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Abstract: The term “bulbar involvement” is employed in ALS to refer to deterioration of motor
neurons within the corticobulbar area of the brainstem, which results in speech and swallowing
dysfunctions. One of the primary symptoms is a deterioration of the voice. Early detection is crucial
for improving the quality of life and lifespan of ALS patients suffering from bulbar involvement.
The main objective, and the principal contribution, of this research, was to design a new method-
ology, based on the phonatory-subsystem and time-frequency characteristics for detecting bulbar
involvement automatically. This study focused on providing a set of 50 phonatory-subsystem and
time-frequency features to detect this deficiency in males and females through the utterance of the five
Spanish vowels. Multivariant Analysis of Variance was then used to select the statistically significant
features, and the most common supervised classifications models were analyzed. A set of statistically
significant features was obtained for males and females to capture this dysfunction. To date, the accu-
racy obtained (98.01% for females and 96.10% for males employing a random forest) outperformed
the models in the literature. Adding time-frequency features to more classical phonatory-subsystem
features increases the prediction capabilities of the machine-learning models for detecting bulbar
involvement. Studying men and women separately gives greater success. The proposed method can
be deployed in any kind of recording device (i.e., smartphone).

Keywords: ALS; bulbar involvement; voice; diagnosis; phonatory subsystem; time frequency; ma-
chine learning

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with an irregular
and asymmetric progression, characterized by a progressive loss of both upper and lower
motor neurons and that leads to muscular atrophy, paralysis and death, mainly from
respiratory failure. The life expectancy of patients with ALS is between 3 and 5 years from
the onset of symptoms.

ALS causes muscle weakness and movement, speech, eating and respiratory imped-
iments, leaving the patient reliant on caretakers and relatives and causing considerable
social costs. Currently, there is no cure for ALS, although early detection can lead to the use
of more appropriate therapies that may slow progress [1].

When the disease starts in the arms and legs, it is called spinal ALS (limb or spinal
onset; 80% of cases), and when it starts in the cranial nerve nuclei, it is called bulbar
ALS (bulbar onset; 20%). The bulbar muscle is responsible for speech and swallowing,
so patients with the later variant have a shorter life expectancy. However, dysarthria, or
slurred or difficult speech articulation, affects 80% of all ALS patients [2]. In bulbar ALS,
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these symptoms usually appear at the onset of the disease, while in spinal ALS, they appear
later. Early detection of bulbar involvement in those with ALS is crucial for better diagnosis
and prognosis, and could be the key to effectively slowing the development of the disease.

The authors in [3-5] demonstrated that the deterioration of the bulbar muscle affected
some phonatory-subsystem features. Among these were jitter, shimmer, harmonic-to-noise
ratio (HNR), pitch, formant trajectories, correlations of formants with articulation patterns,
fractal jitter, and Mel Frequency Cepstral Coefficients. Consequently, as suggested in
previous works [6-13], imperceptible changes in speech and voice can be detected through
objective measures.

Time-frequency representation (TFR), broadly applied to detecting several condi-
tions [14-18], has been recently used to detect pathological changes in voice signals [19].
TER enables the evolution of the periodicity and frequency components to be observed
over time, allowing the analysis of non-stationary signals, such as voice signals [20]. The
spectrogram is the most common TFER for the analysis of audio signals. This representa-
tion corresponds to Cohen’s class of time-frequency energy distributions in general. The
depiction of a spectrogram is not optimal in terms of resolution quality. There are Cohen
class representations that have greater resolution quality. They are all made by smoothing
the Wigner distribution, which has the finest resolution but the most detrimental interfer-
ence. The smoothing functions chosen strike a balance between resolution quality and the
elimination of detrimental interference terms.

The authors in [21] used TFR representations from the Cohen class for the onset
signal of the vocal fold to diagnose various phonation problems induced by pathological
alterations. To assess the voice signal, Cohen class TFRs were combined with a cone kernel
distribution to provide optimum smoothness across time. The authors demonstrated that
even minor pathogenic alterations in the vocal folds can be seen in TFR, allowing for
sensitive affection detection and diagnosis.

In ALS, voice and speech impairment can occur up to 3 years before a diagnosis [22],
and when the bulbar muscle function is damaged, voice and speech deteriorates signifi-
cantly as the disease advances [23]. Features obtained from Cohen class TFRs could aid in
the identification of bulbar involvement even earlier than human hearing can.

Centering attention on the subject at hand, R. Norel et al. [24] developed machine-
learning models that recognize the presence and severity of ALS based on a variety of
frequency, spectral, and voice quality characteristics. An et al. [25] employed Convolutional
Neural Networks to classify the intelligible speech of ALS patients compared to healthy
people. Finally, Gutz et al. [26] combined SVM and feature filtering techniques.

