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Fisiològiques, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet, Spain, and ‡Unitat de Transplantament de fetge i
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A B S T R A C T

In the present Hypothesis article, we summarize and present data from the literature that
support our hypothesis on the potential mechanisms by which UPS (ubiquitin–proteasome system)
inhibitors reduce I/R (ischaemia/reperfusion) injury in the liver. I/R is the main cause of primary
liver failure and, consequently, minimizing the detrimental effects of this process could increase
the number of suitable transplantation grafts and also enhance the survival rate of patients after
liver transplantation. A potential strategy to reduce I/R injury is the use of UPS inhibitors either
as additives to preservation solutions or as drugs administered to patients. However, there is still
controversy over whether the use of UPS inhibitors is beneficial or deleterious with regard to
liver injury. From our experience and the few studies that have investigated the role of UPS in
hepatic I/R, we believe that the use of UPS inhibitors is a potential strategy to reduce I/R injury
in liver transplantation and graft preservation. We hypothesize that one of the main mechanisms
of action of UPS inhibitors may be the up-regulation of AMPK (AMP-activated protein kinase)
activity and the consequent down-regulation of mTOR (mammalian target of rapamycin), which
may finally influence autophagy and preserve the energy state of the cell.

INTRODUCTION

I/R (ischaemia/reperfusion) injury, inherent in LT
(liver transplantation), is the main cause of initial
deficiencies and primary non-function of liver allografts
[1]. Therefore minimizing the adverse effects of I/R
injury could increase the number of both suitable
transplantation grafts and patients who successfully
recover from LT. The mechanisms involved in the

pathophysiology of I/R injury have been the focus of
previous extended reviews [2]. In essence, during the
ischaemic phase, blood flow and oxygen and nutrient
supply to the organ are inhibited, which stops energetic
metabolism, depletes ATP levels and renders the organ
more susceptible to blood reflow in the reperfusion
phase. In this last phase, a ROS (reactive oxygen species)
burst, as well as activation of pro-inflammatory cells
and mediators, takes place, enhancing organ injury
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even more [2]. A strategy to reduce I/R injury is the
use of UPS (ubiquitin–proteasome system) inhibitors
either as additives to preservation solutions or as drugs
administered to patients.

The multicatalytic proteasome is the ubiquitous
proteinase found in cells throughout the plant and animal
kingdoms that is responsible for the degradation of
intracellular proteins. The proteasome exerts multiple
intracellular functions, namely the degradation of
damaged proteins and the modulation of many regulatory
proteins that are involved in inflammatory processes,
cell cycle, metabolism, growth and differentiation among
others [3]. Several studies have proposed that UPS
inhibition is protective against I/R injury in different
organs. Majetschak et al. [4] proposed that proteasome
inhibitors may be useful in maintaining the physiological
ubiquitin–protein conjugate pool during cold ischaemia
in a model of murine heart transplantation, and thus
may prolong organ preservation. Other studies have in
fact demonstrated that proteasome inhibition can reduce
injury in models of isolated perfused rat heart through
a decrease in polymorphonuclear leucocyte adherence to
the endothelium [5]. On the other hand, other studies
have reported contradictory results. For instance, a
study on endothelial cells submitted to hypothermia
showed that the UPS pathway was activated during
cold preservation of endothelial cells, but proteasome
inhibition could not prevent cell damage [6]. Other
studies have reported a decrease in proteasome activity
in cerebral ischaemia [7]. A possible explanation for
this effect could be the ATP depletion observed in
ischaemia [7], since the UPS is an ATP-dependent
system. Interestingly, a study by Divald and Powell [8]
demonstrated that the UPS is able to degrade oxidized
proteins in an ATP- and ubiquitin-independent manner
in a model of myocardial ischaemia. This indicates that,
even though proteasome activity is decreased in ischaemia
and reperfusion, the remnant pool of active proteasomes
is able to maintain proteolysis even if the cell is depleted
from ATP. In addition, Geng et al. [9] have also shown
that a subset of 26S proteasomes is activated at low ATP
concentrations and that this contributed to myocardial
injury during cold ischaemia. Thus a subset of the 26S
proteasomes acts as a cell-destructive protease that is
activated when the cellular energy supply declines. In
that study, the administration of a proteasome inhibitor
resulted in preservation of the ultrastructural integrity of
the cardiomyocyte. Furthermore, a subsequent study by
the same group [10] revealed that proteasome inhibition
during cold ischaemia of hearts prolonged myocardial
viability and reduced reperfusion injury. Regarding the
methods used for the measurement of the activity of the
proteasome in all of these studies, analysis of Suc-LLVY-
MCA (succinyl-Leu-Leu-Val-Tyr-4-methylcoumaryl-7-
amide)-hydrolysing activities in the presence of ATP, at
a similar concentration, was used. Moreover, the latter

