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Latency‑associated DNA 
methylation patterns among HIV‑1 
infected individuals with distinct 
disease progression courses 
or antiretroviral virologic response
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DNA methylation is one of the epigenetic modifications that configures gene transcription 
programs. This study describes the DNA methylation profile of HIV‑infected individuals with distinct 
characteristics related to natural and artificial viremia control. Sheared DNA from circulating 
mononuclear cells was subjected to target enrichment bisulfite sequencing designed to cover 
CpG‑rich genomic regions. Gene expression was assessed through RNA‑seq. Hypermethylation in 
virologic responders was highly distributed closer to Transcription Start Sites (p‑value = 0.03). Hyper 
and hypomethylation levels within TSS adjacencies varied according to disease progression status 
(Kruskal–Wallis, p < 0.001), and specific differentially methylated regions associated genes were 
identified for each group. The lower the promoter methylation, the higher the gene expression in 
subjects undergoing virologic failure (R = − 0.82, p = 0.00068). Among the inversely correlated genes, 
those supporting glycolysis and its related pathways were hypomethylated and up‑regulated in 
virologic failures. Disease progression heterogeneity was associated with distinct DNA methylation 
patterns in terms of rates and distribution. Methylation was associated with the expression of genes 
sustaining intracellular glucose metabolism in subjects undergoing antiretroviral virologic failure. 
Our findings highlight that DNA methylation is associated with latency, disease progression, and 
fundamental cellular processes.

The human DNA is the object of chemical modifications, in which a methyl group is transferred to cytosine in 
CpG dinucleotides. This is one of the biochemical processes that make up the epigenetic information, which 
maintains genome integrity and plays a critical role in the configuration of transcription  programs1,2.

Epigenetic mechanisms have been shown to sustain HIV latently infected  cells3. The viral promoter was 
hypermethylated in latently infected cells in vitro4, indicating that methylation of the HIV promoter regulates the 
reactivation of the provirus. However, the long terminal repeat (LTR) in resting CD4 + lymphocytes of infected 
individuals was scarcely  methylated5. Besides, the CpG methylation status of LTR and HIV-1 genes among HIV-1 
infected individuals, including those who naturally control the infection, was predominantly non-methylated6.

Under the latent condition, the virus is silenced, and this makes cellular recognition by the immune system 
more difficult, thus allowing more prolonged survival of latently infected  cells7,8. Considering the half-life of 
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memory T CD4 + cells bearing archived provirus and the total pool of the reservoir, more than 70 years of com-
bination antiretroviral treatment (cART) would be required to achieve a  cure9. However, despite cART, some 
HIV infected cells are still able to produce virions that are detected through ultrasensitive  methods10.

Expression of HIV provirus in latently infected cells has been considered a critical approach to obtain HIV 
eradication. The administration of latency reversal agents (LRA), such as histone deacetylase inhibitors (HDACi), 
has the potential to take the chromatin to a permissive state and to activate virus  transcription8,11,12. However, 
purging strategies have failed to reduce the size of the HIV  reservoir13,14, possibly because of the low immunologi-
cal functions of the infected  patients15,16. Hence, a better understanding of HIV-1 persistence and its underlying 
features is critical for developing new therapeutic strategies to achieve HIV remission without antiretrovirals.

Although HIV-1 infection was associated with DNA methylation changes of cellular  genes17–19, we noticed a 
lack of studies addressing CpG-rich genome regions’ methylation status through a large scale approach to inves-
tigate patterns potentially associated with latency. Here, we hypothesized that latent infection and heterogeneous 
courses of HIV infection are subject to different DNA methylation patterns in the human genome. Additionally, 
our data indicated that CpG methylation is one of the underlying mechanisms shaping gene expression and 
pathways involved in regulating intracellular glucose metabolism in subjects experiencing cART failure.

Results
Methylation analysis was conducted for samples of 6 controls and 22 People Living with HIV (PLWH). Out of 
the total number of PLWH analyzed, seven were cART virologic responders, seven were cART virologic failures, 
six long-term nonprogressors (LTNP), and two elite controllers (EC). The Class I HLA alleles for the elite con-
trollers and for four out of the six long term non-progressors are shown in Supplementary Table 1. Among the 
control group, three were males, and three were females (mean age of 31 years), whereas among HIV-1 infected 
individuals, 12 were males and 10 were females (mean age of 43 years).

The mean time since HIV diagnosis for all HIV infected individuals was 13 years (3–22 years). In the virologic 
responders’ group, the mean duration of cART was six years, and the median  CD4+ count was 555 cells/mm3 
(118–985 cells/mm3). In the virological failure group, the mean duration of cART was eight years, the median 
 CD4+ count was 240 cells/mm3 (159–623 cells/mm3), and the median viral load was 3.66  log10 (1.8–4.57 log). In 
the group of LTNP, the median  CD4+ T cell count was 693 cells/mm3 (566–1,257 cells/mm3), and the median viral 
load was 3.40  log10 (2.3–4.04 log). EC exhibited a median T  CD4+ count of 1401 cells/mm3 (1,190–1,613 cells/
mm3). A detailed characterization of the HIV infected individuals enrolled in the study is depicted in Table 1.