Based on previous works, and starting from our recent studies [6,18], our paper
suggests using phonatory-subsystem [6] and time-frequency [18] features jointly. This also
is our hypothesis and main contribution. These features, extracted from a portion of the
five Spanish vowels, could enhance the performance of the classification models for the
early detection of bulbar involvement, for which the main goals (and contributions) of this
research are:

1.  To design a new methodology for the automatic detection of bulbar involvement in
males and females based on phonatory-subsystem and time-frequency features.

2. To obtain a set of statistically significant features for diagnosing bulbar involvement
efficiently.

3. To analyze the performance of the most common supervised classification models to
improve the diagnosis of bulbar involvement.

2. Methods
2.1. Participants

Of the 65 participants selected for this study, 14 of those with ALS had been diagnosed
with bulbar involvement (11 females and 3 males; mean = 56.8 years, standard deviation =
12.3 years), 33 had ALS but had not been diagnosed with bulbar involvement (8 females
and 25 males; mean = 57.6 years, standard deviation = 12.0 years) and 18 were healthy
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individuals (9 females and 9 males; mean = 45.2 years, standard deviation = 12.2 years).
The main clinical records of the ALS participants are summarized in Table 1. It can be seen
that the sample is well age-balanced.

Table 1. ALS participants clinical records. Notation: Age (in years). ALSFR-R (Rating Scale-Revised):

scores (0-48) the severity of ALS; Bulbar: Bulbar involvement; NA: Data not available.

Age Sex ALSFR-R Bulbar Bulbar Onset Symptoms
37 F 37 NO No Symptoms
38 M 6 YES NA
39 M 43 NO No Symptoms
41 M 34 NO No Symptoms
41 M 34 NO No Symptoms
43 F 21 YES Dysphagia
44 F 19 NO No Symptoms
48 F 36 NO No Symptoms
48 F 29 YES Dysphagia
48 M 31 NO No Symptoms
48 M 45 NO No Symptoms
49 M NA NO No Symptoms
50 M 39 NO No Symptoms
52 M 43 NO No Symptoms
52 F 27 YES Dysphagia
52 M 33 NO No Symptoms
53 F 29 YES Dysphagia/Dysarthria
55 M 26 NO No Symptoms
55 M 24 NO No Symptoms
56 M 35 NO No Symptoms
56 M 27 NO No Symptoms
58 F 46 YES Dysarthria
58 M 28 YES NA
59 F 33 YES NA
60 M 46 YES NA
63 M 22 NO No Symptoms
63 M 42 NO No Symptoms
63 M NA NO No Symptoms
65 M 24 NO No Symptoms
66 F 41 NO No Symptoms
67 M NA NO No Symptoms
67 F 33 YES Dyspnoea
68 M NA NO No Symptoms
68 F 21 NO No Symptoms
69 M 37 NO No Symptoms
70 F 28 YES Dysphagia
70 F 17 NO No Symptoms
70 M 46 NO No Symptoms
70 M 27 NO No Symptoms
70 F 23 YES Dysphagia/Dysarthria
71 M 39 NO No Symptoms
71 F 32 YES Dysphagia
72 M 30 NO No Symptoms
72 F 38 NO No Symptoms
76 F 30 NO No Symptoms
81 M 36 NO No Symptoms
81 M 28 NO No Symptoms
84 F 30 YES NA
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The ALS patients’ voices were checked by a multidisciplinary clinical team and finally
selected by a neurologist for this study.

The control subjects were recruited through personal advertisements in the hospital
facilities by the researchers involved in this study. After contacting the volunteers, they
received an information sheet explaining the procedure and goal of the study as well as the
exclusion criteria. They were interviewed through a questionnaire and those who did not
report any voice issue or relevant previous condition were selected for the study.

The control subjects were recruited through personal advertisements conducted in the
hospital facilities by the researchers involved in this study. Most of them were companions
of ALS patients. After contacting them, control subjects received an information sheet
explaining the procedures and goals of the study as well as the exclusion criteria. Control
subjects were informed that the study focused on voice analysis to distinguish bulbar
involvement in ALS patients. They were interviewed through a questionnaire. Those who
did not report any voice issue or relevant previous condition were selected for the study.
When they were eligible and still willing to participate, they were invited to come to the
hospital room where the voice samples were registered.

2.2. Vowel Recording

There are five vowel segments in the Spanish phonological system (a, €, i, 0, u). These
were obtained and analyzed from each ALS patient, all of whom were Spanish speakers.

