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Abstract

In the absence of clinically-efficacious therapies for ischemic stroke there is a critical need for development of new
therapeutic concepts and approaches for prevention of brain injury secondary to cerebral ischemia. This study tests
the hypothesis that administration of PNU-120596, a type-II positive allosteric modulator (PAM-II) of α7 nicotinic
acetylcholine receptors (nAChRs), as long as 6 hours after the onset of focal cerebral ischemia significantly reduces
brain injury and neurological deficits in an animal model of ischemic stroke. Focal cerebral ischemia was induced by
a transient (90 min) middle cerebral artery occlusion (MCAO). Animals were then subdivided into two groups and
injected intravenously (i.v.) 6 hours post-MCAO with either 1 mg/kg PNU-120596 (treated group) or vehicle only
(untreated group). Measurements of cerebral infarct volumes and neurological behavioral tests were performed 24
hrs post-MCAO. PNU-120596 significantly reduced cerebral infarct volume and improved neurological function as
evidenced by the results of Bederson, rolling cylinder and ladder rung walking tests. These results forecast a high
therapeutic potential for PAMs-II as effective recruiters and activators of endogenous α7 nAChR-dependent
cholinergic pathways to reduce brain injury and improve neurological function after cerebral ischemic stroke.
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Introduction

Clinical management of neuronal damage resulting from
ischemic stroke generally involves only palliative treatments.
Currently, the only FDA-approved drug therapy for ischemic
stroke involves the intravenous use of tissue plasminogen
activator (tPA) to dissolve clots [1]. This strategy appears to be
effective in ischemic stroke, but only within the first 3 hours
after the onset of ischemic stroke [2,3]. This strict limitation
reduces the percent of stroke patients eligible for tPA to as low
as ~2% [4]. Although in the last two decades substantial efforts
have been invested in developing anti-ischemic medicine,
these efforts have not resulted in clinically-efficacious therapies
for ischemic stroke [5]. These failures highlight the need for
development of new therapeutic concepts and approaches for
prevention of brain injury secondary to ischemia. Among
possible strategies, effective post-stroke treatments with broad
therapeutic windows are likely to be the most valuable because
of the unexpected nature of stroke. In this search, treatments
that are based on recruiting and activating endogenous
pathways receive special attention as these approaches are

expected to be highly efficacious and cause fewer adverse
effects than approaches that utilize exogenous agents [6–8].
To complement these needs, this study evaluates neurological
benefits of enhanced activation of α7 nicotinic acetylcholine
receptors (nAChRs) by endogenous nicotinic agonists 6 hours
after ischemic insult induced by middle cerebral artery
occlusion (MCAO) in young adult rats.

There is a substantial body of supportive evidence linking
age-, disease- and trauma-related reduction in the expression
and function of α7 nAChRs to neurodegenerative, sensorimotor
and psychiatric disorders associated with cognitive decline and
attention deficits [9–24]. By contrast, activation of α7 nAChRs
has been demonstrated to enhance neuronal resistance to
ischemia and other insults in in vivo, ex vivo and in vitro
experimental models [6,25–39], as well as improved cognitive
performance in patients and animal models of
neurodegenerative conditions including dementia,
schizophrenia, brain trauma and aging [14,26,31,39–61]. An
important rationale for the therapeutic use of α7 nAChR agents
arises from the fact that α7 nAChRs are ubiquitously expressed
throughout the brain [62] including brain regions that are highly
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vulnerable to ischemia, such as cortex, striatum and
hippocampus [63–66]. However, endogenous α7 nAChR
agonists (i.e., choline and ACh) have not been regarded as
potent therapeutic agents because physiological levels of
choline/ACh do not appear to produce therapeutic levels of α7
activation [6]. This limitation has been recently resolved by the
use of Type-II positive allosteric modulators (PAMs-II) of α7
nAChRs [6,8,48,67–73]. PAMs-II do not activate α7 nAChRs,
but they inhibit desensitization and enhance α7 activation by
nicotinic agonists, including endogenous choline and ACh
[48,67,68]. Thus, PAMs-II only amplify activation of α7 nAChRs
by endogenous nicotinic agonists released naturally as needed
[8]. Accordingly, we have recently introduced a novel
therapeutic paradigm [6] that converts endogenous
choline/ACh into potent therapeutic agents for cerebral
ischemia by enhancing activation of α7 nAChRs using
PNU-120596, a PAM-II. In our previous proof-of-concept study
[6], we have reported that a 3 hour pre-treatment with choline
+PNU-120596 significantly delayed anoxic depolarization/injury
of hippocampal CA1 pyramidal neurons in the complete
oxygen/glucose deprivation model of ischemic stroke in acute
hippocampal slices and activation of α7 nAChRs was required;
while intravenous administration of PNU-120596 30 min post-
ischemia in the MCAO model of ischemic stroke significantly
reduced cerebral infarct volume [6]. The present study extends
our previous findings and the therapeutic promise of PAMs-II
by revealing that PNU-120596 reduces both the focal ischemia-
induced cerebral infarct volume and neurological deficits even
when administered as long as 6 hours after the ischemic onset.
The results of this study further support the potential
therapeutic utility of PAMs-II as effective recruiters and
activators of endogenous α7-dependent cholinergic pathways
to reduce brain injury and improve neurological function
secondary to focal cerebral ischemia.