There were no statistically significant differences in sex (p-value > 0.05) and time since HIV diagnosis 
(p-value > 0.05). The groups significantly differ in age (p-value = 0.015) and CD4 T cells counts (p-value = 0.007). 
However, according to the deconvolution analysis, modest effects on CD4 T cells fractions were observed (Suple-
mentary Table 2, Supplementary Fig. 1). Each sample achieved an average of 65 million paired-end alignments 
with a unique best hit (see Supplementary Table 3), yielding billions of CpGs with sodium bisulfite conversion 
rate of 98.9% (see Supplementary Table 3) designed to cover CpG islands, shores (up to 2 kb flanking CpG 
islands), shelves (up to 2 kb flanking shores), promoters, RefGenes and cancer-specific sites. Read depth distri-
bution after filtration is depicted in Supplementary Fig. 2. As expected for differentiated cells, CpG methylation 
levels followed a bimodal fashion (see Supplementary Fig. 3), which is set up during  embryogenesis20.

Disease progression heterogeneity was associated with different DNA methylation pat-
terns. Methylation profiles between each HIV infected group and controls are represented by Principal 
Component Analysis (PCA) (Fig. 1a) and hierarchical clustering analysis using the correlation distance method 
(Fig.  1b). Samples grouped closer are similar in their methylation profiles. Pearson’s correlation scores are 
depicted in Supplementary Fig. 4.

Each HIV infected group was compared to control group in order to identify significant differentially meth-
ylated regions (DMR). The highest number of DMR was detected in virologic failures, whereas the virologic 
responders exhibited the lowest number. Out of the 11,299 DMR, virologic failures and EC accounted for 4,733 
and 3,600 regions, respectively; LTNP and virologic responders accounted for 1,965 and 1,001 regions, respec-
tively (see Supplementary Table 4).

Concerning the methylation status and genomic location of DMR, we were able to identify a higher number 
of hypomethylated than hypermethylated sites in all HIV-1 groups (Fig. 2a), widely distributed across somatic 
and X human chromosomes (Fig. 2b), and nearly half colocalized with gene promoters computed from 1 kb 
upstream to 1 kb downstream of Transcription Start Sites (TSS) (Fig. 2c,d). Out of the DMR that colocalized 
with promoters in each group, 83.4% (n = 772) was hypomethylated in LTNP, followed by 82.6% (n = 1860) in 
subjects undergoing cART failure, EC with 71.7% (n = 1,250), and virologic responders with 58.8% (n = 294).

Figure 3a represents hypo and hypermethylation distributions among HIV groups. Although intragroup 
comparisons of DMR distributions revealed slightly distinct patterns depending on the status of disease progres-
sion, only virologic responders exhibited higher distribution of hypermethylated regions closer to TSS (Wilcoxon 
rank-sum test, p-value = 0.03, Fig. 3b).

Hypo and hypermethylation medians within − 1 kb/ + 1 kb flanking TSS were significantly different among 
HIV groups. EC showed the highest median of hypermethylation (29.73%), followed by LTNP (29.28%), viro-
logic responder (28.11%), and the lowest was exhibited by virologic failures (28.09%) (Kruskal–Wallis, p < 0.001) 
(Fig. 4a). Interestingly, hypermethylation levels between groups that spontaneously control HIV infection were 
not statistically different (p > 0.05); similarly, hypermethylation levels between HIV groups that do not have such 
ability were not significantly different as well (p > 0.05) regardless of the plasma viral load. Moreover, hypermeth-
ylation levels from LTNP were significantly higher than virologic failures (p = 0.012) irrespective of the similar 
median viral loads (3.66  log10 for virologic failures and 3.40  log10 for LTNP), providing further support for an 
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association between DNA methylation and natural control of HIV infection. Concerning hypomethylation, the 
highest level of hypomethylation was observed for EC (− 29.29%), followed by virologic responders (− 28.72%), 
LTNP (− 27.95%), and virologic failures (− 27.82%) (Kruskal–Wallis, p < 0.001) (Fig. 4b).

It is worth mentioning that we were able to detect a methylation signature previously identified in PLWH com-
pared to HIV uninfected  subjects21. The promoter of the NLR family, CARD domain-containing gene 5 (NLRC5), 
involved in activating major histocompatibility complex class I gene  expression22, was hypomethylated for all HIV 
groups except EC (see Supplementary Table 4). Out of the genes that were hypomethylated except for EC, changes 
in methylation for the individual groups were significant only for the region chr8:27397101–27397200, which 
corresponds to the Protein Tyrosine Kinase 2 Beta (PTK2B) (Supplementary Fig. 5). We also identified other 
DNA methylation signatures previously associated with low and high plasma viral  loads23. For instance, promot-
ers of RUNX family transcription factor 3 (RUNX3), Deltex E3 Ubiquitin Ligase 3L (DTX3L), and Interferon 
Induced Protein 44 Like (IFI44L) were hypomethylated only in virologic failures; MX Dynamin Like GTPase 1 
(MX1) promoter exhibited higher hypomethylation level for virologic failures than for virologic responders, and 
Lymphocyte Cytosolic Protein 2 (LCP2) promoter was hypomethylated in EC and hypermethylated in virologic 
responders (see Supplementary Table 4).