Under medium vocal loudness conditions, each participant uttered a sustained sample
of each Spanish vowel for 3—4 s. The recordings were made in a standard hospital room
using a laptop and a USB EMITA Streaming GXT 252 microphone calibrated for dBSPL.
It has a sensitivity of —35 dBSPL and a maximum sound pressure level of 135 dBSPL.
The participants sat on a chair with the microphone positioned approximately 30 centime-
ters from their mouths. The voice signals were recorded using Audacity, an open-source
application [27], at a sampling rate of 44.100 Hz and 32-bit quantization.

A visual inspection of the spectrograms of the voice signals was conducted similarly
to the procedure in [28] to analyze the signal type of the participants’ voices. Their results
suggested four voice types, of which only type 1 and type 2 were considered suitable for
perturbation analysis.

In this study, all the control subjects presented type 1 voice signals, which were
periodic without strong modulations or subharmonics. They showed multiple clearly and
nearly straight defined harmonics.

Among the 14 ALS patients with bulbar involvement, 10 patients presented type 1
voice signals, which were nearly periodic and showed some clearly defined harmonics.
However, a small amount of noise was observed in some voices (four of them). Four of
the ALS patients with bulbar involvement presented type 2 voice signals. These had some
strong modulations and subharmonics, yet still presented stable and periodic segments in
their voices.

Among the 33 ALS patients without bulbar involvement, 29 presented type 1 voice
signals, which were nearly periodic and showed multiple or at least some clearly de-
fined harmonics. Instead, four of them presented type 2 voice signals with some strong
modulations and subharmonics but still with stable and periodic segments.

It was observed that most of the information of the signal recordings was contained
in the range from 0 to 4000 Hz. Therefore, it was decided to decimate all the recording
signals sampled at 44.100 Hz using a decimated factor of 5. Signals re-sampled at 8820 Hz
were obtained.

Then, each re-sampled signal was standardized by means of the z-score technique.
The z-score measures the distance of a signal sample from the mean of the re-sampled
signal in terms of the standard deviation. The resulting standardized signal had mean 0
and standard deviation 1, and retained the shape properties of the re-sampled signal. For
the re-sampled signal with mean X and standard deviation S, the z-score of a signal sample
x was computed as:
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Finally, a segment of 150 ms of each re-sampled and standardized signal (x(t)) was
chosen for analysis by tacking the midpoint at the center of the phonation.

2.3. Phonatory-Subsystem Features

A total of 15 features from the phonatory subsystem defined in [6,13] were used. They
were computed by means of the standard methods used in Praat [29] and the setting details
used were the same as in [6]. These features were:

¢  Fundamental period cycle-to-cycle variation (Jitter(absolute), Equation (2)).

Jitter (absolute) = ——— Z |T; — T;_1], )

where N is the number of cycles and T; the duration of the ith cycle.
*  Relative period (Jitter(relative), Equation (3)).

o1 oy T = T

Jitter(relative) = N-1 L x 100 3)
N Zz 1 1
*  Relative perturbation (Jitter(rap), Equation (4)).
1 «N-1 i+1
1y T —
Jitter(rap) = N1 Lin1 1| il IR x 100 4)
N Zi:l i

*  Five-point period perturbation quotient (Jitter(ppq5), Equation (5)).

1 N-2 i+2
1yl T. 1
Jitter(ppq5) = N1 Liz2 1| i — 5 Lip Tnl

NZ{:1 1

*  Variability of the peak-to-peak amplitude (Shimmer(dB), Equation (6)).

(Az+1 >
l

where A, is the extracted peak-to-peak amplitude data and N is the number of ex-

tracted fundamental periods.
*  Relative amplitudes of consecutive periods (Shimmer(relative), Equation (7)).

x 100 ()

-1
Shimmer(dB) = % Z |20 x log

/ (6)

1 yvN-1
1yl A — A
Shimmer (relative) = =1 211:1 I\|] d i+l x 100 (7)
N izt Ai

¢  Three-, five- and eleven-point amplitude perturbation (Shimmer(apqP), Equation (8)).

1_¢«N-1 i+1
1y A —
Shimmer(apgP) = M= Lii |1 i~ (5 A x 100, (8)
N Lty Ai

where P = {3, 5 and 11}.
¢  Mean and standard deviation (HNR(mean) and HNR(SD)) of the harmonics-to-noise-
ratio (HNR, Equation (9)).

HNR =10 x logloli(i)

r(To)’ ©)
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where r(Ty) is the second local maximum of the normalized auto-correlation function
and T is the period of the signal.

*  Mean, standard deviation, minimum and maximum value of the pitch (pitch(mean),
pitch(SD), pitch(min) and pitch(max)). See [29] for more details about obtaining
the pitch.

