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Tissue-specific gene expression has been found to be associated with multiple

complex diseases including cancer, metabolic disease, aging, etc. However,

few studies of brain-tissue-specific gene expression patterns have been

reported, especially in psychiatric disorders. In this study, we performed joint

analysis on large-scale transcriptome multi-tissue data to investigate tissue-

specific expression patterns in major depressive disorder (MDD) and bipolar

disorder (BP). We established the strategies of identifying tissues-specific

modules, annotated pathways for elucidating biological functions of tissues,

and tissue-specific genes based on weighted gene co-expression network

analysis (WGCNA) and robust rank aggregation (RRA) with transcriptional

profiling data from different human tissues and genome wide association

study (GWAS) data, which have been expanded into overlapping tissue-

specific modules and genes sharing with MDD and BP. Nine tissue-specific

modules were identified and distributed across the four tissues in the MDD

and six modules in the BP. In general, the annotated biological functions

of differentially expressed genes (DEGs) in blood were mainly involved in

MDD and BP progression through immune response, while those in the

brain were in neuron and neuroendocrine response. Tissue-specific genes

of the prefrontal cortex (PFC) in MDD-, such as IGFBP2 and HTR1A, were

involved in disease-related functions, such as response to glucocorticoid,

taste transduction, and tissue-specific genes of PFC in BP-, such as CHRM5

and LTB4R2, were involved in neuroactive ligand-receptor interaction. We
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also found PFC tissue-specific genes including SST and CRHBP were shared

in MDD-BP, SST was enriched in neuroactive ligand-receptor interaction,

and CRHBP shown was related to the regulation of hormone secretion and

hormone transport.

KEYWORDS

weighted gene co-expression network analysis, integrated analysis, tissue-specific,
major depressive disorder, bipolar disorder

Introduction

With recent advancements in omics study, microarray
technology is being increasingly used to uncover the underlying
mechanisms of mental illness (1, 2). Major depressive disorder
(MDD) and bipolar disorder (BP) are highly complex processes
characterized by progressive physiological changes throughout
all tissues, it has become increasingly clear that MDD and
BP have divergent effects on different tissues at both the
gene expression and physiological levels (3–6). In addition,
these studies have provided some evidence about the gene
expression profiling patterns for specific regions including the
cortex, amygdala, and blood, from relatively limited numbers
of participants. We should note that transcriptome studies,
examining insufficient numbers of participants, are frequently
biased toward the identification of high-abundance molecules,
producing results that are often difficult to replicate (7). By
combining individual microarray studies, integrated analysis
can effectively reduce the bias and provide an overall view of
gene expression patterns in larger sample sizes.

Meanwhile, the advantage of integrating expression-
profiling data according to the source of different materials
allows for precise isolation of tissue-enriched or tissue-specific
genes or pathways that contributed to mental illness (8). The
human brain is an important material for studying psychiatric
disorders, carrying out the immense complexity of its precise
circuitry, structure, and cellular diversity, and different brain
areas have distinct gene expression patterns which manage
tissue specificity (9). Although neuroimaging studies have
suggested several regional gray matter changes in specified
brain areas of MDD or BP, more evidence from different
perspectives still needs to be investigated of changes in brain
tissue-specific molecular signatures and functions in MDD and
BP (10–12). In the current study, we will explore the expression
specific characteristics of different areas by means of systematic
analysis of larger samples of brain tissues from both diseases.

Major depressive disorder and BP exhibit similar severe
depressive symptoms and show less difference in the duration
of affective episodes during the course of illness (13). These two
illnesses, which share some common phenotypic characteristics
and genetic risk factors, are influenced by a combination

of multiple genes (14, 15). Additionally, the significant loci
susceptible identified from GWAS studies have been found to
share genetic risk variants between BP and MDD (16). Another
objective of this study is to further determine gene expression
patterns and tissue-specific risk factors shared by these two
diseases. To clarify the similarities and differences in the tissue-
specific expression profiles between these two diseases, we
conducted 2 independent analyses [MDD dataset (MDD-), BP
dataset (BP-)], and 1 integrated analysis on both MDD and BP
dataset (MDD-BP), respectively.

