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Hydrologic exchange between river channels and adjacent subsurface environments is

a key process that influences water quality and ecosystem function in river corridors.

High-resolution numerical models were often used to resolve the spatial and temporal

variations of exchange flows, which are computationally expensive. In this study, we

adopt Random Forest (RF) and Extreme Gradient Boosting (XGB) approaches for

deriving reduced order models of hydrologic exchange flows and associated transit

time distributions, with integrated field observations (e.g., bathymetry) and hydrodynamic

simulation data (e.g., river velocity, depth). The setup allows an improved understanding

of the influences of various physical, spatial, and temporal factors on the hydrologic

exchange flows and transit times. The predictors also contain those derived using

hybrid clustering, leveraging our previous work on river corridor system hydromorphic

classification. The machine learning-based predictive models are developed and

validated along the Columbia River Corridor, and the results show that the top parameters

are the thickness of the top geological formation layer, the flow regime, river velocity,

and river depth; the RF and XGB models can achieve 70% to 80% accuracy and

therefore are effective alternatives to the computational demanding numerical models

of exchange flows and transit time distributions. Each machine learning model with its

favorable configuration and setup have been evaluated. The transferability of the models

to other river reaches and larger scales, which mostly depends on data availability, is

also discussed.

Keywords: machine learning, random forest, extreme gradient boosting, spatial heterogeneity, transit time,

hydrologic exchange flows

INTRODUCTION

Hydrologic exchange flows (HEFs) are the dynamic two-way exchanges of surface and
subsurface waters and constituent substances (e.g., dissolved solutes) between a flowing
river channel and the surrounding sediments (Harvey, 2016). In particular, we consider
HEFs to represent water that leaves the surface channel, moves through the subsurface
environment for some time and distance, then re-emerges into the surface channel.
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Driven by spatially and temporally varying pressures across
the riverbed, HEFs lead to the exposure of surface water
constituents to mineral surfaces and microbiological agents that
reside in the subsurface environment. The subsurface transit time
determines whether kinetically controlled microbial reactions
have sufficient time to proceed to completion. These processes
promote biogeochemical reactions in the hyporheic zone that
represent a potential hotspot of nutrient and contaminant
transformations. For example, studies have shown that up to
96% of aerobic respiration in river corridors is associated with
sediments exposed to river water through hydrologic exchange
(Naegeli and Uehlinger, 1997).

Quantification of HEFs and transit time distributions has
been an emphasis of previous river corridor studies (Boano
et al., 2014; Cardenas, 2015). HEFs and transit times are
determined by the complex interaction among multiple physical
features and processes including river morphology (Boano et al.,
2007; Cardenas and Wilson, 2007; Tonina and Buffington,
2007; Cardenas, 2008; Stonedahl et al., 2013), sediment and
aquifer hydraulic properties such as permeability with spatial
heterogeneity (Cardenas et al., 2004; Salehin et al., 2004; Sawyer,
2015; Liu et al., 2020; Rajabi et al., 2020), and river flow
variations caused by both natural factors (e.g., floods, tides)
(Larsen et al., 2014; Musial et al., 2016) and human factors (e.g.,
dam operations) (Arntzen et al., 2006; Song et al., 2018). Many
previous studies have evaluated these factors individually, or in
the context of simplified system representations. More recently,
computational capabilities have advanced to allow simulation
of coupled surface-subsurface flows in three-dimensions at
relatively large scales and with simultaneous resolution of many
of these features (Shuai et al., 2019; Fang et al., 2020).

However, three-dimensional (3D) mechanistic simulation
of HEFs and transit time distributions (TTDs) remains
computationally intensive, especially for large river corridors,
and is not feasible for application at large watershed to
basin scales. Alternatively, data-driven machine learning (ML)
methods can be helpful in improving the capacity of the 3D
mechanistic simulation and scaling up to the large domains,
by capturing and quantifying the complex correlations between
multivariate model inputs and outputs that are descriptive of
the underlying physical system. Previous studies have proved
that ML models can achieve high prediction on accuracy in
hydrologic applications (Hsu et al., 1995; Tesoriero et al.,
2017; Barzegar et al., 2018; Mo et al., 2019; Nearing et al.,
2020). In this study, we adopted two ML models, Random
Forest (RF) and Extreme Gradient Boosting (XGB), given their
competitive capabilities to deal with system high-dimensionality,
nonlinearity, mixed numerical and categorical variables, highly
correlated predictor variables, as well as overfitting, and they
have been proven to be superior to traditional ML methods
in various case studies (Prieto et al., 2019; Yan et al., 2019;
Li et al., 2020; Tavares da Costa et al., 2020; Xenochristou
et al., 2020). Bagging/boosting techniques have been used to
get ensemble learners in which each individual member of the
ensemble is trained using a different training data set subsampled
randomly in both rows and columns from the full training data
set. This feature selection approach reduced spurious impacts of

multicollinearity and has been shown to improve the stability,
reliability, and the accuracy of the model even in the presence
of highly correlated input variables (predictors) (Strobl et al.,
2008; Dormann et al., 2013; Tomaschek et al., 2018). Based
on tree-based ensemble learning, RF and XGB offer essential
improvements and robustness over single learning algorithm by
constructing an ensemble of base and relatively weaker learners
to reduce bias and overfitting. Well-trained ML models provide
a means to construct models of HEFs and TTDs that can be
extrapolated to large domains, with algorithms trained based
on 3D mechanistic models of selected representative smaller
domains. In order to allow for further explain ability and
interpretability of data-driven ML models, tree-based methods
are among top choices because they can provide insights into
which variables exert the greatest controls on HEFs and TTDs
with quantitative measures.