DNA methylation patterns were associated with distinct biologic pathways in HIV infected 
groups. DMR-associated biologic pathways in our data included immune response, cell signaling, and meta-
bolic regulation (see Supplementary Table 5). Hypermethylation in virologic failures was associated with T cell 
receptor signaling pathway, including CD4 gene, whose promoter was hypermethylated; hypomethylation in 
such patients was associated with TNF-signaling, Phosphatidylinositol-3-kinase/Protein Kinase B (PI3K/Akt) 
signaling pathway, Hypoxia-inducible factor 1 (HIF-1), among other pathways. Conversely, HIF-1 signaling was 
enriched for hypermethylated regions in LTNP. This pathway coordinates the transcription activation of several 
genes involved in glucose metabolism, angiogenesis, and cell  survival24,25. According to our data, provided that 
the HIF-1 pathway was related to hypermethylation in subjects that naturally sustain viral loads to low levels 

Table 1.  Demographic, clinical and laboratory characteristics of the analyzed individuals. 3TC Lamivudine, 
ABV Abacavir, ATV Atazanavir, ATV/r Atazanavir + Ritonavir, CT Control, DRV Darunavir, DRV/r 
Darunavir + Ritonavir, EFV Efavirenz, E.C. Elite controller, F Female, HAART  Highly active antiretroviral 
therapy, LPV/r Lopinavir + Ritonavir, LTNP Long-term non-progressor, M Male, RAL Raltegravir, TDF 
Tenofovir, V.F. Virologic Failure, V.R. Virologic Responder, ZDV Zidovudine.

ID Gender Age (Years) CD4 (cells/mm3)
Viral load (log 10 
copies/mL) Year of diagnosis Year of sampling Year of HAART start HAART scheme

CT2 M 34 – – – 2015 – –

CT3 F 30 – – – 2015 – –

CT4 F 28 – – – 2015 – –

CT5 F 32 – – – 2015 – –

CT6 M 32 – – – 2015 – –

CT7 M 30 – – – 2015 – –

LTNP_1 M 41 566 4.04 1994 2012 – –

LTNP_2 M 32 848 3.18 2006 2012 – –

LTNP_3 M 51 681 3.53 1999 2013 – –

LTNP_4 F 55 706 3.28 1993 2014 – –

LTNP_5 F 29 1257 2.3 2010 2014 – –

LTNP_6 M 49 582 3.55 1991 2012 – –

EC_1 F 42 1613  < 40 2003 2013 – –

EC_2 F 54 1190  < 40 1996 2013 – –

VR_1 M 42 600  < 40 1998 2014 2008 3TC + ZDV + EFV

VR_2 M 44 501  < 40 2003 2014 2003 3TC + ZDV + TDF + LPV/r

VR_3 F 36 555  < 40 1996 2013 2013 3TC + TDF + DRV/r

VR_4 M 49 985  < 40 1993 2014 1997 3TC + ZDV + LPV/r

VR_5 M 41 486  < 40 1999 2014 2013 3TC + TDF + DRV/r + RAL

VR_6 M 41 118  < 40 2004 2014 2005 TDF + ABV + ATV/r

VR_7 F 40 602  < 40 2006 2014 2009 3TC + TDF + ATV/r

VF_1 M 50 228 4.57 2010 2014 2010 3TC + EFV + TDF

VF_2 F 40 159 4 1997 2014 2009 3TC + ZDV + DRV/r

VF_3 F 53 232 3.33 2000 2014 2002 3TC + ABV + ATV

VF_4 F 53 260 4.23 2000 2014 2000 3TC + ZDV + LPV/r

VF_5 M 35 623 1.91 2009 2014 2002 3TC + ZDV + ATV/r

VF_6 F 41 406 2.08 1997 2014 1998 3TC + ZDV + TDF + DRV/r

VF_7 M 44 473 1.8 1998 2014 2012 3TC + TDF + ATV/r
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Figure 1.  Clustering analysis of CpG methylation profiles. (a) Principal Component Analysis (PCA) of 
four methylation profiles comparisons between HIV groups and controls. (b) Hierarchical clustering of four 
methylation profiles comparisons based on 1-Pearson’s correlation distance. Red denotes healthy controls and 
blue denotes HIV samples. CT Control group, EC Elite controller, LTNP Long-term nonprogressor, R virologic 
responder, VF virologic failure.
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and hypomethylation in individuals experiencing cART failure, methylation was a plausible aid to configure the 
expression of genes involved in regulating glycolysis and its interdependent cascades.