two studies used epoxomycin to differentiate between
peptidase and proteasome activities. In addition to all
of the above, UPS inhibitors have already been used
in models of organ transplantation and have shown
profound beneficial effects [4]. Finally, taking into
account their well-established immunosuppressive effects
[11], UPS inhibitors seem to be very promising candidates
for the preservation of organ integrity and function
during transplantation.

Concerning liver injury, the UPS system is still an
almost unwalked path, particularly in the hepatic I/R
field. Hence only a few studies have investigated the
UPS in the conditions mentioned above. The majority
of studies have investigated the effect of proteasome
inhibitors on liver injury and have shown that UPS
inhibitors were able to reduce injury, oxidative stress
and apoptosis in different models of hepatic injury
[12,13]. On the other hand, some studies have suggested
that proteasome inhibitors may not be beneficial, but
injurious [14]. Hence there remains a controversy over
whether the use of UPS inhibitors is beneficial or
injurious against liver injury, and the mechanisms are still
not clear.

There are several natural and synthetic compounds
that act as proteasome inhibitors. The use of all of
these inhibitors and their potential for the treatment
of human diseases other than hepatic I/R injury have
been considered in a previous review [15]. Some of
these compounds are far advanced in clinical trials for
their administration in humans. For example, synthetic
analogues of the bacterial metabolite lactacystin, which
inhibits proteasome activity, have been developed [16].
Among these, PS-519 (a small analogue of lactacystin)
is under clinical evaluation for inhibiting reperfusion
injury after ischaemic central nervous system injury
[16]. Another compound that has been approved for
clinical trials is bortezomib, a tripeptide consisting of
pyrazinoic acid, phenylalanine and leucine with boronic
acid instead of a carboxylic acid (Pyz-Phe-boroLeu).
Bortezomib has proven its therapeutic potential for
intervention of the UPS in cancer (Velcade; Millennium
Pharmaceuticals) and was approved by the US Food and
Drug Administration in 2003 [17].

HYPOTHESIS AND DISCUSSION

From our experience and studies that have investigated
the role of the UPS in hepatic I/R, it is clear that UPS
inhibitors are a potential strategy to reduce I/R injury
in LT and graft preservation. Moreover, we hypothesize
that UPS inhibition may improve graft preservation due
to an increase in AMPK (AMP-activated protein kinase)
activity and autophagy.

Previous studies from our group have reported that
the beneficial effects of ischaemic preconditioning in
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liver graft preservation was due to the up-regulation of
AMPK, among other mechanisms [18], and that AMPK
was also involved in steatotic liver preservation [18].
AMPK acts as a metabolic fuel gauge, which is activated
in response to diverse stress factors to restore cellular and
whole-body energy balance [19]. AMPK is allosterically
regulated by the competitive binding of AMP and
ATP, thereby ‘sensing’ cellular energy status and,
when activated, triggers compensatory ATP-generating
mechanisms while attenuating ATP-consuming processes
[20]. Knowing that AMPK is basically degraded, and
therefore regulated by the UPS [21,22], it appears that,
when administering UPS inhibitors, AMPK cannot be
degraded at the usual rate and therefore it is stabilized
and its action perpetuated.