2.4. Time-Frequency Features

The methods employed to obtain the time-frequency features were inspired by the
previous work, presented in [16,17], and implemented with MATLAB [30].

First, the Wigner distribution (WD) of the real signal x(t) of each voice segment was
obtained and convoluted with the Choi-Williams exponential function. The resulting
Choi-Williams distribution was normalized (CWDy (f, t)). For more details, see [18].

Then, the joint probability density distribution pD(f, t) (Equation (10)) was obtained.

pD(f,t) = my(t) - ms(f), (10)

where m;(t), instantaneous power, and m(f), spectral energy density, are the marginal
density functions of CWDy(f, t).

According to Equation (10), pD can be only computed as the product of the marginal
density functions m(t) and m(f) (of CWDy) if they are statistically independent. To
corroborate this assumption, we computed the joint time-frequency moments of the CWDy
((t"f™) fromn = 1and m = 1 ton = 15 and m = 15 where n and m are the frequency and
time moment orders) of the vowels of all the participants. All of these were 0 or very close
to 0. This confirmed the statistical independence of m;(t) and m(f).

pD(f,t) is completely free of interference and negative values. Thus, it is very useful
for extracting time-frequency features for classification.

Figure 1 shows the comparison of the pD(f,t) of the vowel “a” from three different
patients. Non-undesirable effects were observed in the pD(f,t). Figure la corresponds
to a patient without bulbar involvement. The pD(f,t) shows a voice rich in harmonics.
Figure 1b shows the pD(f, t) of the vowel “a” of a patient diagnosed with slight bulbar
involvement. Significant differences can be observed. Voice harmonics appear attenuated.
Figure 1c shows the pD(f,t) of an even more extreme case, diagnosed with severe bulbar
involvement. It can be seen that its voice harmonics appear even more attenuated.The
visual appraisal of these figures clearly shows the significant differences in the pD(f, 1)
between ALS patients with and without bulbar involvement.

From the pD(f,t), a set of 30 features per vowel was obtained. Twenty-one features
were computed by dividing the spectrum (0-4410 Hz) into 7 frequency bands. These were
1, 0-80 Hz; 2, 80-250 Hz; 3, 250-550 Hz; 4, 550-900 Hz; 5, 900-1500 Hz; 6, 1500-3000 Hz;
7,3000—4410 Hz. These bands were selected to capture the differences observed in the
time-frequency representations of the two groups of ALS patients by means of the visual
appraisal of pD(f,t) in the range of these frequency bands. These features were:

*  Average instantaneous spectral energy (E(t), Equation (11)) for each frequency band
(E_Bnl...E_Bn?7).

) = [ DU 047, a

where f1 and f, are the lower and upper frequencies of each band.
e Instantaneous frequency peak (f_Cres(t), Equation (12)) for each frequency band
(f_Cresl ...f_Cres?).

f2
f_Cres(t) = E(lt)argmaxf [lf—[f -pD(f,t) (12)
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e Average instantaneous frequency (f;(t), Equation (13)) of the spectrum for each
frequency band (f_Med1...f Med?7).

fa
ﬂdﬂ—ﬁiabmeMﬂW 13)

10 additional features were added:

* Instantaneous (H_t, Equation (14)) and spectral (H_f, Equation (15)) information
entropies. Furthermore, the joint Shannon entropy (H_tf, Equation (16)) was also used.

H_t= —/Zng(th(t)) -y ()dt, (14)

where myy(t) is the quantified instantaneous marginal obtained from the m;(t) and
meN(f) is the quantified frequency marginal obtained from the m¢(f).

H_f =~ [loga(mpn(f) - mpn (F)df (15)

Htf=Ht+H_f (16)
*  Spectral information (IE(f), Equation (17)), for each frequency band (IE_Bn1...1IE_Bn?7).

IE(f) = —loga(men(f)) (17)

e  Kurtosis (K, Equation (18)).

K = {m(t)"my(F)"), (18)

wheren =4 and m = 0.
e  Joint time-frequency moment ((t" f"), [18,31]) where n and m (n, m = 1, 7, 15) are the
frequency and time moment orders, i.e., the following time-frequency moments were

used: (t'f1), (7f7) and (t'°f1%).

2.5. Feature Selection

From a total of 65 participants, 18 were labelled C (healthy group), 14 were labelled B
(ALS patients with bulbar involvement) and 33 were labelled NB (ALS patients without
bulbar involvement). Furthermore, every ALS participant was labelled A.

Accordingly, four classification problems were analyzed, males and females being
studied separately, these being C vs. B, C vs. NB, B vs. NB and C vs. A.