DNA methylation inversely correlated with gene expression in subjects experiencing virologic 
failure. To better understand the interplay between methylation and gene expression in “Patients” experienc-
ing virologic failure, RNA-seq analysis was conducted for six controls and four virologic failures. We were able 
to find 187 differentially expressed genes (DEG), considering log2 fold change > 3 and p-adjusted < 0.05 (see 
Supplementary Table 6). The saturation curve for each sample is shown in Supplementary Fig. S6. The observa-
tion that most genes were up-regulated in virologic failures (Fig. 5a,b) is consistent with the higher number of 
hypomethylated regions found in this group (Fig. 2a,b). Biological pathways for RNA-seq data are depicted in 
Supplementary Table 7 Some of the up-regulated genes were Interleukin-6 (IL-6) and Interleukin-1 beta (IL-1β), 
two well known pro-inflammatory  mediators26,27, and also Interleukin-10. Previous reports demonstrated that 
the natural suppression of HIV was associated with the highly functional co-expression of cytokines such as 
TNF and IL-10 concomitant with significant maintenance of anti-inflammatory and anticoagulant  properties28.

Out of the 187 DEG genes, 13 showed differentially methylated promoters (Table 2) and established differ-
ent types of networks (Fig. 6). Promoter methylation and gene expression were inversely correlated in subjects 
experiencing cART failure (R = − 0.82, p = 0.00068) (Fig. 7). DNA methylation and gene expression negatively 
correlated in our data corroborate the long-term conception that promoters highly methylated associates with 
transcriptional  silencing29–31.

Hypoxia-inducible factor 1-alpha (HIF-1α) was up-regulated and hypomethylated in virologic failures. This 
is consistent with the HIF-1 signaling pathway being one of the most significant pathways enriched for hypo-
methylated regions in “Patients” failing cART. HIF-1α is a subunit of the HIF-1 transcription factor primarily 
activated in response to microenvironment oxygen  deprivation24,32, although oxygen-independent regulation 

Figure 2.  Differential methylation analysis. Methylation percentages were calculated for windows 
encompassing 100 bp. Then, methylation percentages for each region in HIV groups were compared against 
a control group. A cutoff of ≥ 25% for methylation difference and a q-value of < 0.01 were considered for the 
analysis. (a) Number of locations showing hyper and hypomethylation in HIV groups compared with controls. 
(b) Percent of hypo and hypermethylated regions across human chromosomes. (c) Annotation of differential 
methylation showing the percentage of differentially hypermethylated regions distributed across exons, 
intergenic, introns and promoter regions. (d) Annotation of differential methylation showing the percentage of 
differentially hypomethylated regions distributed across exons, intergenic, introns and promoter regions.
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may increase its expression in T  cells33. Inside the nucleus, HIF-1 attaches to Hypoxia Response Element within 
regulatory sequences of target genes, rendering the cells adapted to survive under low oxygen  supply24,25,33.

Finally, although analyses were conducted in Peripheral Blood Mononuclear Cells (PBMC), which consists 
of a large pool of mononuclear cell subpopulations, certain alterations are likely associated with specific cell 
subsets. Nuclear Receptor Subfamily 4 Group A, Member 2, (NR4A2), which codes for a steroid/thyroid hor-
mone nuclear  receptor34, was the only up-regulated gene with a hypermethylated promoter, which is in agree-
ment with a previous  report35. NR4A2 plays a regulatory role in the development of dopaminergic  neurons36 
and, interestingly, monocytes from HIV-1 patients with cognitive impairment showed the same epigenetic and 
expression profile for  NR4A235.

Discussion
The current study aimed at charting the methylation landscape of HIV-1 infected individuals heterogeneous in 
terms of HIV viremia control. We evaluated a panel of samples comprising individuals that naturally control 
HIV viremia (EC), partially naturally control the HIV harm to the immunity (LTNP), individuals that artificially 
control HIV viremia (virological responders), and individuals that were not able to artificially suppress HIV 
replication (virologic failures) Our major findings revealed distinct methylation patterns among PLWH distinct 
groups, concerning distribution and levels of methylation within human genome segments associated with tran-
scription regulation. Additionally, we were able to associate promoter methylation with changes in gene expres-
sion for virologic failures, providing further insights into the role of epigenetic machinery on HIV persistence.

Cytosines followed by guanines (5’-CpG-3’) in the human genome are methylated in a reaction catalyzed by 
DNA methyltransferases, which were shown to be increased upon HIV infection in vitro17,19,37,38. Furthermore, 
global DNA methylation percentage was higher in HIV infected CD4 + T cells in vitro39, and overall DNA 
hypermethylation was associated with HIV infection in a pair of serodifferent monozygotic  twins19. However, a 
different dynamic was observed in our clinical samples, which is in agreement with a previous study addressing 
the DNA methylation status of a large cohort of HIV-infected and non-infected  subjects21 that showed a higher 
number of hypomethylated regions in PLWH.