This paper evaluates the feasibility of such an approach using
data and models from the Hanford Reach of the Columbia River
in the state of Washington, USA. Our study area is the Hanford
Reach located in the Columbia River Basin. A 3D groundwater
flow and transport model was built using PFLOTRAN-based
(Hammond et al., 2014) for the Hanford 100H area under
homogenous and facies-based heterogeneous (Hou et al., 2019)
riverbed conductance scenarios. The predicted transient velocity
field from PFLOTRAN, driven by variable riverbed boundary
pressures derived from a 2D river hydrodynamics model, has
been used as input to a particle trackingmodel to obtain exchange
fluxes and transit time distributions. The resulting model outputs
(HEFs and TTDs), together with a suite of physical variables
derived from both observational data and model products,
comprise a high-dimensional numerical data set of mixed data
types, which is used to develop ensemble tree-based ML models
(RF and XGB). The results are evaluated to determine the ML
model’s predictive power and identify those variables that most
strongly influence HEFs and TTDs in the model system. And the
favorable condition for applying ML model has been discussed.

MATERIALS AND METHODS

Study Site
The study site is the Hanford Reach, which is a section of the
Columbia River located in southeastern Washington State, USA,
as shown in the upper right panel of Figure 1. The reach extends
∼85 km from the tailrace of Priest Rapids Dam to the north end
of the city of Richland. River discharge in the Hanford Reach
is regulated by a series of upstream hydroelectric dams. The
river stage at the study site fluctuates up to 2∼3m annually
and ∼0.5m daily because of annual snow melting events and
power generation schedules (Arntzen et al., 2006). The model
domain is located at 100H area, marked as the yellow box in
Figures 1A,B. The riverbed sediment in the Hanford Reach is
predominantly coarse gravel ranging in size from granules to
boulders with fine sediments infilling gaps between large clasts
(Rakowski et al., 2006). The land surface in the area is relatively
flat, as shown in the land surface topography map (Figure 1B).
The unconfined aquifer in the river corridor consists of twomajor
geologic units: (1) the upper coarse-grained Hanford Formation
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FIGURE 1 | (A) Map of Hanford site; (B) Land surface topography of the model domain; (C) 3D representation of the model domain with various geologic units; (D)

2D cross-sections of the model domain. Locations of the cross-sections in (D) are as indicated in (C).

and (2) the lower less-permeable Ringold Formation (Thorne
et al., 2006). The Ringold Formation in the 100H area can be
further divided into three textural subunits, including Ringold
Taylor Flats, Ringold E, and Ringold Lower Mud (LM). In the
physical system, there is an alluvial layer on the riverbed that
is geologically and hydraulically distinct from the underlying
surficial aquifer. It is on the order of 1–2m thick as indicated by
geophysical surveys and direct push observations, and generally
has lower permeability and porosity than the underlying aquifer,
especially where underlain by the highly permeable Hanford
formation. Characteristic values of hydraulic conductivity and
porosity for each geologic unit are summarized in Table 1. The
model domain for 3D groundwater flow and transport model
with geologic units is in Figure 1C and the 2D cross-sections
at selected locations have been demonstrated in Figure 1D. In
our study, the river is fully connected with the surrounding
surficial aquifer.

TABLE 1 | Hydrogeologic properties of geologic units.

Hanford Taylor flats Ringold E Ringold LM

Horizontal hydraulic

conductivity (m/day)

6255.17 0.89 35.68 0.89

Anisotropy ratio 0.1 0.1 0.1 0.1

Porosity 0.20 0.43 0.25 0.43

Hydromorphic Unit (HU) Classification
HEFs are driven in part by local pressure variations
associated with interactions of surface flows with riverbed
morphology (hydromorphic structure). We hypothesized that
the characterization and mapping of hydromorphic features
could provide insights into the variability in HEFs and TTDs.
In related work being reported elsewhere (Hou et al., 2021),
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FIGURE 2 | Map of hydromorphic unit (HU) classes in the simulation area.

we developed a hydromorphic unit (HU) classification system
(Figure 2) that is used here for two purposes: (1) to assign
spatially variable riverbed conductance values in PFLOTRAN
simulations, and (2) as a categorical indicator variable in
the machine learning analysis. Both of these are discussed
further below.

The HU classification system is based on k-means clustering
applied to bathymetric data and hydrodynamic model outputs,
and results in maps of several classes of HUs with associated
descriptors as used in standard hydromorphic taxonomies [e.g.,
(Wheaton et al., 2015)], such as “run,” “fast glide,” “pool,” “slow
glide,” and others. For example, pools are characterized by large
depth, low to intermediate velocity, low riverbed slope, and
concave zones; while runs have intermediate depth, intermediate
to large velocity, low riverbed slope, and can be concave, flat,
or convex.

Coupled Surface-Subsurface Flow Model
A highly-resolved, 3D coupled surface-subsurface flow and
transport model was previously developed for our study site
(Fang et al., 2020). Here, we use the outputs of that complex
model to train machine learning models of system behavior that
can be used as surrogates for the computationally intensive and
data-demanding physics-based model. Here we provide a brief
summary of the methods used in the 3D model, and refer the
reader to (Fang et al., 2020) for additional details.

Fang et al. (2020) used the state-of-the-art massively parallel
subsurface flow and reactive transport code PFLOTRAN to
simulate the dynamic hydrologic exchange fluxes and subsurface
velocity fields. PFLOTRAN solves a system of nonlinear partial
differential equations to describe multiphase, multicomponent,
and multiscale reactive flow and transport in porous materials
(Hammond et al., 2014). The 3D Richards’ Equation for variably
saturated flow was solved for this study which can represent
both fully and partially saturated conditions. Therefore, it can
handle situations such as fluctuating water tables, seepage faces,
and so forth that occur even in this fully connected river-aquifer
system. The constitutive relationships used for saturation and
relative permeability were the van Genuchten (1980) and Burdine
(1953) models, respectively. The simulation period is from 2013
to 2015, which covers two normal flow years and a low flow year
in 2015.