Materials and Methods

Ethics Statement
Young adult male Sprague-Dawley (S.-D.) rats (~280 g) were

used in experiments. The animal use was in accordance with
the Guide for the Care and Use of Laboratory Animals (NIH
865-23, Bethesda, MD), and all experimental protocols were
approved by the Institutional Animal Care and Use Committee
of University of North Texas Health Science Center at Fort
Worth, TX.

Animals
In total 22 animals were used in this study. Animals were

housed 2 per tub in a Tecniplast Green Line IVC Sealsafe
PLUS Rat rack on 1/8” corn cob bedding, with Envirodri
shredded paper for enrichment. Animals were fed Purina Lab
Diet 5LL2, and received filtered water via water bottles. Room
lighting was kept below 50 Foot Candles (range of 30-40), and
with a timer controlled 12:12 light dark cycle. Room
temperature was maintained between 68–72 degrees, with
humidity range of 30-70%. Cages were cleaned or changed at
least once per week. The housing room contained only rats.
The UNTHSC animal facility is AAALAC accredited and follows

or exceeds all of the requirements of the Guide for the Care
and Use of Laboratory Animals.

Middle cerebral artery occlusion (MCAO)
Transient (90 min) focal cerebral ischemia was induced

using the suture occlusion technique as previously described
[74]. Animals (n=22; Charles River, Wilmington, MA) were
anesthetized with 4% isoflurane mixed with 67% N2O and 29%
O2 and delivered by a mask. After a midline incision in the
neck, the left external carotid artery (ECA) was carefully
exposed and dissected. A 19-mm, 4-0 monofilament nylon
suture was inserted from the ECA into the left internal carotid
artery to occlude the origin of left middle cerebral artery. After
90 min of occlusion, the thread was removed to allow
reperfusion. The ECA was ligated, and the wound was closed.
Rectal temperature was maintained at ~37° C using a heating
pad.

A total of 22 animals were used in this study of which 1
animal from the control group died during the first hours of
post-MCAO recovery prior to vehicle injections and another
animal from the same control group died after vehicle injection,
but prior to behavioral tests. Thus, the mortality rate was
~16.7% in the control group and 0% in the treatment group.

Drugs
PNU-120596 was obtained from the National Institute of

Drug Addiction through the Research Resources Drug Supply
Program as well as purchased from Selleck Chemicals
(Houston, TX). Other chemicals were purchased from Sigma-
Aldrich (St. Louis, MO).

PNU-120596
In all experiments of this study, 1 mg/kg PNU-120596 was

administered via intravenous (i.v.) injections. Similar doses
have been used in other studies [6,48,71,73]. To make a 50
mM stock solution (maximal achievable concentration is ~200
mM), PNU-120596 was dissolved in dimethyl sulfoxide
(DMSO). The appropriate amounts of the stock solution (i.e.,
PNU+DMSO) or DMSO alone (i.e., vehicle) were injected as a
single bolus. The amount of DMSO injected in each animal did
not exceed 0.5 ml/kg.