The Multivariant Analysis of Variance (MANOVA), which uses the covariance between
the features in testing the statistical significance of the mean differences, was performed in
IBM SPSS Statistics [32] to select a subset of relevant features for use in constructing the
classification model for these four cases. This procedure made it possible to contrast the
null hypothesis in the features obtained.

To perform this statistical analysis, it was assumed that the features had a multivariable
normal distribution, and no assumptions were made regarding the homogeneity of the
variance or the correlation between the features. A significance value of p-value < 0.05
was considered sufficient to assume the existence of feature differences between the four
groups analyzed.
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%107

Figure 1. pD(f,t) of vowel “a” for 3 different patients with bulbar involvement. The marked
difference in the graphic representation of the time-frequency between the subjects can be clearly ap-
preciated. (a) Patient pD without bulbar involvement. (b) Patient pD with slight bulbar involvement.
(c) Patient pD with severe bulbar involvement.

2.6. Classification Models

Several supervised classification models were implemented in R [33] to measure the
classification performance. These models were fitted with the features selected. These were
standardized by subtracting the mean and centered at 0. Ten-fold cross-validation was
implemented in R using the caret package to draw suitable conclusions. This consisted of
dividing the dataset into 10 contiguous chunks, each containing approximately the same
number of samples, and then performing 10 training-testing experiments as follows: for
each chunki € {1,2,...,10}, the current chunk was retained for testing the model and
training was performed on the remaining 9 chunks, recording the results. The average
performance of the 10 training-testing experiments was finally provided.

The upsampling technique with replacement was applied to the training data by
making the group distributions equal to deal with the unbalanced dataset, which could
bias the classification models [34].

The supervised models with classification thresholds of 50% were built in R [33]. In
binary classification problems, the classification threshold is a value that converts the model
prediction to positive or negative depending on whether the prediction is above or below
the threshold.

The classification algorithms used were the most popular ones in ALS: Support Vector
Machine (SVM), Neural Networks (NN), Linear Discriminant Analysis (LDA), Logistic
Regression (LR) and Random Forest (RF). For more details, see [6].
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2.7. Model Validation Metrics

There are various metrics for evaluating classification models [35]. The foremost
among these, accuracy, sensitivity and specificity, were used to evaluate the performance of
the classification models.

3. Results

First, the significant features from the four cases (C vs. B, C vs. NB, B vs. NB and C vs.
A) were selected. Then, the performance of the classification models was evaluated.

3.1. Selecting the Significant Features

From the 50 features obtained, the MANOVA analysis was applied to select those
that were statistically significant. Four comparisons were analyzed separately for males
and females: C vs. B, C vs. NB, B vs. NB and C vs. A. Features not showing statistical
significance (p-value > 0.05) were discarded.

Table 2 shows the significant features obtained for males. In the C vs. B case, this was
a set of 12 statistically (half phonatory) significant features (p-value < 0.05); in C vs. NB,
there were 13 (10 of them phonatory); in B vs NB, 9 (all time-frequency); and in C vs. A, 12
(10 of which were phonatory).

For females (Table 3), in the C vs. B case, a set of 20 statistically significant features
(p-value < 0.05) was obtained (13 out of 20 were phonatory). In the C vs. NB case, a set of
10 statistically significant features was obtained (6 of them, phonatory). In the case B vs.
NB, a set of 14 statistically significant features was obtained (12 of which were phonatory).
In the C vs. A case, 20 statistically significant features were obtained (12 being phonatory).

3.2. Classification Models

The classification models were fitted with the significant features selected in Section 3.1.
Tables 4 and 5 show the classification performance for males and females, respectively. The
results are presented for the accuracy, sensitivity and specificity of the models used for the
four cases.

For males in C vs. B case, all the classifiers generally performed well. RF obtained the
best accuracy, 96.1%. For LDA and NN, accuracy was 95.0% and for SVM and LR, 93.3%
and 91.9% respectively. LR gave the best sensitivity (95.0%), and RF and LDA the best
specificity = 97.5%.

Similar performance was achieved in C vs. NB and C vs. A cases. In these, SVM was
the best model (an accuracy of 93.1% was reached for C vs. NB and 92.6% for C vs. A).

Otherwise, the outcomes worsened in B vs. NB compared with the other cases. Despite
RF obtained the best accuracy (91.8%), the sensitivity it achieved was the worst.

For females, in the C vs. B case, the results also indicate that the performance of all
classifiers was excellent. RF gave the best accuracy, 98.1%, sensitivity, 96.6%, and specificity,
100%.

Similar behavior was obtained in the C vs. NB and C vs. A cases. In these, RF was
also the best model (obtaining accuracy of 94.1% and 95.8% for C vs. NB and C vs. A
respectively). In both cases, LDA achieved the best specificity.