As described in Fang et al. (2020), the 2012 results of a coarser
reach scale simulation in Shuai et al. (2019) were interpolated
to prescribe the initial and groundwater boundary conditions
of the modeled domain. The bottom boundary of the domain
was defined as no flow condition as it was constrained by the
low permeable Ringold units. The top boundary was also set
as no-flow as the surface recharge is negligible in the semiarid
climate zone (Rockhold et al., 1995). The inland boundaries
of the domain were prescribed as hydrostatic conditions, using
transient pressures interpolated from the reach scale simulation
in Shuai et al. (2019).

The transient river boundary condition was derived from
hourly river stages simulated using the Modular Aquatic
Simulation System in two dimensions (MASS2) simulator
(Perkins and Richmond, 2007), which is a 2D depth-averaged
river model. To represent a low permeable thin alluvium layer
at the sediment-water interface, a conductance type boundary
condition was imposed on each grid cell of the riverbed. The
conductance type condition is similar to a seepage face, which
dampens the effect of river stage fluctuations (Hammond and
Lichtner, 2010). For most of the simulations reported here, a
value of 1.0 × 10−12 m was applied homogenously across the
entire riverbed surface. To test the potential impacts of riverbed
heterogeneity on the model predictions, we also considered one
case in which different values of conductance were applied as a
function of the HU observed at each grid cell location, based on
the association of HUs with riverbed substrate size maps (Ren
et al., 2020). Table 2 lists the values of the conductance coefficient
assigned to each HU for homogeneous and heterogeneous cases.
The simulation domain has structured grids without adapted
meshing to changing slopes. Unstructured grids may better
present geological features following their boundaries and are
beneficial for mechanistic modeling in complex domains (Käser
et al., 2014; Su et al., 2020; Manzoor et al., 2021). But structured
grids have been commonly chosen for simulating large domains
given their sufficiency and computational affordability.

The maximum time step of the simulation is 1 h. The wall-
clock time for one simulation was 20 h or more (depending
on solution convergence) using 1,536 process cores on the
Cascade high performance computing (HPC) cluster at the
Environmental Molecular Sciences Laboratory (EMSL). 28.76
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TABLE 2 | Conductance coefficients (in m) of riverbed HU.

HU 1 HU 2 HU 3 HU 4 HU 5 HU 6 HU 7

Homogenous case 1.00 × 10−12 1.00 × 10−12 1.00 × 10−12 1.00 × 10−12 1.00 × 10−12 1.00 × 10−12 1.00 × 10−12

Heterogenous 1.37 × 10−11 4.89×10−13 1.15 × 10−11 1.11 × 10−13 4.80 × 10−13 3.49 × 10−14 5.29 × 10−13

terabytes of output in hdf5 format for each simulation were saved
on disc for post processing.

Particle Tracking Model
We used forward particle tracking to estimate the transit time
distribution (TTD) of surface water through the river corridor
subsurface aquifer by tracking the movement of water particles.
A classical semi-analytical particle-tracking algorithm (Pollock,
1994) was adopted in this study by using the velocity outputs
from PFLOTRAN as inputs; see details in (Song et al., 2020).

One hundred thousand (105) numerical particles were
randomly released along the river boundary of the PFLOTRAN
model domain at each of 1,000 time points randomly selected
between October 2013 and September 2014. The HEFs and
transit times of all particles were recorded for use in the
subsequent analysis. The exchange flux rate of each particle is
defined as the Darcy velocity modeled by PFLOTRAN at the
location and time of particle release. The transit time of each
particle is defined as the time elapsed from entering the riverbed
to exiting through the aquifer. Noted the terms “transit time” and
“residence time” have in some studies been used interchangeably
[e.g., (Cardenas et al., 2004; Stonedahl et al., 2010; Trauth et al.,
2013)], here we distinguish between transit time and residence
time, with the residence time being the elapsed time since a
subsurface particle of river water left the surface channel, and
the transit time being the residence time at the point of return
to the surface channel [e.g., (Schmadel et al., 2017)]. This particle
tracking exercise provided a large dataset that includes exchange
flux rate and transit times of 100 million particles. Each particle
was weighted according to the local exchange flux rate to reflect
the fact that more water enters in zones of higher exchange.
Transit time distributions (TTDs) are then defined as the flux-
weighted probability density functions (PDFs) of the time elapsed
between river water entering and leaving the river corridor.
We performed convergence tests with sequentially increasing
numbers of particles to determine that the number of released
particles was sufficient to provide stable estimates of transit time
and exchange flux rate distributions.

Predictor and Response Variables for
Machine Learning
A central objective of this research is to apply machine learning
models to relate simulated HEFs and TTDs from high-resolution
mechanistic simulations to variables that are relatively easily
observed or measured, both to provide alternative (surrogate)
predictors and to gain understanding of the relative influences
of a range of variables on HEFs and TTDs.

Here we define the set of input variables used as predictors,
and the summary metrics of HEFs and TTDs used as

response variables (predictions), in the machine learning
training and prediction process described below. Table 3

provides a summary of the input/predictor and output/response
variables, and the following paragraphs provide additional
details on their definitions. The inputs (predictors) can be
either continuous or categorical variables, and the set of
inputs comprises both observed (measured) variables and
simulated (modeled) variables from the high-fidelity mechanistic
simulations described above. The response (output) variables in
this case are both continuous variables and comprise summary
metrics of HEFs and TTDs computed from the outputs of the
high-fidelity mechanistic simulations.