Infarct Volume Measurements
Rats (n=10 per group) were anesthetized and euthanized by

decapitation 24 hrs after MCAO. Brains were removed and
coronal sections (2 mm thickness) immersed in 2% 2,3,5-
triphenyltetrazolium chloride (TTC) in saline for 20 min at 37°
C, then fixed for 2 hrs in 4% paraformaldehyde [75]. Infarct
area, left hemisphere area, and total brain area were measured
by a blinded observer using the ImageJ software, and areas
were multiplied by the distance between sections to obtain the
respective volumes. Infarct volume was calculated as a
percentage of the volume of the contralateral hemisphere, as
described previously [76].

Therapeutic Efficacy of PNU-120596 after Ischemia
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Neurobehavioral testing
Rats (n=10 per group) underwent neurobehavioral tests to

evaluate functional outcome of treatments with PNU-120596.
Animals were trained prior to MCAO (training period: 3 days, 3
trials per day) and deficits were assessed 24 hrs thereafter.
The order of testing (Bederson➔cylinder➔ladder rung walking)
was always the same to keep the testing conditions identical
for all animals. Although it is unlikely that subjecting animals to
early tests in the sequence facilitated or inhibited the animal
performance in the later tests, we cannot completely rule out a
possibility of inter-test interactions.

Bederson test
Bederson score was used to assess the neurological deficit

using a four-level scale [77]: 0, normal; 1, forelimb flexion; 2,
decreased resistance to lateral push; 3, circling.

Cylinder Test
Forelimb use bias was analyzed by observing the rat’s

movements over 3-minute intervals in a transparent, 18-cm-
wide, 30-cm-high poly(methyl methacrylate) cylinder. A mirror
behind the cylinder made it possible to observe and record
forelimb movements when the rat was facing away from the
examiner. After an episode of rearing and wall exploration, a
landing was scored for the first limb to contact the wall or for
both limbs if they made simultaneous contact. Percentage use
of the impaired limb was calculated.

Ladder rung walking test
The ladder rung walking test is sensitive for quantifying

skilled locomotion. The degree of motor dysfunction after
MCAO was measured by counting the number of foot-faults of
the impaired limbs per round, as described previously [78].
Baseline and post-operative testing sessions consisted of three
traverses across the ladder. An error was scored for any foot
slip or misstep. The number of errors of the affected forelimb
and hindlimb in each trial was counted. The mean number of
errors in three traverses was calculated.

Statistical Analysis
Statistical significance of differences among groups was

defined by the p-value (i.e., * p<0.05; *** p<0.001) using the
two-tailed Mann–Whitney U-test. A non-parametric Mann–
Whitney U-test was used because this study did not assume
any specific underlying distribution (i.e., Gaussian) of data and
had a relatively small sample size (n=5-10). We recognize that
non-parametric statistics are often less powerful than
parametric statistics and thus, more prone to Type-II error (i.e.,
missing significance when it is present) [79]. However, in this
particular study, differences among groups have been found
significant in all experiments further supporting our
conclusions. The results are presented as mean+S.E.M.

Results

PNU-120596 significantly reduces cerebral infarct
volume

In the group of animals defined as treated, PNU-120596 (1
mg/kg) was administered intravenously (i.v.) 6 hrs post-MCAO
and the effects of PNU-120596 on cerebral infarct volume were
evaluated 24 hrs post-MCAO using the TTC staining (see
Methods). In the matching control group of animals only vehicle
(i.e., DMSO) was administered via i.v. injections. Only the left
MCA was occluded in each experiment. The results of these
experiments demonstrated significant reduction in the infarct
volume of treated vs. untreated animals (two-tailed, Mann–
Whitney U-test): p=0.0147 (n=10; Figure 1).