Unexpectedly, nearly half of the disturbed regions colocalized with promoters, indicating a potential to affect 
gene  expression1,40. Roughly 70% of promoters locate within CpG islands (CGI)41 and the experiment is aimed 
at addressing CpG-dense segments. However, intergenic segments constitute 75% of the human genome, and 
introns account for nearly 24%42. Additionally, CpG sites spread throughout the genome are highly methylated, 
whereas CGI-associated promoters are markedly non-methylated1,43, then it is counter-intuitive that DMR was 
promoter-enriched and mostly hypomethylated. Given that HIV integrates into the human genome and har-
nesses the host transcription factors to complete its replication cycle, our data suggest that HIV-infected cells are 

Figure 3.  Distance from differentially methylated regions to nearest TSS in base pairs. (a) Distribution of hypo 
and hypermethylated regions in HIV-infected groups. (b) Intragroup comparison of hypo and hypermethylation 
distributions surrounding TSS for each HIV group (Wilcoxon rank-sum test). TSS Transcription Start Site.
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primarily hypomethylated, which might favor the replenishment of infectious particles in the blood circulation 
through efficient provirus transcription. Nevertheless, considering that only a minority of cells in the bulk of 
PBMC is HIV  infected44,45, we cannot provide clues on the exact mechanism by which the DNA is undergoing 
demethylation in such patients.

Individuals on fully suppressive cART exhibited higher hypermethylation distribution closer to TSS. Con-
versely, hypo and hypermethylation distribution surrounding TSS were similar in subjects whose viral loads were 
detectable. This slightly different distribution may reflect the contingent of cells developing active replication 
and their latently infected counterparts. cART targets virus-producing cells, then a relatively greater amount of 
latently infected cells may be represented in individuals on a successful cART contributing to the higher hyper-
methylation closer to TSS. This idea is in line with longitudinal analysis showing that cART negatively selected 
single provirus integration in host genes expressed at higher  rates46, suggesting that provirus integrated within 
poorly expressed regions are more prone to perpetuate and become part of the archived provirus. Indeed, phar-
macological agents aiming at forcing expression of HIV-1, such as HDACi, efficiently stimulated viral transcrip-
tion from latently infected cells and turned chromatin more permissive for HIV expression by increasing global 
 acetylation13,14,47. However, to date, “kick and kill” strategies have not successfully reduced viral reservoir, even 
when HIV-specific T cell response was boosted with viral vector  vaccine48, indicating that additional approaches 
might be necessary to “kill” infected cells reactivated from latency. On the other hand, if DNA methylation is 
regarded as a relatively stable epigenetic modification in mammalian  genomes49, and hypermethylation sur-
rounding TSS appears to be associated with latently infected cells, our data reinforce findings from an in vitro 

Figure 4.  Differentially methylated regions within − 1 kb/ + 1 kb surrounding Transcription Start Sites. 
Significant regions (≥ 25% for methylation difference and q-value < 0.01) were annotated to find DMR-associated 
genes. DMR within − 1 kb/ + 1 kb flanking TSS was filtered for comparing hypo and hypermethylation 
differences. (a,b) Boxplots show comparisons of percentages for significant hypermethylated and 
hypomethylated promoters among HIV groups (Kruskal–Wallis rank-sum test < 0.001). P-values were calculated 
using the Wilcoxon rank-sum test with Benjamim-Hochberg correction for multiple comparisons and non-
significant values were omitted. Venn-diagrams represent the number of DMR-associated genes detected for 
each group and their intersections. NS Non-significant p-values.
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proof-of-concept study highlighting that the combination of multiple LRA should be considered to activate the 
overall contingent of cells refractory to HIV  expression50.

The observation that disease progression and/or viral control heterogeneity was subject to distinct hyper-
methylation levels suggests that DNA methylation is one of the underlying mechanisms associated with in vivo 
HIV control. Recently, specific DNA methylation signatures were associated with innate and adaptive immune 
responses in untreated individuals with high and low  viral23. DTX3L, IFI44L, and MX1 were part of a cluster 
containing hypomethylated genes involved in antiviral response in HIV infected subjects with high viral loads, 
whereas LCP2 was part of a hypermethylated cluster associated with adaptive response in such  individuals23. 
To broaden this understanding, our data demonstrated that individuals who naturally control HIV infection 

Figure 5.  Gene expression analysis. RNA-seq data of virologic failures were compared to control group. (a) 
Volcano plot reports p-adjusted in the y-axis against the fold change of gene expression in the x-axis. Blue 
denotes differentially expressed genes considering log2 fold change > 3 and p-adjusted < 0.05. Positive and 
negative values for log2 fold change indicate up-regulated and downregulated genes, respectively. (b) Heatmap 
illustrates differential expression data for six controls and four virologic failures. Blue and red indicate lower and 
higher transcription levels, respectively. CT Control group, VF Virologic failure.
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exhibited higher hypermethylation rates within TSS adjacencies, perhaps promoting an autologous block and 
lock phenomena. Conversely, lower rates of hypermethylation were observed for subjects unable to naturally 
control HIV viremia, irrespective of viral loads. Furthermore, hypermethylation levels were higher for EC com-
pared to virologic responders, suggesting the importance of this phenomenon in the natural control of viremia. 
Collectively, our data provide strong evidence that DNA hypermethylation distribution associates with the 
contingent of latently infected cells, and high hypermethylation rates associates with spontaneous control of 
HIV infection. It remains to be elucidated mechanisms that make the host naturally control the HIV viremia 
by epigenetic processes such as DNA methylation or the genetic correlates for HIV viral control. For instance, a 
deep metabolomic evaluation found evidence that EC harbors an inborn error of metabolism (late-onset multiple 
acyl-coenzyme A dehydrogenase deficiency [MADD])51.