Bathymetric and Hydrodynamic Attributes
Riverbed bathymetry and hydrodynamic features are thought
to be strongly related to HEFs and TTDs, and thus form one
important class of potential predictor variables.

For this study, riverbed digital elevation data were available
from prior analyses that combined LiDAR and field bathymetric
surveys to construct a complete bathymetric surface on a grid
resolution of 1m (Coleman et al., 2010). In addition to the
raw elevation (m above mean sea level) of the riverbed at a
grid cell, four derivative metrics of riverbed bathymetry were
extracted from the gridded elevation dataset. For each grid cell,
the slope and aspect were calculated using available functions
in the Environmental Systems Research Institute (ESRI) ArcGIS
platform. The slope represents the maximum steepness of the
riverbed surface within a grid cell and is calculated as the inverse
tangent of the rise divided by the run. The aspect represents
the compass direction associated with the steepest slope and is
measured clockwise from 0 to 360◦, with 0 being azimuth north.
For non-sloping (flat) cells, aspect is flagged with a value of
“−1.” The curvature (also called convexity or concavity) is the
second derivative of the surface elevation (the rate of change of
the slope). Positive curvature indicates the surface of the grid
cell is convex upward, negative curvature indicates the surface is
concave upward, and a value of zero indicates a flat surface. Thus,
the curvature variable is a continuous variable while the concavity
is categorical (convex upward, concave upward, or flat).

Hydrodynamic variables were also available from previous
simulations using the Modular Aquatic Simulation System 2D
(MASS2) code (Perkins and Richmond, 2007). MASS2 is a two-
dimensional (depth-averaged) hydrodynamic model that uses
an orthogonal curvilinear mesh. In the previous work, MASS2
was applied over a river reach ∼97 km in length, from Priest
Rapids Dam to near the mouth of the Yakima River. The model
used ∼710,000 computational cells with a nominal resolution
of 10m. MASS2 calibrations were performed using measured
water surface elevations at various locations along the Hanford
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TABLE 3 | Summary table of the ML model predictors and responses for the base configuration.

Bathymetric

attributes

Hydrodynamic attributes Flow regimes Geomorphologic

attributes

Predictors Continuous (real

number) variables

Elevation, slope, aspect

ratio, curvature

First four statistical

moments (over time) of

water surface elevation,

velocity, shear stress, and

water depth

Separate analysis

performed on data subsets

from each of the four flow

periods (P1, P2, P3, P4)

None

Categorical (discrete)

variables

Concavity None Flow period (P1, P2, P3, P4)

as categorical variable for

the case with all flow

periods combined

HU type, Hanford

Formation thickness

class

Responses Mean flux rate and transit time (averaged over all particles emplaced on each MASS2 grid cell).

All variables are defined at each of the MASS2 grid cells.

Reach, with mean absolute errors varying from 1 to 12 cm. A
transient simulation was performed over a long historical period
(1917–2012) for which discharge records are available. Because
of a series of upstream dams, flood discharges, and sediment
loads have been greatly reduced from natural conditions.
Sedimentological studies of our site (Fecht et al., 2004; Fecht
and Marceau, 2006; Hou et al., 2019) have determined that
the bed topography and surface sediment distribution (mostly
gravels and cobbles) are highly stable under the current flow
conditions. Therefore the underlying bathymetry was assumed
to be constant over the simulation period. Biologically our
system is oligotrophic, with insufficient organic matter to drive
enough growth of biofilms in the subsurface environment to
cause clogging. The primary source of organic matter to the
hyporheic zone appears to be particulates from a riverbed
surface layer of phototrophs (e.g., algae) penetrating into the
riverbed (Stern et al., 2017; Roden et al., 2019), and while
we are interested in this process because of its biogeochemical
implications, preliminary results indicate that this particulate
matter would be of insufficient volume to significantly impact
permeability or porosity. Therefore, we assume the riverbed
conductance does not vary temporally, although we recognize
that in some systems this may be an important consideration
(Gianni et al., 2016). Details of model calibration and long-term
transient simulation are documented in Niehus et al. (2014). For
each MASS2 grid cell, a number of metrics were computed from
the simulation outputs including the wet percentage (percent of
time the grid cell was submerged during the simulation period)
and statistical moments (mean, variance, skewness, and kurtosis)
of the water depth, velocity magnitude, riverbed shear stress,
and shear velocity. These metrics, together with the bathymetric
predictors described above (mapped onto the MASS2 grids) were
used as input predictor variables in the subsequent machine
learning analyses.

Geomorphologic Attributes
Two geomorphologic attributes were used as input predictor
variables: (1) the hydromorphic unit (HU) type assigned to each
grid cell of the model where particles were placed (see Section
Hydromorphic Unit (HU) Classification), and (2) the thickness
of the Hanford formation at the location of each grid cell (see

Section Study Site). The HU type is hypothesized to be related
to large-scale hydrostatic and dynamic pressure gradients that
drive HEFs, and the geometry of the highly permeable Hanford
formation is expected to strongly influence fluxes and flow path
lengths. HU type is inherently a categorical variable, and the
Hanford formation thickness was discretized into 28 bins to
create a categorical representation as well.