PNU-120596 significantly improves neurological
performance post-MCAO

The same treated and untreated animals that were used for
histological measurements (Figure 1) were used in behavioral
experiments 15 min prior to the animal anesthesia/euthanasia
and brain tissue collection for histology (i.e., ~24 hrs post-
MCAO). PNU-120596 significantly improved neurological
function of treated (n=10) vs. untreated (n=10) animals as
evidenced by the results of the following behavioral tests (two-
tailed, Mann–Whitney U-test): Bederson (p=0.0385; Figure 2A),
rolling cylinder (p=0.0124; Figure 2B), ladder rung walking
(forelimb) (p=0.0486; Figure 2C) and ladder rung walking
(hindlimb) (p=0.0007; Figure 2D). Therefore, the results of
these experiments convincingly demonstrate that PNU-120596
produces significant neurological benefits even when it is
administered as long as 6 hrs post-MCAO.

Discussion

The key finding of this study is that PNU-120596, a
previously reported highly selective PAM-II of α7 nAChRs,
significantly reduces cerebral infarct volume and neurological
deficits in the MCAO model of ischemic stroke in rats when the
drug is administered as long as 6 hrs post-MCAO. Such a
remarkable persistent post-MCAO effectiveness of
PNU-120596 invites more comprehensive pre-clinical studies
of the PAM-II class of compounds aiming at giving health care
providers an effective tool to reducing brain injury and
improving neurological function secondary to cerebral ischemic
stroke hours after the initial ischemic event. The therapeutic
benefits produced by PNU-120596 originate from its ability to
convert endogenous agonists of α7 nAChRs (i.e., choline and
ACh) into highly potent therapeutic agents [6,48,67,68]. Thus,
PAMs-II may create a conceptually novel family of treatments
that are based on a novel and substantively different
mechanism, i.e., recruiting and activating endogenous α7-
dependent cholinergic pathways. Treatments that incorporate
endogenous compounds and mechanisms are expected to be
highly efficacious and cause fewer adverse effects than
treatments that utilize exogenous agents.

These results extend our previous findings that
demonstrated a high therapeutic efficacy of PNU-120596
administered intravenously 30 min after focal cerebral ischemia

Therapeutic Efficacy of PNU-120596 after Ischemia
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Figure 1.  PNU-120596 significantly reduces the size of brain injury induced by focal cerebral ischemia.  Focal cerebral
ischemia was induced by a transient (90 min) middle cerebral artery occlusion (MCAO). Then, 6 hrs post-MCAO, animals were
given i.v. injections of either 1 mg/kg PNU-120596 dissolved in DMSO at 50 mM (i.e., treated group; n=10) or the matched amount
of DMSO only (i.e., untreated group; n=10). Typical examples of injured whole-brain coronal sections (2 mm thick) obtained from
untreated (i.e., DMSO only) (A) and treated (1 mg/kg PNU-120596) (B) animals. Treated and untreated animals were anesthetized
and euthanized 24 hrs after MCAO (i.e., 18 hrs after PNU-120596 or DMSO injections) and brain sections were prepared for
histological analysis. C) A summary: MCAO-induced infarct volumes were significantly smaller in treated vs. untreated animals:
p=0.0147 (n=10; two-tailed, the Mann–Whitney U-test). The results are presented as mean+S.E.M.
doi: 10.1371/journal.pone.0073581.g001
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Figure 2.  PNU-120596 significantly improves neurological
function after focal cerebral ischemia.  The same treated
(n=10) and untreated (n=10) animals that were used for
histological analysis (Figure 1) were subjected to neurological
tests 15 min prior to anesthesia/euthanasia and collection of
brain sections for histological analysis. PNU-120596
significantly improved neurological function post-MCAO in
treated (n=10) vs. untreated (n=10) groups of animals as
evidenced by the results of the following tests (two-tailed, the
Mann–Whitney U-test): A) Bederson, (p=0.0385); B) Rolling
cylinder, (p=0.0124); C) Ladder rung walk, (forelimb),
(p=0.0486); and D) Ladder rung walk, (hindlimb), (p=0.0007).
The results are presented as mean+S.E.M.
doi: 10.1371/journal.pone.0073581.g002