Meanwhile, the results were worse in B vs. NB compared with the other cases.
Although RF obtained the best accuracy at 84.8%, the outcomes obtained with it for specificity
and especially sensitivity were very low.

In general, the best model was RF. Special attention should be paid to female outcomes.
Poor results were obtained for both genders in the B vs. NB case.

4. Discussion
4.1. Principal Findings

The results obtained demonstrate that it is possible to diagnose bulbar involvement
using supervised gender-specific models fitted to the significant phonatory and time-
frequency features.
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Table 2. Significant Features for males.

Comparison Feature p-Value
shimmer(dB) 0.039
shimmer(apq11) <0.001
pitch(mean) 0.001
pitch(SD) 0.023
pitch(min) 0.016
pitch(max) <0.001

Cvs. B f_Cres2 0.046
f_Cres6 0.046
f-Med?2 <0.001
f_Med6 0.008
K 0.027

(1) 0.002
jitter(relative) 0.008
shimmer(dB) 0.001
shimmer(relative) 0.008
shimmer(apq3) 0.035
shimmer(apq11) <0.001
pitch(mean) 0.001
Cvs. NB pitch(SD) 0.002
pitch(min) 0.023
pitch(max) 0.001
HNR(mean) 0.037
IE_Bnl 0.045
H_tf 0.015
H_f 0.045
f_Cresl 0.044
f_Cres2 0.028
f-Med?2 <0.001
f_-Med6 0.011
Bvs. NB f_-Med7 0.024
H_tf 0.009
H f 0.009
K 0.045
(Hf1) <0.001
jitter(relative) 0.009
shimmer(dB) 0.001
shimmer(relative) 0.009
shimmer(apq3) 0.044
shimmer(apq11) <0.001
pitch(mean) 0.001

Cvs. A pitch(SD) 0.002
pitch(min) 0.015
pitch(max) <0.001
HNR(mean) 0.046
H_tf 0.048

(£ 0.034
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Table 3. Significant Features for females.

Comparison Feature p-Value
jitter(relative) 0.001
jitter(absolute) <0.001
jitter(rap) <0.001
jitter(ppg5) <0.001
shimmer(relative) <0.001
shimmer(dB) <0.001
shimmer(apq3) <0.001
shimmer(apq5) <0.001
shimmer(apq11) <0.001

itch(mean) <0.001
Cvs. B pitch(SD) <0.001
pitch(max) <0.001
HNR(mean) <0.001
f_Cres2 0.004
f_Cres6 0.029
f_Cres7 0.020
E_Bn2 0.003
f_Med2 <0.001
f-Medé 0.013
(L fY) 0.028
jitter(absolute) <0.001
shimmer(apq11) <0.001
pitch(mean) <0.001
pitch(SD) 0.003
itch(min) 0.008
Cvs.NB Ditch(max) <0.001
f_Cres7 0.011
E_Bn2 0.015
f-Med1 0.014
(Ff7 0.022
jitter(relative) <0.001
jitter(absolute) <0.001
jitter(rap) <0.001
jitter(ppg5) <0.001
shimmer(relative) <0.001
shimmer(dB) <0.001
shimmer(apq3) <0.001
Bvs. NB shimmer(aZZS) <0.001
shimmer(apq11) <0.001
pitch(SD) <0.001
pitch(max) 0.029
HNR(mean) <0.001
H_tf 0.026
H_f 0.048
jitter(relative) <0.001
jitter(rap) 0.001
jitter(ppq5) 0.004
shimmer(relative) <0.001
shimmer(dB) <0.001
shimmer(apq3) <0.001
shimmer(apq5) 0.001
shimmer(apq11) <0.001
pitch(mean) <0.001
itch(SD) <0.001
Cvs. A Zitch(max) <0.001
HNR(mean) 0.003
f_Cres2 0.006
f_Cres7 0.005
E_Bn2 0.003
f_Med1l 0.049
f-Med2 0.001
f_Med7 0.049
H_t 0.039
(L fY) 0.018
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In the case of B vs. C, the accuracy achieved was up to 98.1% (RF) and 96.1% (RF) for
females and males, respectively.

Lower performance was obtained in C vs. NB but this was still higher than expected.
The voice performance in C or NB should be similar. This indicates that some participants
in the NB group were probably incorrectly diagnosed. This is coherent with [6]. Similarly,
the excellent performance achieved in C vs. A suggests that some of the members of A
(14 out of 47) have bulbar involvement. Alternatively, although the most stable segments
of the voice samples were selected for analysis, many co-articulatory effects could have
influenced the results. Moreover, phonatory-subsystem features are subject to inherently
large variability, even for Cs.