Flow Regimes
In a highly dynamic flow system such as the Columbia River’s
Hanford Reach, HEFs, and TTDs are likely to depend strongly
on the flow regime. River discharge in the Hanford Reach is
regulated by upstream dams and most directly by the Priest
Rapid Dam, a low-head hydroelectric facility at the upstream
end of the Hanford Reach. Hourly discharge data for Priest
Rapids Dam are available from the U.S. Geological Survey gaging
station 12,472,800, Columbia River below Priest Rapids Dam,
WA. The observed Priest Rapids Dam discharge time series
for the 2014 water year, which falls within the time period
of the PFLOTRAN groundwater flow simulation, is shown in
Figure 3. Four flow regimes were qualitatively defined from this
time series: (1) Period 1 (P1) from October 2013 to February
2014, a period with relatively stable moderate flow and a median
discharge of 86 kilocubic feet per second (kcfs), (2) Period 2 (P2)
from February to July 2014, a period with generally increasing
flow and median discharge of 160 kcfs; (3) Period 3 (P3) from
July to September 2014, a period with generally decreasing flow
and median discharge of 128 kcfs, and (4) Period 4 (P4) from
September to November 2014, a period of relatively stable low
flow and median discharge of 62 kcfs.

To test the hypothesis that HEFs and TTDs depend on flow
regime, machine learning analyses were conducted separately
for each of the four flow periods above, as well as for all flow
periods combined. For the analysis of the combined data, the flow
regimes were included as categorical input predictor variables.

Principal Component Analysis
It is likely that some or many of the variables defined above
as input predictors are linearly correlated with each other. For
example, the HU class is defined based on some bathymetric
and hydrodynamic variables used as input predictors. Therefore,
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FIGURE 3 | Discharge from U.S. Geological Survey gaging station 12472800, Columbia River below Priest Rapids Dam, WA for the period of approximately water

year 2014.

it may be possible to reduce the dimensionality of the input
predictor variable set, decreasing the computational demand
of training and executing machine learning models without
losing significant predictive power. Here we have explored this
possibility using Principal Component Analysis (PCA).

PCA seeks to replace p (more or less correlated) variables
by k < p uncorrelated linear combinations (projections) of the
original variables. Those k principal components are ranked by
importance through their explained variance, and each variable
contributes with varying degree to each component. It is helpful
to address potential multi-collinearity issues, but we note that
PCA does not take into account the potential multivariate nature
of the data structure (e.g., higher order interaction between
variables). On the other hand, PCA and clustering analysis can
at least provide some guidance on the actual dimensionality of
the predictor matrix before applying more complicated machine
learning models to help with physical interpretability of results.

The other use of PCA is that it can extract cross-dependence
structure among the predictors, therefore, in practice, if only a
subset of predictors are available, one can tell if all the major
variabilities or behaviors can be captured with existing data and
therefore provide guidance on future data acquisition needs or
evaluating the feasibility and transferability of ML models with
subset data.

Random Forest
An ensemble tree-based machine learning approach, Random
Forest (RF), was used here to address the high dimensionality
of the predictor variables and potential nonlinear relationships
among HEFs, TTDs, and the predictor variables. RF uses a
collection (ensemble) of tree predictors [h(x, Θk), k = 1, 2, 3,
. . . ] where theΘkare independent identically distributed random
vectors and x is the input vector (Breiman, 2001). To grow a RF,

each tree is grown using a randomly generated subset of the full
training data set by resampling randomly with replacement from
the original (full) training data set using a bootstrap aggregating
(bagging) technique.

Each tree comprises a series of decision nodes or branching
points at which the tree assigns the decision based on the
observations in its subset of the training data (Pal, 2005;
Rodriguez-Galiano et al., 2012). The final prediction is made
by averaging the predictions from all the individual regression
trees in the ensemble so generated. User-defined parameters
are required, including the number of trees in the ensemble
and the number of predictive variables used to split the nodes.
Previous studies have shown that bagging methods like RF
are not sensitive to outliers or noisy data (Briem et al., 2002;
Chan and Paelinckx, 2008). For each individual tree, those
input samples that were not included in the randomly generated
subset of training data are tracked as “out-of-bag” (OOB) data
in the bootstrap sample. The proportion of misclassifications
over all OOB data sets is called the OOB error and is an
unbiased estimator of the generalization error (Breiman, 2001;
Peters et al., 2007). The convergence of the generalization error
provides a means to estimate the required number of trees.
An advantage of RF is that it allows individual trees to grow
to the maximum possible depth using a given combination
of input variables (Mingers, 1989; Pal, 2005), and it also
provides measures of the relative importance of the features in
the predictions.

RF is well suited to analysis of high-dimensional data sets
including highly correlated input features, and it has been
successfully applied to analyses of soil microbial communities,
remote sensing classifiers, water resources data, and many earth
science problems (Heung et al., 2014; Naghibi et al., 2017;
Tesoriero et al., 2017).
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Extreme Gradient Boosting
Although RF models are known to generate effective predictions
while minimizing problems with overfitting, it is often useful
to compare multiple machine learning approaches on a given
data set. Here we use, in addition to RF, another widely accepted
ensemble machine learning model, gradient boosting model
(GBM) (Friedman et al., 2000). Like RF, GBM is tree-based, but
the primary difference is that RF builds each tree independently
while boosting-based GBM builds one tree at a time, with each
tree learning from and improving upon the previous one by
minimize the error which is also known as weighted tree-growing
algorithm. Each tree is growing with the modified version of
the original dataset based on previous trees built. While RF
combines results over the ensemble at the end of growing all trees,
GBM combines results throughout the tree-building process.
Relative to RF, GBM is more computationally intensive and
is more sensitive to noise in the training data set. Extreme
Gradient Boosting (XGB) (Chen et al., 2015) is adopted which
is built on GBM and designed to provide a scalable and efficient
implementation. User-defined parameters that can be used to
tune the XGB model are the number of trees, the boosting
learning rate, the number of splits in each tree, and the subsample
ratio of columns when constructing each tree.

This study was implemented using the open-source statistical
software R (R Core Team, 2018), within which the R
implementation of the H2O package (Aiello et al., 2016), a
scalable and distributed platform, was used for RF and XGB
model development, validation, and prediction.