In the rat, AMPK and the mTOR (mammalian
target of rapamycin) signal transduction pathway are
involved in the control of autophagic proteolysis [23].
The mTOR pathway is a key regulator of cell growth and
proliferation, and integrates signals regarding availability
of nutrients and growth factors to regulate many
cellular processes, including ribosome biogenesis and
metabolism [24]. mTOR is inhibited during energy
starvation and its inhibition stimulates autophagy [25].
Importantly, previous studies have demonstrated that
AMPK activation inhibits mTOR in several tissues
[26,27]. The lysosomal pathway, autophagy, renders
complete organelles and individual proteins to be
engulfed by a newly formed membrane, termed a
phagophore or isolation membrane, to form a double-
membrane vesicle, called the autophagosome, which is
delivered to lysosomes for hydrolytic degradation [28].
Autolysosomal degradation of membrane lipids and pro-
teins generates non-esterified ‘free’ fatty acids and amino
acids, which can then be reused to maintain mitochondrial
ATP production and ribosomal protein synthesis [29].
Autophagy is also activated in order to remove damaged
organelles and to stimulate phagocytic clearance of
apoptotic cells [30]. Previous studies have reported that
AMPK activation can induce autophagic proteolysis [23].
Induction of autophagy by AMPK may contribute to the
preservation of ATP content, as well as promotion of
cell survival in the ischaemic heart [31]. Furthermore,
activation of AMPK also enhances ATP production
through other multiple mechanisms, such as increases in
glucose uptake, glycolysis and fatty acid oxidation [32].

Nonetheless, although autophagy during energy
starvation is generally protective [31], its induction by
other stimuli can lead to autophagic cell death and thus
can be detrimental [33]. Previous studies have reported a
cross-talk between autophagy and apoptotic and necrotic
cell death pathways [34], and activation of autophagy may
favour cellular survival by decreasing ROS production
[35] and suppressing ER (endoplasmic reticulum) stress
[36]. It is thought that ER stress induced by I/R induces
autophagy in the heart as an adaptive mechanism [37].

Figure 1 Proposed mechanism for the protection exerted
by UPS inhibitors in hepatic cold ischaemia in the
reperfusion phase of LT

Moreover, a recent study by Esposti et al. [38] has shown
that the beneficial effects of ischaemic preconditioning
in steatotic livers undergoing I/R were due to the
activation of autophagy, which could modulate apoptosis
and necrosis and may be involved in the attenuation of
ER stress. Additionally, another study has reported that
ischaemic preconditioning increases autophagy in human
patients and this correlated with a decrease in liver cell
death [39].

Returning to our hypothesis (Figure 1), when AMPK
is up-regulated under UPS inhibition, mTOR may be
inhibited and therefore cannot exert its inhibitory effect
on autophagy. Consequently, proteolytic autophagy
would be enhanced. This would result in the preservation
of cellular ATP levels and thus prevention of cell
death. In addition, this induction of autophagy could
help the cell to get rid of oxidized proteins that can
damage the cell membrane and other cellular compounds.
Enhancement of AMPK activity also induces eNOS
[endothelial NOS (NO synthase)] activity and thus NO
production [40], which has been widely demonstrated
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to prevent endothelial cell damage [41]. Furthermore,
AMPK inhibits iNOS (inducible NOS) activity, which
is known for its injurious effects through the generation
of NO [42]. In addition, a link between NO and
autophagy has been demonstrated previously [43], and, in
endothelial cells, AMPK was shown to activate eNOS and
thus NO production, which promoted vasodilation [44]
and reduced leucocyte adhesion [45]. Moreover, AMPK
activity also acts on several downstream targets that
preserve the energetic state of the cell and prevent liver
I/R injury (reviewed in [46]). mTOR inhibition may also
enhance the compensatory up-regulation of upstream
survival kinases, such as PI3K (phosphoinositide
3-kinase) and Akt, which will also protect the cell from
apoptosis [47]. All of this correlates with previous studies
showing that ischaemic preconditioning can induce
autophagy in the liver and thus prevent cell death [38].

In addition to what has been discussed above, the
induction of autophagy is also beneficial against I/R,
because when autophagy is inhibited it is not possible
to remove dysfunctional mitochondria. Therefore these
mitochondria laden with ROS and calcium undergo the
mitochondrial permeability transition, which in turn
leads to the uncoupling of oxidative phosphorylation,
energetic failure, ATP depletion and ultimately cell death.
Therefore it is important that autophagy is induced
under ischaemic conditions and its induction can be even
more protective. This hypothesis is supported by the
finding that autophagy declines in aged organisms, which
correlates with the decrease in tolerance of aged patients
to I/R injury [48]. However, would the induction of
autophagy during reperfusion also be protective against
I/R injury? This question will be discussed below.