Regarding the DMR-associated biologic pathways, HIF-1 signaling was enriched for hypermethylated regions 
in LTNP, while it was associated with hypomethylation in the virologic failure group. The latter also showed 

Table 2.  Subset of genes with DNA methylation and gene expression association in subjects failing cART 
compared to control group. CT Control group, VF Virologic failure group, TSS Transcription Start Site. 
*Differentially expressed genes associated with two differentially methylated regions.

Gene Methylation difference
q-value (Methylation 
difference) Distance to TSS log2 FoldChange p-adj (log2 foldchange)

MDS2* 27.52 7.78e−19 −34 −3.18 6.54e−06

MDS2* 26.15 9.61e−12 −234 −3.18 6.54e−06

LRRN3 25.69 1.66e−51 9 −3.16 3.71e−11

HIF1A −25.01 2.34e−23 308 3.10 1.64e−19

NR4A2 25.54 1.67e−169 522 3.53 1.01e−14

DCSTAMP −29.54 1.28e−51 −87 3.55 2.3e−03

FPR2 −29.05 7.69e−13 643 3.62 1.59e−14

SLC7A11 −27.18 2.77e−14 −553 4.07 5.13e−11

PLK2 −26.09 4.15e−21 195 4.09 3.35e−20

PTGS2 −26.04 3.41e−35 −133 5.13 2.47e−33

FRAS1* −26.99 4.39e−11 −138 5.40 5.16e−04

FRAS1* −25.85 1.98e−15 −731 5.40 5.16e−04

OTOF −29.08 2.33e−26 −604 5.74 2.33e−26

CHRD −27.67 5.21e−09 115 6.91 6.22e−04

HLA−V −43.46 3.16e−67 349 9.25 7.49e−04

Figure 6.  Network for differentially expressed genes in individuals failing cART. Different types of network 
were identified among the 187 transcripts associated with virologic failure. Genes with methylation and gene 
expression correlation are showed in the left. HLA-V is a pseudogene and was not represented.
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hypomethylation and up-regulation of HIF-1α, a subunit of the transcription factor HIF-1, whose activity is 
triggered by intracellular  hypoxia24,52. However, hypoxic conditions inhibited HIV activation in vitro, with cells 
maintaining stable activation and  viability53. Since patients experiencing virologic failure exhibit productive 
infection, it is conceivable that the increased expression of HIF-1α was driven by factors other than intracellular 
hypoxia. Indeed, HIF-1α may be triggered in normoxic T cells by Vpr-induced oxidative  stress54 and mitochon-
drial Reactive Oxygen Species (ROS)55. Mitochondrial ROS produced in response to cytosolic dsDNA induced 
HIF-1α expression in HIV infected cells irrespective of viral accessory  proteins55. Upon activation of naïve T 
cells, metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis takes place for potent T 
cell effector function and cytokine  production56,57, which is supported by HIF-1α through upregulation of glu-
cose transporter-1 (GLUT-1)33,58. T cells cultured in glycolysis deprivation fail to secrete Interferon-γ through 
a mechanism that prevents its  translation57. By contrast, HIV infection also relies on cellular bioenergy status, 
evidenced by a reduction of HIV particle assembly when glucose metabolism was blocked in T CD4  cells59. 
Moreover, CD4 T cells and monocytes of HIV-infected patients were associated with increased phenotype for 
glucose metabolism irrespective of cART 60,61.

Glycolysis is not regulated only by HIF-1 signaling. Along with the increased expression of HIF-1α accom-
panied by HIF-1 pathway markedly associated with hypomethylation, we observed that hypomethylated regions 
were also enriched for PI3K-Akt signaling in individuals undergoing virologic failure. Upon activation of AKT 
by a PI3K-dependent signaling, downstream cascades control a variety of elementary processes, which include 
glucose metabolism by increasing the activity of GLUT-162,63, bringing further support for the idea that methyla-
tion is associated with transcription of genes implicated on intracellular glucose metabolism in such individuals. 
However, further experiments are necessary to evaluate causality between methylation of individual regions and 
biologic pathways.

Some limitations in the present study must be emphasized. We recognize the absence of data related to the 
time of infection of each patient to correlate with differences in methylation. Although the results suggested that 
DNA methylation was associated with latently infected cells, our experiment was not designed to exclusively 
characterize latently HIV infected cells and does not allow the discrimination among latently infected cells, 
virus producing cells and uninfected bystander cells. While we found no statistic significance between hyper-
methylation levels within the gene promoters of virologic failures and responders groups, suggesting that similar 
hypermethylation rates between such groups might be associated with the viral rebound that responders would 
experience upon treatment interruption, we recognize that it is challenging to speculate the mechanistic role 
played by methylation alterations of individual genes in the viral rebound. Gene expression and methylation were 
inversely correlated, and distinct phenotypes for disease progression were associated with specific methylation 
patterns. However, it is not possible to establish causality, as methylation may reinforce transcriptional silence 
that was consolidated by other epigenetic modifications rather than cause the shutdown of gene  expression64. 