On the whole, huge uncertainty was observed in the evaluation concerning bulbar
involvement among the participants in the NB group. The case of B vs. NB disclosed that
the models did not differentiate between the B and NB subject groups as well as they did
with the other groups. RF achieved the best overall performance (accuracy = 91.8%) in
males. However, the model presented problems for spotting positive cases (sensitivity =
55.0%). In females, RF achieved an accuracy of 84.8%. These values are still far from the
ones obtained in the C vs. B case. These outcomes additionally reinforce the idea that NB
subjects were misdiagnosed.

The outcomes of each comparison between groups depend on the significant features
chosen (between phonatory and time-frequency). In other words, the optimal results in
each experiment are obtained with an ad-hoc set of features. This means the differentiation
between the participants in different groups depends on different features. However,
classifiers obtained very similar results for each experiment, showing a lesser influence.

The results obtained proved that combining phonatory-subsystem and time-frequency
features improves the ability of the machine-learning models to detect bulbar involvement.
In addition, detecting bulbar involvement also depends on the ad-hoc set of significant
features found for such a case.

Table 4. Performance of male models. RF: Random Forest; LR: Logistic Regression; LDA: Linear
Discriminant Analysis; NN: Neuronal Networks; SVM: Support Vector Machines.

Cvs. B Cvs. NB B vs. NB Cvs. A
Accuracy 96.1 91.9 91.8 92.0
RF Sensitivity 86.1 92.1 55.0 93.8
Specificity 97.5 91.0 97.5 87.0
Accuracy 91.9 89.2 88.5 91.3
LR Sensitivity 95.0 90.3 75.0 90.7
Specificity 92.0 86.9 89.5 94.0
Accuracy 95.0 91.1 81.3 92.0
LDA Sensitivity 85.0 88.6 90.0 90.7
Specificity 97.5 98.0 80.5 96.0
Accuracy 95.0 90.0 86.1 92.0
NN Sensitivity 90.0 91.3 75.0 91.5
Specificity 95.0 86.5 88.4 93.0
Accuracy 93.3 93.1 86.1 92.6
SVM Sensitivity 85.0 91.2 85.0 90.7
Specificity 95.0 98.0 86.7 98.0

4.2. Comparison with Prior Work

This study is consistent with [6-8,36] which demonstrated that such phonatory-
subsystem features as jitter, shimmer, pitch and HNR were sensitive indicators for de-
scribing pathological voices in ALS. It is also consistent with [6] where great uncertainty
was found in the diagnosis of NBs participants.
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Table 5. Performance of female models. RF: Random Forest; LR: Logistic Regression; LDA: Linear
Discriminant Analysis; NN: Neuronal Networks; SVM: Support Vector Machines.

Cvs. B Cvs. NB B vs. NB Cvs. A
Accuracy 98.1 94.1 84.8 95.8
RF Sensitivity 96.6 92.5 92.3 95.8
Specificity 100 95.5 75.0 96.0
Accuracy 91.4 93.0 74.7 91.3
LR Sensitivity 91.3 90.0 75.0 93.4
Specificity 91.5 95.5 75.0 87.0
Accuracy 93.1 90.4 721 90.7
LDA Sensitivity 87.6 82.5 70.0 87.3
Specificity 86.6 97.5 75.0 98.0
Accuracy 93.2 86.9 71.1 90.6
NN Sensitivity 93.3 85.0 72.3 93.6
Specificity 94.0 89.0 70.0 84.5
Accuracy 95.1 91.6 74.2 93.6
SVM Sensitivity 93.3 90.0 73.6 94.7
Specificity 97.5 93.0 75.0 91.5

Besides the 15 phonatory-subsystem features obtained in [6], this study also provides
35 time-frequency features. The combination of phonatory-subsystem and time-frequency
features, after performing MANOVA for feature selection, enhanced the outcomes of [6],
which achieved the best results to date for detecting bulbar involvement in ALS using only
acoustic features, ahead of [8,13,24].

Accuracies of up to 98.1% (RF) and 96.1% (RF) for females and males respectively were
achieved when comparing the bulbar and control participants (case B vs. C). This accuracy
exceeded the one obtained in [24] with SVM (79.0%) by 17.1% for males and 15.1% for
females. The other studies found did not distinguish the classification problems by gender.
In [6], SVM obtained an accuracy of 95.8%. In [13], NN based on Mel Frequency Cepstral
Coefficients (coefficients for speech representation based on human auditory perception)
obtained 90.7%. In [8], NN based on phonatory-subsystem features obtained 91.7% and
adding motion sensors for both lip and tongue data increased the accuracy to 96.5% at the
expense of including more invasive measurements. For females, our results outperformed
those from the aforementioned studies by 2.3%, 7.4% and 6.4% respectively. For males, ours
were 0.3% above those obtained in [6] and 5.4% and 4.4% above those obtained in [8,13].