Materials and methods

Collection of transcriptional profiling
data

All the transcriptomic datasets by the platform of mRNA
microarray expression profiling on MDD or BP were retrieved
using a comprehensive query of Gene Expression Omnibus
(GEO). We screened 36 datasets by the following conditions:
(1) The datasets included both healthy participants and patients;
(2) the datasets containing other factors such as smoking and
medication were removed. All demographic information of
each participant, which contained age, sex, etc., was extracted
from the selected datasets (Figure 1A and Supplementary
Table 1). Samples used to obtain mRNA expression-profiling
data originated from blood and brain tissues, including the
anterior cingulate cortex (ACC), amygdala (AMY), cerebellum
(CRE), hippocampus (HPC), prefrontal cortex (PFC), striatum
(STR), peripheral blood mononuclear cell (PBMC), and
whole blood (WB).

Identification and analysis of
differentially expressed genes from the
individual dataset

According to annotation information available on the
platform, the probes were converted into corresponding gene
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symbols, and the raw gene expression values of each gene in
different samples were retrieved as a data matrix, which was then
normalized with the approach of base-two log transformation.
The R Limma package (v.3.36) was used to process microarray
data for an individual dataset, the differences between patients
with MDD or BP and the control group were assessed using a
multivariate linear model (17). We selected DEGs with a p-value
of < 0.05 to screen tissue-specific genes and modules of MDD-,
BP-, and MDD-BP from a larger range of DEGs (with a relatively
loose threshold). DEGs were then analyzed for subsequent
integration analysis of the entire datasets and construction
of co-expression networks. Meanwhile, to exclude the false
positive possibility caused by confounding factors including age,
sex, PH, etc., a t-test analysis between gene expression and
demographic status of individual participants was performed,
and confounding factors genes were removed while looking for
tissue-specific genes (Figure 1B and Supplementary Table 2).

Tissue-specific co-expression pattern
by weighted gene co-expression
network analysis

Removal of batch effect and integration of
datasets

The differentially expressed gene expression values were
extracted from each dataset and merged into one data matrix
according to the same tissue type of two comparisons including
MDD vs. control and BP vs. control, thus the 8 data frames
from different types of tissues (n = 8) have been produced. One
study has reported that ComBat is superior to other methods
in terms of precision, accuracy, and overall performance (18).
Then, we applied the Combat function in the sva package to
remove batch effects caused by different technician repetitions
for the same material (19). This package based on the empirical
Bayes model is widely used to identify, estimate, and remove the
mutations generated in experiments from library construction
and DNA hybridization to eliminate batch effects. After batch
effect calibration, all the collaborated expression values from
different tissues for the MDD or BP patients were combined into
a final matrix genes (each row was a gene, each column was a
sample, and each unit matrix was a sample of mRNA expression
levels of a specific gene), which were directly used for subsequent
tissue specific co-expression network analysis.

Weighted gene co-expression network analysis
Weighted gene co-expression network analysis was

used to construct gene co-expression networks for large
scale gene expression profiling from various tissues (20).
Constructing a weighted gene network entails the choice of
the soft-thresholding power β (optimal parameter) to which
co-expression similarity is raised to calculate adjacency. We
chose a set of soft-thresholding powers ranging from 1 to 20,