SUMMARY OF MACHINE LEARNING
ANALYSES PERFORMED

This study used multiple different input variable sets and
two different machine learning models (RF and XGB) to
generate a total of 15 alternative analyses. Over the entire
simulation domain, both predictors and responses are defined
at approximately 55,000 MASS2 simulation grid cells (5–10m
spatial resolution). For development of the ML models with
optimal model configuration, this full data set was randomly
separated into training data (70%) and validation data (15%).
The remaining 15% of the data served as a third independent
data set to test the ML model performance. These three
separate components of the data set lead to well-tuned model
hyperparameters and an unbiased model estimation for both RF
and XGB models.

To clarify the different cases considered, we provide here a
brief summary overview of the analysis workflow, as follows:

The base configuration (C0), with input and output variables
as defined in Table 3 and homogeneous riverbed conductance,
resulted in 10 analysis cases [5 groupings of data, 4 for the
temporal subsets based on flow regime plus 1 for all flows
combined, each analyzed using 2 machine learning models (RF
and XGB)].

Three additional variable configurations were also considered:

C1: Same as the base configuration, but only considering the
combined flow regime and adding the map coordinates of each
grid cell as predictor variables. Two analysis cases (RF and XGB).

C2: Reduced set of input variables from the base case, with
the subset of variables selected using PCA analysis. Only the
combined flow regime was considered. Two analysis cases (RF
and XGB).

C3: Same as the base configuration, but only considering the
combined flow regime and using PFLOTRAN outputs based on
heterogeneous conductance values (see Table 2). One analysis
case (XGB only).

RESULTS

Wefirst present some overview results of the numerical modeling
exercise under the different flow regimes considered. We then
present ML model performance (in terms of prediction accuracy
on the testing data set) for analyses of the base configuration with
different treatments of flow regime. XGB and RF results can be
compared to determine favorable conditions for applying either
or both. For the base configuration, we present a comparison
between XGB and RF models in terms of the most influential
input variables and goodness of fit. Lastly, we present results for
the three additional configurations defined above.

Impact of Flow Regime on Flux and Transit
Time
The probability density functions (PDF) of exchange flux (m/h)
and transit time (hour, plotted on log scale) under the four flow
regimes of Figure 3 (P1, P2, P3, P4) as well as all flows combined
(All) are shown in Figure 4 for the base configuration (C0).
Within this configuration, model outputs were grouped under
the four flow regimes and considered as a whole. The increasing
flow regime (P2) is clearly distinctive from the other regimes,
with slightly larger magnitudes of exchange fluxes (HEFs) and
significantly longer transit times. The other three regimes have
similar distributions of HEFs and transit times, although the low
steady flow regimes (P4) appears to have the shortest transit times
among the four.

Figure 5 shows the RF and XGB model prediction scores (R2

of predictions vs. observations for the testing data set) for the
two predictor variables (flux and transit time), for each of the
flow regimes (P1, P2, P3, P4, and all flows combined), which
the top panel is based on RF model and the bottom panel is
based on XGB model. The plot indicates that for both RF and
XGB separation of the dataset into flow regimes for individual
ML analyses did not improve the performance. The use of flow
regimes as categorical indicators in the case of all flows combined
(“All” in Figure 5) leads to improved predictions over analyses
using individual flow periods. RF and XBG models performed
similarly in all these cases. In general, without the temporal
component in each flow regime-specific ML model, prediction
of HEFs is more accurate than that of TTDs. Prediction of
HEFs under the relatively stable low flow regime (P4) is the
best of the four flow regimes, but still poorer than that for
the all flows combined. Flow regime P2 has the lowest R2
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FIGURE 4 | Flux rate and transit time obtained from particle tracking under different flow regimes.

for HEF prediction, indicating that fluxes are more difficult to
predict under increasing flows. This suggests that the temporal
resolution can be relatively coarser for model simulation and
field measurement under stable flows but need to be more highly
resolved under an increasing flow regime.

Variable Importance—Base Configuration
With Combined Flows
The variable importance [or feature importance; (Saarela and
Jauhiainen, 2021)] represents the relative influence of each
input variable in the model predictions and can be estimated
using both RF and XGB models. Because the previous results
indicate the best performance is obtained using the combined
flow data set (with flow regime as a categorical input variable),
we focus here on the base configuration (C0) with all flows
combined. Figure 6 shows the 10 most influential input variables
with scaled importance based on the ML model for flux rate
(left panel) and transit time (right panel) where the top panel
is based on RF models and the bottom panel is based on
XGB models. For both RF models, the Hanford Formation
thickness (geomorphologic attribute), and the flow regime are
the most significant variables. For flux prediction, the remainder
of the top 10 are predominantly hydrodynamic attributes such
as the water surface elevation, shear stress and velocity. Both
hydrodynamic and bathymetric attributes (e.g., aspect, elevation)
strongly impact the prediction of transit times. In both cases,
hydrodynamic variables are dominated by the mean (first
moment), while the skewness (thirdmoment) of depth, and water
surface elevation are ranked lower.

The bottom panel of Figure 6 shows the 10 most influential
predictors with scaled importance based on the XBG model for

flux rate (left panel) and transit time (right panel). By comparison
to the RF results in the top panel of Figure 6, it is clear that
the ranking of variable importance varies significantly between
the two machine learning models. Notably, the flow regime
and Hanford Formation thickness, which dominated variable
importance for RF, are nearly absent from the top ten list for the
XGB model. For prediction of flux using the XGB model, the top
six variables belong to the hydrodynamic attributes including the
mean (first moment) of water surface elevation and velocity and
the first three moments of water depth. Bathymetric attributes
(slope and elevation) show up lower in the list, and the flow
regime (specifically P2) contributes as the tenth most important
parameter. The Hanford Formation thickness shows up only
as the fourth most influential variable in prediction of transit
times, andmost variables important to transit time prediction are
hydrodynamic or bathymetric.