When comparing ALS patients diagnosed with bulbar involvement with those patients
in whom bulbar involvement has yet to be detected (B vs. NB), the outcomes outperformed
the ones obtained in [6]. The respective accuracy for males and females increased by 16.3%
and 9.3% with the same classifier (RF) (91.8% and 84.8% as against 75.5%). This is an
important outcome which indicates that the use of time-frequency features increases the
identification of bulbar involvement among patients with ALS.

The outcomes obtained in the C vs. NB and C vs. A cases were very similar to those
in [6], reinforcing the idea that some NBs could have bulbar involvement.

The most important gains were obtained when comparing B and NB. The selection of
the significant features for this comparison improved the outcomes. Thus, involvements
(i.e., bulbar) could be detected through a separate, and more closely adjusted, set of features.
Consequently, by increasing the identification of particular features, treatment could be
better customized for each ALS patient.

In addition, only studies showing C vs. B have been presented in the literature (except
in [6]). No attempts to distinguish other subjects have been made to date. We highlight this
differentiating issue, and the importance of future research into it.
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4.3. Limitations

The use of classification models with small datasets hinders the full assessment of
the importance of the findings. The size of the dataset was, in part, determined by the
low prevalence of ALS, which is considered a rare disease. The small number of samples
in the B group was influenced by the heterogeneity of the ALS disease in which patients’
symptomatology is very diverse.

Furthermore, hand editing the segments of the voice recordings is inherently subjective
and may introduce subtle and unintended selection biases. Although automatic instruments
have been created, these methods are currently insufficiently accurate and require manual
correction.

5. Conclusions and Future Work

This research directly addresses a recent statement released by the NEALS bulbar
subcommittee regarding the need for methodologies based on objective measurements [37].
The outcomes achieved reinforce the idea that machine learning can be a suitable tool for
helping with the diagnosis of ALS with bulbar involvement using common recording or
mobile (i.e., smartphone) devices.

We demonstrate the usefulness of assessing bulbar involvement properly using
phonatory-subsystem and time-frequency features from a study of the Spanish vowels that
outperformed previous works, specifically [6,8,13,24]. It was also demonstrated that group
identification depends on the significant features found for such an experiment.

The main contribution is the differentiation of diagnosis by gender. This outperformed
all the results in the literature.

The next steps of this work will consist of improving the corpus for diagnosing bulbar
dysfunction. It is planned to increase the sample size and enhance the annotation of the
ALS patients without bulbar involvement. Novel methods based on the creation of vowel
patterns and semi-supervised classification models will be developed to provide hints
for distinguishing those ALS patients without bulbar involvement who may have been
misdiagnosed.

Vowel patterns could be generated from the quasi-periodic components of a short
stable segment of the five Spanish vowels. Principal and independent component analysis
of these patterns is also envisioned.

Moreover, additional research is required to develop this concept properly. Longitudi-
nal research studies are conceived in which patients” diagnoses are obtained at multiple
follow-ups. Several repetitions of the sustained phonations will be required to minimize
sampling variability even for the control subjects.
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Abbreviations

The following abbreviations are used in this manuscript:

TFR Time-frequency representation
Jitter (absolute) inter-cycle variation of the fundamental period
Jitter(relative) relative period
Jitter(rap) relative perturbation
Jitter(ppq5) five-point period perturbation quotient
Shimmer(dB) Variability of the peak-to-peak amplitude
Shimmer(relative) relative amplitudes of consecutive periods
Shimmer(apqP) three, five and eleven-point amplitude perturbation
HNR harmonics-to-noise ratio
HNR(mean) mean HNR
HNR(SD) standard deviation of HNR
WD Wigner distribution
CWD Choi-Williams exponential function
pD joint probability density distribution
E(t) average instantaneous spectral energy
Fmi (£) average instantaneous frequency
f_Cres(t) instantaneous frequency peak
H_t instantaneous information entropy
H_f spectral information entropy
H_tf joint Shannon entropy
IE(f) spectral information
K kurtosis
(#" ™) joint time-frequency moment
SVM Support Vector Machine
NN Neural Networks
LDA Linear Discriminant Analysis
LR Linear Logistic Regression
RF Random Forest
C control group
B group of ALS participants diagnosed with bulbar involvement
NB group of ALS participants not diagnosed with bulbar involvement
A group of ALS participants with or without bulbar involvement
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