and gain settings for each gene in the four genetic

backgrounds. The following ESTs were used to generate

digoxigenin or fluorescein-labeled probes: RE53159 (betaTub60D),

LD04994 (act57B), LD34147 (CG5080), LP02193 (blow), LD36528

(sug), RE74890 (CG14687), RE28322 (CG9416), GH20973 (gol),

AT15089 (twi) and RE02607 (wg). The full-length sns cDNA was a

kind gift from S. Abmayr. GFP expression in transgenic animals

was detected by immunohistochemistry with rabbit a-GFP

antibody (Torrey Pines Biolabs) at a concentration of 1:500.

Biotinylated secondary antibodies were used in combination with

the Vector Elite ABC kit (Vector Laboratories).

Luciferase reporter assays
Drosophila S2 cells were transiently transfected using Cellfectin

(Invitrogen). Lmd and Mef2 were expressed from full-length ESTs

(LD47926 and GH24154, respectively) in pAc5.1 vector (Invitro-

gen). The enhancers (coordinates given above) were assayed in a

pGL3 luciferase reporter vector (Promega) with an Hsp70 minimal

promoter and the luciferase activity was normalized to Renilla
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standard (Promega). The total amount of transfected DNA was

kept constant by supplementing empty pAc5.1 vector. The

measurements were performed according to the supplier’s

recommendations (Dual-Luciferase Reporter Assay, Promega)

with a PerkinElmer 1420 Luminescence Counter.

Supporting Information

Figure S1 Previously identified enhancer regions are co-

occupied by Lmd and Mef2 and reproduce target gene expression

in vivo. (A–D) Schematic overviews of the tiling array probes

covering the (A) act57B, (B) Tub60D, (C) CG9416, and (D)

CG14687 loci. These previously described regulatory regions

(black bars) show significant binding of Lmd (blue) and Mef2

(green). (A0–D0) Immuno-histochemistry using an anti-GFP

antibody to detect reporter gene expression. All four enriched

sequences are able to specifically activate GFP-reporter expression

in transgenic embryos in the mesoderm as early as (A9–D9) stage

11, with persistent GFP-presence at (A0–D0) stage 13.

Found at: doi:10.1371/journal.pgen.1001014.s001 (2.79 MB TIF)

Figure S2 Ectopic expression of Lmd and Mef2 reveals

differential regulatory input on target gene expression. Double

fluorescent in situ hybridisation (FISH) of the gene of interest

(green) and endogenous wg gene (red). Ectopic expression (using

the engrailed GAL4 driver) should be visible juxtaposed to the wg

stripe. The wg expression was therefore used to ensure that the

confocal imaging was performed with identical laser and gain

settings for each gene within the four genetic backgrounds. (A–I)

FISH of wild-type embryos with probes specific for (A) bTub60D,

(B) act57B, (C) CG5080, (D) blow, (E) sug, (F) sns, (G) CG14687, (H)

CG9416, and (I) gol, detecting specific expression in the mesoderm.

No specific staining was observed in the ectoderm (white brackets).

An engrailed-Gal4 driver line was used to ectopically express

(A9–I9) UAS-Lmd, (A0–I0) UAS-Mef2-HA or (A0–I0) both UAS-

Mef2-HA and UAS-Lmd in ectodermal stripes. Lmd and Mef2

show differential ability to activate ectopic target gene expression

(white brackets). Note: The area indicated by the white brackets

highlights the ectopic expression.

Found at: doi:10.1371/journal.pgen.1001014.s002 (9.37 MB TIF)

Figure S3 Enhancer activity in lmd and Mef2 loss-of-function

mutant embryos. In situ hybridisations described in Figure 4 were

performed by double-staining of GFP (green, first and third

column, indicating specific reporter activity) and either endoge-

nous twist mRNA (red, in lmd mutants) or lacZ mRNA expressed

from a balancer (red, in Mef2 mutants) to identify homozygous

mutant embryos. Twist expression persists longer in lmd mutants

(C9. G9, K9, O9, S9, W9) than in wt embryos (A9, E9, I9, M9, Q9,

U9). LacZ expression is associated only with heterozygous,

balancer containing embryos (B9, F9, J9, N9, R9, T9, X9) (or

embryos carrying two balancers).

Found at: doi:10.1371/journal.pgen.1001014.s003 (4.22 MB TIF)

Table S1 ChIP-on-chip enriched fragments.

Found at: doi:10.1371/journal.pgen.1001014.s004 (0.08 MB

XLS)

Table S2 Overlap of ChIP data with previously characterised

enhancer regions.

Found at: doi:10.1371/journal.pgen.1001014.s005 (0.04 MB PDF)

Table S3 Lmd expression profiling timecourse.

Found at: doi:10.1371/journal.pgen.1001014.s006 (0.15 MB

XLS)

Table S4 Direct targets genes of Lmd and Mef2.

Found at: doi:10.1371/journal.pgen.1001014.s007 (0.04 MB

XLS)

Table S5 Expression profiling of Lmd direct target genes in Lmd

and Mef2 mutant embryos.

Found at: doi:10.1371/journal.pgen.1001014.s008 (0.05 MB

XLS)
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