Feature importance measures are often used in efforts to
increase the explainability of machine learning results. Here,
those key variables identified as most important differ depending
on the ML technique used, and while they represent physical
attributes or processes that are well known to influence HEFs
and TTDs, it is not yet clear to what degree these measures
are indicative of actual physical controls. While understanding
feature importance remains an active research area in explainable
AI, it has been suggested that combining multiple MLmethods is
necessary to increase interpretability of the predictions (Saarela
and Jauhiainen, 2021). In this work, the importance of several
input variables was identified by both ML models and is
consistent with understanding from previous studies, including
river bathymetry features (Cardenas and Wilson, 2007; Tonina
and Buffington, 2007; Stonedahl et al., 2013), flow regime (Sawyer
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FIGURE 5 | ML model prediction R2 on testing dataset for single-ML and flow regime-specific ML models, the top panel is RF model, the bottom panel is based on

XGB model.

et al., 2009; Larsen et al., 2014; Musial et al., 2016) and aquifer
properties (represented by Hanford thickness) (Salehin et al.,
2004; Shuai et al., 2019).

FURTHER ANALYSIS OF MODEL
PREDICTIONS—BASE CONFIGURATION
WITH ALL FLOWS COMBINED

Additional insight into the performance of model predictions can
be obtained by additional comparison of model predictions to the
testing data set. Here again we focus on the base configuration
(C0) with all flows combined into a single data set. Figure 7
shows a comparison of model predictions vs. testing observations
which the top panel is based on RF models and the bottom
panel is based on XGB models. In both cases, data points are
lumped into discrete categories and presented as box plots for
visual simplicity. Perfect predictions would be represented by
the centers of all box plots falling on a 1:1 line. We note
that although XGB model is slight better than RF with relative
narrower uncertainty bounds, the patterns in Figure 7 are very
similar in general, indicating similar performance of the RF and
XGB models for the base configuration. In general, the plots
indicate good correspondence between model predictions and

testing data. One notable exception is that both models struggle
to accurately predict short transit times, with transit times being
significantly overpredicted for the first two groupings for both
RF and XGB. We can also observe that the flux is most accurately
predicted when it is small (magnitude near zero).

Alternative Input Data Configurations
Here we wish to explore whether alternative input data
configurations (adding or removing input data variables) can
improve the machine-learning model predictions. We consider
two alternative data configurations to suit for different data
availabilities and provide the guidance within the different
ML models.

The first alternative configuration (C1) is the same as the
base configuration with all flow periods combined into a single
dataset, but with additional information added in the form of
the spatial grid coordinates of each grid cell. This additional
data may provide some information on spatial correlation or
relationship between different grid cells that is not captured in
the base configuration.

For the second alternative configuration (C2), we performed
PCA to identify sets of variables that were closely related
(and therefore perhaps contained duplicative information). PCA
analysis was performed using all predictors from the base
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FIGURE 6 | Top 10 variables in terms of scaled feature importance for the optimally trained ML model trained, for prediction of flux (left) and transit time (right). The top

panel is based on RF models and the bottom panel is based on XGB models.

configuration over the full time period. The results are shown
in Figure 8, in which the horizontal and vertical axes show
projections of the input variables onto the first- and second-
principal components (PCs). Color of the arrows reflect the
strength of the contributions of each variable to the first two
PCs. From this figure we observe that water surface elevation,
water depth, and their statistical moments primarily contribute
to the second PC (Dim2). Elevation, HU type, and Hanford
thickness can also be grouped based on their contributions to
the second PC. The shear stress and velocity variables form a
third group contributing strongly to the first PC (Dim1). Based
on the outcome of the PCA analysis, we selected a reduced set
of variables for inclusion in the input data for configuration
C2. These variables are the flow regime, Hanford formation
thickness, HU type, mean velocity magnitude, elevation, mean
water surface elevation, mean bottom shear stress, mean
shear velocity, mean water depth, and bathymetry slope. This
list can be compared to, and is significantly reduced from,

the list of variables for the base configuration as shown
in Table 3.

In comparison to the base case and C1, adding adjacent spatial
coordinates information has limited improvement on model
accuracy on bothMLmodel (Figure 9).With RF andXGBmodel,
about 2% improvement can be achieved on HEFs prediction
and < 1% improvement for TTDs prediction. This shows the
developed model has the strong transferability with satisfied
accuracy. For C2, the alternative configuration with reduced set
of input variables, model accuracy for HEFs prediction only
drops 8% and 3% for RF and XGB, respectively. To be specific,
the XGB model still can achieve ∼78% accuracy with reduced
input variable set, which indicates the strong transferability of
the model with limited data availability. In terms of the TTDs
predictions, variable configuration C2, the accuracies are 60 and
61% for RF and XGM. It shows that the transit time is more
complicated than exchange flux andmay be impacted bymultiple
variables and their interactions.
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FIGURE 7 | ML model prediction on testing dataset, the top panel is based on RF models and the bottom panel is based on XGB models.

Impacts of Heterogeneous Riverbed
Conductance
The impacts of heterogeneity in physical properties of riverbed
and aquifer materials such as hydraulic conductivity have
been previously evaluated in several studies (e.g., Tang et al.,
2015; Stonedahl et al., 2018). The inferred importance of
such heterogeneity can depend on the scale and character
of the heterogeneity considered as well as the specific
outcomes being predicted. Here we evaluated two cases, one
with homogeneous riverbed conductance, and the second
with heterogeneous conductance assigned based on identified
hydromorphic feature associations.