using the pickSoftThreshold function. We calculated the scale-
free topological fitting index for several powers and emphasized
strong gene-gene correlations at the cost of weak correlations
(MDD- soft-threshold power = 7, BP- soft-threshold power = 1,
and MDD-BP soft-threshold power = 14), thereby providing
appropriate soft-threshold power for network construction
(Supplementary Figures 1A,D). Converting adjacency to
topological overlap can measure the network connectivity of
a gene, defined as the sum of the degree of adjacency between
all mutual genes in network generation. Based on Topological
Overlap Matrix (TOM) dissimilarities, a hierarchical clustering
function was used to group genes with similar expression
profiles into modules. Then, we merged the modules with
similar expression profiles (Supplementary Figures 1B,C,E,F).
In the process of MDD-BP analysis, topological overlap
matrices of different datasets may have different statistical
properties, so we illustrate a simple scaling that mitigates the
effect of different statistical properties to some degree. We scale
the MDD TOM as the same 98th percentile as the BP TOM.
Meanwhile, based on the same set of DEGs, we performed
WGCNA on MDD- and BP-, respectively, and then obtained
the same gene modules with different correlation coefficients
and p-values for MDD- and BP-. Next, we merged the above
two results into one based on the following standards. If a
module exhibits the same positive or negative in both of the
above two independent analyses, it would be regarded as a
consistent module, and the smaller value of the two correlation
coefficients mentioned above would be selected as the combined
value. Otherwise, if a module exhibits no consistency, it will be
regarded as an inconsistent module with all parameters of N/A.
This process had been demonstrated to study co-expression
data of different genders in the handbook of WGCNA
(horvath.genetics.ucla.edu/html/CoexpressionNetwork/
Rpackages/WGCNA/Tutorials/, II. Consensus analysis of
female and male liver expression data).

Annotation of tissue associated modules
The genes in a co-expression module possess a high degree

of connectivity. In order to identify the module specified with
tissues, an association analysis between tissues and modules
was conducted. The function of tissue-specific modules is
annotated mainly using the relationship and function of genes
in a module, illustrated using the following two aspects. In a
module, we selected genes with higher connectivity using the
two parameters GS and kME. The parameter kME represents
the correlation between the expression of the gene and the first
principal component of the module; GS reflects the correlation
between gene expression and tissue. We set | GS| > 0.6
and | kME| > 0.8 to screen genes in tissue-specific modules
(Supplementary Figures 2, 3 and Supplementary Table 3).
Second, the package of clusterProfiler was used to evaluate the
biological pathways and processes of tissue-specific modules
related to diseases (21). After inputting gene IDs that were
positively or negatively related to the disease, we performed
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gene ontology (GO) enrichment analysis examining biological
components, molecular functions, biological processes, and
KEGG pathways (22, 23).

Acquisition of robust differentially
expressed genes with robust rank
aggregation analysis

To measure the robust characteristic of DEGs from multiple
datasets, we performed RRA analysis of the datasets from the
same tissues of MDD or BP patients (24). Based on assumption
that each gene is randomly and freely arranged in each
dataset, the rank vector is scored using order-based statistical
analysis, and the final score of each vector is designated as the
minimum p-value. After values were corrected, we determined
whether the ranking of a particular gene reached statistical
significance, and genes with a p-value of < 0.05 were considered
significant robust ranking.

Major depressive disorder- or bipolar
disorder-related SNPs in genome wide
association study

For all genome-wide single nucleotide polymorphisms
(SNPs) significantly associated with MDD or BP, a
comprehensive query was made using the GWAS Catalog
Database of NHGRI-EBI, which contains GWAS analysis
documents and SNP loci. Studies from which variants were
collected are determined according to the following conditions:
(1) Studies must focus on either MDD or BP; (2) Studies
that have indirect phenotypic characteristics, such as obesity
and education level, were excluded (25). Finally, 36 GWAS
studies on MDD and 51 studies on BP were included and listed
(Supplementary Table 4). Raw data were preprocessed and
subjected to including merging of recurring risk variants and
annotation using ANNOVAR based on GRCh38 assembly (The
windows were –20 to 20 Kbp to the loci) (26). We combined
the genes obtained using RRA and GWAS and genes in tissue-
specific modules. The genes | GS| > 0.6 and | kME| > 0.8 in
tissue-specific modules, also present in RRA or GWAS, were
regarded as tissue-specific genes.