[6]. Intriguingly, infarct volumes measured in animals treated
with PNU-120596 30 min (n=5 [6]) and 6 hrs (n=10; this study)
post-MCAO were not significantly different (p=0.2404, two-
tailed Mann-Whitney test). Similarly, the corresponding infarct
volumes measured in untreated animals (i.e., DMSO only) 30
min (n=5 [6]) and 6 hrs (n=10; this study) post-MCAO were
also not significantly different (p=0.5921, two-tailed Mann-
Whitney test). Therefore, it is likely that the therapeutic efficacy
of PNU-120596 extends considerably beyond the 6 hrs post-
ischemic delay tested in this study. By contrast, the therapeutic
efficacy of donepezil, an inhibitor of ACh hydrolysis, has been
reported to cease within the first 2 hrs post-MCAO [80].
Although the reason for these differences is not known, it may
be related to the ability of PNU-120596 to inhibit α7
desensitization and thus, generate persistent α7 nAChR-
mediated currents in the presence of physiological/endogenous
choline [67–69] even though these currents appear to be
reduced at physiological temperatures [81]. By inhibiting ACh
hydrolysis, donepezil elevates the extracellular levels of ACh (a
non-selective agonist of nicotinic and muscarinic AChRs), but
does not appear to produce therapeutic levels of nicotinic and
muscarinic AChR activation after 1-2 hrs post-ischemia [80].

The therapeutic utility of PAM-II-based strategies is
supported by the ubiquitous expression of α7 nAChRs in the
brain and especially, in the brain regions that are selectively
vulnerable to ischemia, such as cortex, striatum and
hippocampus [63–66]. Activation of α7 nAChRs has been
shown to enhance neuronal resistance to ischemic and other
types of insults [6,31,32,38,39,63,82] as well as improve
cognitive performance in patients and animal models of
schizophrenia [49,72,73,83], dementia [56,61,84] and traumatic
brain injury [39]. Moreover, PNU-120596 has been recently
demonstrated to produce robust anti-nociceptive effects by
enhancing the potency of endogenous choline for α7 nAChR
activation [70,71]. Although choline is a full selective
endogenous α7 nAChR agonist, near-physiological levels of
choline (i.e., ~20 µM) [12,85–87] are sub-threshold for α7
activation (EC50~0.5 mM) [88] and tend to induce α7
desensitization (IC50~40 µM) [87]. These limitations can be
overcome by the use of PAMs-II, such as PNU-120596.
PNU-120596 inhibits α7 desensitization and increases the
potency of endogenous choline/ACh for α7 activation producing
a weak persistent and tunable activation of α7 nAChRs [67–69]
– an activation modality of α7 nAChRs that can benefit
neuronal survival as discussed previously
[6,27,31,32,38,39,63,82]. Moreover, energy deprivation and
cell death/dysfunction can considerably elevate the
concentration of choline in the extracellular space [89–91]
providing a large source of this endogenous α7 nAChR agonist
as has been recently demonstrated by direct measurements of
choline/ACh levels in the ischemic core and penumbra in the
MCAO model of ischemic stroke in rats [92]. It is intriguing to
hypothesize that these elevated levels of choline near the site
of injury may robustly enhance neuronal resistance to ischemic
injury, while PNU-120596 augments this endogenous
therapeutic process [6].

Although the exact cellular and molecular mechanisms of the
therapeutic effects of PNU-120596 are not known, α7 nAChR-
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mediated Ca2+-dependent activation of JAK2/AKT-dependent
pathways are likely candidates [82,93–95]. These likely
mechanisms would be expected to delay mitochondrial
dysfunction and thus, PNU-120596-treated neurons may be
able to better meet the energy demand of ischemic/
hypoglycemic conditions and significantly delay the ultimate
failure of the Na+/K+-ATPase pumps. Such a failure would
cause a rapid loss of the neuronal trans-membrane
electrochemical gradient leading to transient or terminal anoxic
depolarization [6]. It may seem counterintuitive that excitatory
currents (i.e., α7 nAChR-mediated) could delay anoxic
depolarization and reduce brain injury [6]. However, this
concept reflects a common motif in how central neurons
respond to insults, i.e., the existence of optimal neuroprotective
levels and spatiotemporal patterns of cytosolic Ca2+ elevations
[8,14,27,32,96–101]. While sub-optimal levels of cytosolic Ca2+

are ineffective, excessive Ca2+ influx is toxic. By contrast,
moderate elevations in cytosolic Ca2+ levels, for example, via a
K+-induced depolarization or weak persistent activation of
highly Ca2+-permeable α7 nAChRs [102–104] have been
shown to protect neurons from injury in a variety of toxicity/
insult models [6,27,28,32,33,38,98,105,106]. These therapeutic
levels of α7 nAChR activation are consistent with the weak
persistent modality of α7 nAChR activation generated by
physiological concentrations of choline in the presence of
PNU-120596 [67–69].