The PDFs of exchange flux and transit time under the
homogenous and heterogeneous cases in all flow regime are
shown in Figure 10. In general, the overall density patterns are
similar between the two cases, which is not surprising particularly
because the derived HEFs and TTDs response variables were
averaged behaviors of all particles, and such averaging smoothed
out the finer scale differences due to spatial heterogeneity. The
heterogeneous case tends to have slighter larger exchange fluxes

and transit time compared with homogenous case. The impacts
of the heterogeneity on HEFs and TTDs have been evaluated
through our framework.

For homogeneous-heterogeneous, only XGB was considered
(variable configurations C3 listed in Section Summary of
Machine Learning Analyses Performed), and using base case and
combined flow regimes (with categorical flow regime variable),
because XGB beats RF on the various model setups. The XGB
model predictions for both exchange flux and transit time on
testing dataset are shown in Figure 11 where data points are
lumped into bins. As shown in the top panel of Figure 11, good
matches were found between model predictions and reference
exchange fluxes for homogeneous-heterogeneous cases. Also, it
is noticeable that the heterogeneous case enhanced the variability
10 times more than the homogenous case in exchange flux
and the XGB model predictions are able to capture such
large variability.

The transit time predictions are challenging for both the
homogeneous and heterogeneous cases. For the transit times
longer than 10 h, the predictions are accurate for both cases.
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FIGURE 8 | Results of PCA analysis for the predictor variables. Dim1 and Dim2 are the first- and second- identified principal components, respectively, and the

arrows show the contributions of each predictor variable to those two principal components. Together, Dim1 and Dim2 capture over 55% of the total variance of the

entire dataset.

However, for the short transit times, especially for the transit
times less than 10 h, both homogeneous and heterogeneous
predictions are significantly overestimated. It indicates that short
term high frequency dynamic is more related to short transit time
processes which are not reflected by the current ML model setup.

DISCUSSION AND CONCLUSION

In this work, we adopted two ML approaches including RF
and XGB for deriving the reduced order models for HEFs
and TTDs along the Columbia River Corridor. Different model
configurations have been used for comprehensive understanding
of the influences of various factors such as spatial, temporal,
geomorphologic and hydrodynamic attributes on exchange
fluxes and transit times. Taking the advantage of the rich
dataset available at the study site, variable importance has been
ranked using different ML approaches. For the RF model,
geomorphology and flow regime are the most influential factors
for both HEFs and TTDs; while the hydrodynamic factors
lead the significance for XGB models. The most influential
predictors differ between the two ML models which indicates
the importance of model selection depending on the data
availability. Such data availability also attaches closely with model

transferability to other river or larger study scales. In general,
XGB performs better than RF, reaching 81 and 73% accuracy
in predicting exchange flux and transit time respectively under
the base configuration. The accuracies of models have been
compared under alternative configurations of reduced set of
input variables on both HEFs and TTDs to further demonstrate
the model transferability.

Although many physical factors are known to exert control
on HEFs and TTDs in coupled surface-subsurface flow, the
development of a reduced-order or surrogate model requires
variables that are easy to measure or compute at the
corresponding study site. For example, field observations of
local hydraulic gradients, a known primary controlling factor
in hydrologic exchange, are typically very sparse and limited
at most sites. Note that groundwater table elevations are
relatively stable compared to river stage or discharge, therefore
hydraulic gradient, which depends on the difference between
river stage and groundwater table elevation, can be expected
to be dominated by river stage fluctuations as a first-order
approximation. Fortunately, river stage is a far more easily
observed and simulated variable than hydraulic gradient, and
is therefore more useful for surrogate model development. The
dynamic pressure on the riverbed also depends on surface water
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FIGURE 9 | ML model R2 on testing dataset for different ML configurations, the top panel is based on RF models and the bottom panel is based on XGB models.

FIGURE 10 | Flux rate and transit time obtained from particle tracking for homogeneous and heterogeneous cases.
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FIGURE 11 | XGB model predictions for exchange flux (top) and transit time (bottom) on testing dataset for homogenous (left) and heterogenous (right) cases.

velocity and riverbed topography, introducing dependencies on
bathymetry and river discharge. We have selected input variables
for ourMLmodels that are relatively easily measured ormodeled.
We note that the ML validation tests reveal the extent to
which the input variables under consideration (e.g., river stage,
discharge, etc.) serve as reliable predictors of the desired outputs
(HEFs and TTDs in this case), thus we can determine whether
the variables we have chosen are sufficient or redundant for
HEF/TTD inference. We note that our surrogate model is based
on a fully connected river-aquifer system, and is not likely to be
applicable to disconnected rivers with partially saturated zones
beneath the riverbed (Schilling et al., 2017).

Compared with the physics-based numerical model, the wall-
clock time for each ML model has been reduced to 1 ∼ 2 h,
depending on the number of trees built in the model, with
24 process cores on a supercluster. Note that the ML model
development can be performed on local computer, where the
large physics-based numerical model is not feasible.

From the domain perspective, good correspondence between
model predictions and testing data has been observed for
exchange fluxes, but both RF and XGB models have clearly
overestimated the short transit times, because the transit time
has more complex distribution patterns with strong temporal
variability. It worth mentioning that the study site is a large-
regulated river, where the frequent daily dam operations have
impacted the short-transit-time high-frequency dynamics. Such
short-term dynamics cannot seem to be captured by the
current ML model setup. The temporal component in each
flow regime-specific ML model has been evaluated as well to
provide guidance on the suitable temporal resolution considering
expensive numerical modeling and field measurements.
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