Figure 7.  Gene expression and methylation correlation. Pearson’s correlation coefficient of the subset 
of DEG genes with their corresponding differentially methylated promoter. For genes having more than 
one DMR (FRAS1 and MDS2), the mean difference in methylation was calculated and considered for the 
correlation analysis. Confidence intervals are shown in grey shading. DEG Differentially expressed genes, DMR 
Differentially methylated regions.
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Deconvolution analysis showed that the differences in  CD4+ T cell fractions were not statistically significant. 
However, the hypermethylation levels follow the same trend of  CD4+ T cell counts. The presence of multiple cel-
lular subpopulations might influence the methylation variability observed in epigenetic  studies65, once the PBMC 
are constituted by cellular lineages with differences towards their methylation  patterns66. Although the groups 
significantly differ in age, a previous report that developed an epigenetic clock to estimate the DNA methylation 
age of tissues and cells subsets showed that age causes minor effects on beta values of individual CpG  sites67. Fur-
thermore, our analyses were restricted to circulating cells and were based on a small sample size, particularly for 
the EC group, which could prevent some DMRs from reaching statistical significance. Future studies addressing 
whether and how the methylome is disrupted in other compartments that support HIV replication may deepen 
the knowledge regarding the impact of epigenetic modifications on HIV infection.

Nonetheless, we have shown that DNA methylation was associated with latently infected cells and natural 
control of HIV infection. Furthermore, we demonstrated the association between DNA methylation and expres-
sion of genes and cascades sustaining intracellular glucose metabolism in individuals undergoing virologic failure. 
Our findings highlight the dynamic nature of the methylation landscape in HIV infection, which may impact 
future studies aiming at HIV remission without the use of antiretrovirals.

Methods
Patients. Clinical and epidemiological data of HIV-1-infected subjects from the outpatients’ Clinics of the 
Federal University of São Paulo were analyzed, and candidates were selected from 2013 and 2014. Patients were 
asked about the possibility of taking part in the study voluntarily, and all the individuals enrolled in the study 
agreed and signed an informed consent term. The research was approved by the ethics committee from the 
Federal University of São Paulo (#51854). The methods were carried out according to the approved guidelines.

Patients were divided into (i) virologic responders group, in which viral loads were below detection limits 
during the preceding six months using cART; (ii) virologic failure group, consisting of detectable viral loads 
despite cART during the last six months; (iii) LTNP, antiretroviral naïve individuals presenting low detectable 
viral loads and stable  CD4+ T cell counts above 500 cels/mm3 for at least three years; (iv) EC, presenting undetect-
able viral loads and T  CD4+ counts above 500 cels/mm3 for at least seven years without cART. The control group 
consisted of HIV-1/HIV2 seronegative individuals, which were also negative for Hepatitis B, Hepatitis C, Chagas’ 
disease, Syphilis, Human T Lymphotropic virus-1 (HTLV-1), and Human T Lymphotropic virus-2 (HTLV-2).

CD4 + T cell counts, and viral loads were performed with the same samples used to perform Methyl-seq and 
RNA-seq. Viral load was assessed using the RT-PCR HIV-1 Abbott Real Time assay (Abbott Molecular Inc.), with 
a limit of detection of 40 copies/mL.

Purification of DNA and RNA. PBMCs were isolated with Ficoll Paque (GE Healthcare Life Sciences) and 
stored in liquid nitrogen undisturbed until nucleic acid purification. DNA purification was performed using the 
QIAamp DNA BLOOD MINI KIT (Qiagen, Valencia, CA), according to the manufacturer’s instruction. For the 
RNA purification, the QIAamp RNeasy Mini kit (Qiagen, Valencia, CA, USA) was used, according to the manu-
facturer’s instructions.

Methyl‑seq library preparation. Methyl-seq was performed using the SureSelect Methyl-seq Target 
Enrichment System for Illumina Multiplexed Sequencing kit (Agilent Technologies), according to the manufac-
turer’s instruction. Briefly, 3 µg of genomic DNA was sheared by sonication in a Covaris S2 (Covaris, Inc), and the 
extremities of the sequences were repaired, ligated to adapters, and hybridized with biotinylated probes designed 
to capture CpG-rich regions of the human genome. The libraries were treated with sodium bisulfite followed by 
polymerase chain reaction (PCR) with primers complementary to the adapters. DNA treatment with bisulfite 
converts non-methylated cytosines into uracyls and, during the PCR, uracyls were amplified in the complemen-
tary strands as adenine and then as thymine. Finally, different indexes were added to each sample for them to be 
sequenced in a multiplex.