It should be taken into account that the induction
of autophagy may be protective against apoptosis and
cell injury if it is not too excessive. As mentioned
above, both protective and detrimental effects of auto-
phagy have been reported, and excessive induction of
autophagy may cause cell death. Furthermore, excessive
inhibition of the UPS may also result in cell death
as described above. However, as alternative proteolytic
pathways are active in the cell [49], it is expected that when
one of the systems for proteolysis in cells is inhibited,
other systems are able to degrade abnormal proteins that
may trigger cell death if present in large amounts and/or
for prolonged periods of time. In addition, differences in
the processes of ischaemia and reperfusion may account
for some of the discrepancies. Finally, even though
proteasome activity declines in post-ischaemic reperfused
organs, the remnant pool of active proteasomes is able to
maintain proteolysis even if the cell is depleted of ATP
[8]. This may explain why additional inhibition of the
proteasome during reperfusion may be protective against
I/R injury.

It is also noteworthy that autophagy decreases after
partial hepatectomy [50], suggesting that UPS inhibition

could also be beneficial in living donor LT, as it would
enhance autophagy and thus preserve ATP levels and
other molecules necessary for liver regeneration. Hence
UPS inhibition could also be beneficial in models of
reduced-size LT by both increasing liver regeneration and
protecting the liver against I/R injury.

In addition to the effect on AMPK activity described
above, additional mechanisms may well contribute to
the protective effects of UPS inhibitors in LT and
graft preservation. For instance, Stangl et al. [51] have
shown that the proteasome inhibitor MG-132 protected
cardiomyocytes from hypothermic injury through the
induction of HSP (heat-shock protein) 70 and 90,
which enhanced their survival and functional recovery.
Furthermore, others have implicated NF-κB (nuclear
factor κB) in the protective effect of proteasome
inhibition. For example, Pye et al. [52] have shown
that proteasome inhibition reduced reperfusion injury in
myocardial I/R through a decrease in NF-κB activation,
which in turn affected the recruitment of inflammatory
cells. A study of liver injury induced by intestinal
I/R showed that lactacystin inhibited NF-κB, and this
consequently reduced liver and intestinal injury and
neutrophil infiltration [53]. Alternatively, UPS inhibitors
could also be protective against I/R injury through
the modulation of HIF-1 (hypoxia-inducible factor-1),
which is well known for its role in cell adaptation to
hypoxia and its regulation by the UPS [54]. A study by
Shin et al. [55] has reported that proteasome inhibition
inactivates HIF-1, thereby suppressing the expression
of genes essential for cellular adaptation to hypoxia.
However, this could be considered a paradox as it is
well established that UPS degrades the α subunit under
normoxia to maintain HIF-1α inactivated. Thus UPS
inhibition should promote HIF-1α activation. In this
sense, previous studies have found that HIF-1α levels
were increased after proteasome inhibition in xenografted
tumours, although two genes which are usually up-
regulated by HIF-1 were down-regulated [56]. Further
studies will therefore be required to determine the
specific role of HIF-1 in proteasome inhibition and I/R
injury. Finally, a reduction in oxidative stress could also
contribute to the protective effects of UPS inhibitors
in the liver, as Bardag-Gorce et al. [13] have shown
that bortezomib decreases oxidative stress in a model
of rat alcoholic liver disease. In that study, bortezomib
increased the expression of antioxidant enzymes and
decreased the oxidative burst. Furthermore, MG-132
protected mouse hepatocytes from TNF-α (tumour
necrosis factor-α)-induced apoptosis [57].

CONCLUSIONS

In summary, we propose that the major mechanism by
which UPS inhibitors reduce I/R injury in LT and graft
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preservation is via the up-regulation of AMPK activity
and the consequent down-regulation of mTOR during
ischaemia, which may finally influence autophagy and
preserve the energy state of the cell. Nevertheless, addi-
tional mechanisms need to be considered. Future studies
will be required to determine the effects and mechanisms
of action of UPS inhibitors during cold ischaemia in LT.
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