Moreover, the reported therapeutic efficacy of PNU-120596
may have resulted, at least in part, from enhanced activation of
α7 nAChRs expressed in the autonomic neuronal circuitry
which may have provided a neurogenic (e.g., adrenergic,
nitrergic [107,108]) control over vascular tone and collateral
blood circulation. In addition, functional α7 nAChRs are
expressed in numerous non-neuronal tissues including glial
[109–111] and immune cells [112–114]. Thus, several
therapeutic components of α7 nAChR activation in multiple
neuronal and non-neuronal tissues may have contributed to the
significant therapeutic efficacy of PNU-120596 reported in this
and previous in vivo studies [6,70–73,114,115]. These potential
individual sources of brain protection and their relative
contributions to the therapeutic effects of PNU-120596 are not
known and present great interest.

One potential limitation of this study is that it does not include
experiments with α7 nAChR antagonists (e.g.,
methyllycaconitine; MLA). Although PNU-120596 is highly
selective for α7 nAChRs and to-date non-α7-mediated effects
of PNU-120596 have not been reported, there is a slight
chance that PNU-120596 activates both α7-dependent and yet
unknown, α7-independent pathways. In that unlikely event, the
use of highly selective α7 nAChR antagonists would be critical
for distinguishing among α7-dependent and α7-independent
components of the effects of PNU-120596. However,
experiments using MLA in vivo may not be straightforward as
evidenced from a previous report where the effects of MLA on
certain behavioral functions were bell-shaped [116]. Thus, a

series of positive and negative controls will need to be
conducted using selective α7 agonists (e.g., DMXBA; 3-(2,4-
dimethoxybenzylidene)-anabaseine, also known as GTS-21) to
determine the effective regimens of MLA as applicable to
MCAO. This work has not yet been done in this laboratory.

Another possible limitation is that we have not tested the
effects of PNU-120596 on neurological performance of control
(sham) animals (i.e., in the absence of MCAO-induced injury).
This is because control animals perform these tests nearly
flawlessly leaving no room for significant improvement by
PNU-120596. However, because of this limitation we cannot
exclude the possibility that PNU-120596 is a performance
enhancing drug which is also effective in the absence of
MCAO-induced injury and thus, the therapeutic efficacy of
PNU-120596 post-MCAO may not be directly related to MCAO-
induced injury, but extends the performance-enhancing
potential of PNU-120596 in the absence of injury.

Certain genetic, age- and trauma-related neurodegenerative,
sensorimotor, and psychiatric disorders characterized by
cognitive decline and attention deficits (e.g., schizophrenia,
dementia and traumatic brain injury) are directly associated
with decreased cholinergic tone and a decrease, but not
disappearance, of functional α7 nAChRs [10,49,117]. By
increasing and partially restoring α7-dependent cholinergic
tone, PAMs-II would be expected to improve cognitive function
and attention impairments in these patients and animal models
[39,49,53,56,61,84]. In this regard, treatments with
PNU-120596 or functionally-similar PAMs-II compounds may
benefit individuals with ischemic stroke and certain age- and
trauma-related cognitive deficits via multiple mechanisms and
routes of action.

In conclusion, this study demonstrates a remarkable
reduction in the size of cerebral injury and significant
improvements in neurological function upon intravenous
administration of PNU-120596 as long as 6 hours after the
onset of transient focal cerebral ischemia. These results further
support the potential therapeutic utility of PAMs-II as effective
recruiters and activators of endogenous α7-dependent
cholinergic pathways and extend the therapeutic promise of
this novel class of compounds.
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