Libraries were validated before sequencing using the Kapa Library Quantification kit (Kapa Biosystems), and 
the size of the fragments was analyzed using a Bioanalyzer 2100 (Agilent Technologies). For sequencing, libraries 
were denatured with NaOH at 0.1 N and sequenced at 12 pmolar. Sample pools were distributed along the seven 
lanes of the flow cell, and one of the lanes was spared for sequencing of the control using PhiX (Illumina, Inc). 
Sequencing runs of 100 paired cycles (2 × 100) were performed with the Hiseq 1500 platform, Illumina.

RNA‑Seq library preparation. Library for the RNA-Seq was performed using the Truseq Stranded mRNA 
Sample Prep KIT (Illumina, Inc), according to the manufacturer’s instruction. 1 µg of RNA was used for generat-
ing poly-A mRNA libraries from total RNA. Libraries were validated through quantification by real-time PCR 
using the Kapa Library Quantification kit (Kapa Biosystems), and the size of the fragments was analyzed using 
a Bioanalyzer 2100 (Agilent Technologies) and the High sensitivity DNA assay kit (Agilent Technologies). The 
concentration of all the samples was adjusted to 2 nM with Tris EDTA buffer. Sequencing of 100 paired cycles 
(2 × 100) was carried out in the Hiseq 2500 platform using the fast mode.

Bioinformatic analysis. FASTQ files for methylation analysis were processed using fastQC68 and Cutadapt 
(v. 2.10)69. Sequence alignment was run with Bismark v.0.19.170 and Bowtie 2 (v. 2.2.5) against the reference 
genome GRCh38 with the specified options: -q -L 19 –score-min L,0,-0.2 -p 4 -reorder -ignore-quals -no-mixed 
-no-discordant -dovetail -maxins 500. The remaining parameters from Bismark were used as default. BAM files 
were subjected to the Bioconductor package Methylkit (v. 1.12.1)71, and bases in CpG context covered in all 
samples with depth above 10X and Phred quality score above Q20 were considered to carry out differential 
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methylation analysis, hierarchical clustering, pairwise correlation coefficient, and Principal Component Analy-
sis (PCA)71. Bases having more than 99.9th percentile of coverage were excluded. To estimate sodium bisulfite 
conversion efficiency, the number of thymines was divided by total coverage for each non-CpG context. The 
percentage of methylation was calculated by dividing the number of cytosines by the total number of cytosines 
and thymines for each CpG context. Differential methylation analysis was performed creating non-overlapping 
tiling windows consisting of 100 bp, and the methylation percentage for a given region was compared against 
a control group. Methylkit employs logistic regression to detect Differentially Methylated Regions (DMR) and 
adjusts p-values to q-values with the Sliding Linear Model (SLIM)  method72 to correct for multiple testing. Since 
a methylation difference greater than 25% was associated with a twofold repression in the gene  expression73, we 
adopted a stringent moderate cutoff of ≥ 25% for methylation difference and a q-value < 0.01. GTF files contain-
ing genomic coordinates for DMR were annotated with Ensembl (v.92) to find DMR-associated genes. Biological 
pathway analysis for DMR was conducted through the WEB-based Gene SeT Analysis  Toolkit74 using a database 
from the Kyoto Encyclopedia of Genes and Genomes (KEGG).R  language75 (version 3.5.3) was utilized for sta-
tistical analysis. Hypo and hypermethylation difference among HIV groups were subjected to Kruskal–Wallis 
rank-sum test and Wilcoxon rank-sum test with Benjamini–Hochberg correction for multiple comparisons. 
Statistical significance for distances to TSS was calculated using the Wilcoxon rank-sum test. The cell fractions 
were estimated with the Bioconductor package EpiDISH version 2.10.076. The robust partial correlation (RPC) 
inference was coupled with the reference dataset FlowSorted.Blood.450 k.compTable77 to estimate the cell frac-
tions and the relative proportions for each cell subset were compared using the Kruskal–Wallis test.

The quality of the RNASeq libraries was evaluated using the  fastQC68. We next used BWA-mem (v 0.7.17-
r1188)78 for removal of contaminating ribosomal RNA (rRNA). The remaining reads were aligned to the refer-
ence genome GRCh37/hg19 using the STAR (v2.6.1a_08-27)79 aligner with paraments –chimSegmentMin 20, 
–limitIObufferSize 62500000 e-runThreadN 8. The resulting BAM files of accepted reads and GTF file with gene 
annotations (Ensembl v87) were used as inputs for HTSeq-count (v. 0.11.2)80 to obtain the gene-level counts. 
Using DEseq2 (v1.18.1)81, we assessed the differentially expressed genes among the samples. RNA-seq pathway 
analysis was performed according to the REACTOME  database82. Network analysis was carried out with the 
Cytoscape  platform83 coupled with GeneMANIA  plugin84.

We then mapped DMR to differential expression genes and the Pearson correlation was made by using R 
scripts. Accession numbers pending. Raw data available on request.

Ethics approval. The research was approved by the ethics committee from the Federal University of São 
Paulo (#51854).
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