Results

Differentially expressed gene
identification and sample cluster of
major depressive disorder and bipolar
disorder

A total of 22 datasets covering 1,023 participants with
MDD and 14 datasets covering 697 participants with BP were

downloaded from the repository, and we established strategies
for identifying tissue-specific modules, annotated pathways to
elucidate tissue biological function, and tissue-specific genes
through integrated analysis of those datasets (Figures 1A,B).
Here, we focused on the DEGs and their distribution across
eight tissues in MDD- and seven tissues in BP- (There was
no dataset for AMY in BP). For each dataset, we conducted
confounding factor processing (Supplementary Table 2). In
the process of multi-datasets integration, we compared the
distribution of corrected values before and after the removal
to examine the effectiveness of batch effect removal during
combining the same tissue datasets. The boxplot showed a
more consistent expression level across samples after batch
effect performance, the treated batch effect is consistent,
which has a distinct distribution of raw untreated datasets
(Supplementary Figure 4).

The number of DEGs in different tissues for the MDD-
or BP- are shown in Figures 1C,E, respectively. Among the
different tissues in the MDD group, PFC tissues contained
the highest DEGs (n = 7,678), while HPC tissues contained
the lowest (n = 674). The two brain areas PFC and ACC
shared the highest intersection of DEG numbers in different
tissues (n = 1,487), followed by that between PFC and
PBMC (n = 1,139). For BP, PFC tissues contained the highest
DEG numbers (n = 8,089), while HPC contained the lowest
(n = 938). PFC and WB showed the highest intersection of DEGs
(n = 1,856), followed by those in PFC and PBMC (n = 1,965).

Then, expression matrices of these identified DEGs were
extracted from different tissues of patients (only used case
samples) with MDD- and BP-, including 481 and 295 samples,
respectively (Figures 1D,F). The hierarchical clustering analysis
across different tissues has shown that the brain area HPC
and STR have the shortest distance both in MDD and BP,
while the brain tissues and blood have the maximum distance.
Meanwhile, the tissues of PFC, ACC, HPC, and AMY from brain
tissues have the closest distance in the hierarchical dendrogram.
Thus, we speculated that the similarities or differences of
expression patterns across tissues almost reflect to be consistent
with the physiological functions and anatomical locations
among these tissues.

Determination of tissue specific
modules for major depressive disorder
and bipolar disorder individually

A total of 11,997 DEGs from the MDD tissues and 11,025
DEGs from BP tissues were combined into an overall expression
matrix as input data. Using WGCNA, 17 and 18 co-expression
patterns (modules) were assigned to the MDD- and BP- datasets,
respectively. Correlations between each module and each tissue
were evaluated to identify tissue-specific modules, for which the
threshold was set as an absolute value of correlation coefficient |
r| > 0.6 and p-value < 0.05.

Frontiers in Psychiatry 04 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.980315
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-980315 August 20, 2022 Time: 9:18 # 5

Han et al. 10.3389/fpsyt.2022.980315

FIGURE 1

(A) Schematic diagram of tissue source and sample quantity. (B) Technology roadmap. (C,D) Are intersections of the tissues and data were
transformed using Log2 as well as hierarchical clustering between different tissue samples in MDD. (E,F) Are intersections of the tissues and data
were transformed using Log2 as well as hierarchical clustering between different tissue samples in BP.

In MDD-, nine tissue-specific modules across different
tissues were identified and distributed across the 4 tissues,
including ACC [darkslateblue module (r = 0.6)], CRE
[lavenderblush3 module (r = 0.9), and brown4 module (r = –
0.83)]; PFC [bisque4 module (r = 0.8) and lightcoral module
(r = –0.94)]; PBMC [lightskyblue module (r = 0.85) and
darkolivegreen module (r = –0.96)]; and WB [lightgreen module
(r = 0.98) and saddlebrown module (r = –0.91)]. For BP-,
six tissue-specific modules were found in the tissues: CRE
[darkgreen module (r = 0.92) and greenyellow module (r = –
0.95)], PFC (pink module (r = 0.93) and brown module (r = –
0.94)], and PBMC [yellow module (r = 0.83) and blue module
(r = –0.98)].

Gene ontology and KEGG pathway analysis were conducted
to annotate the biological functions of these tissue-specific
modules (Supplementary Table 5). We speculated that these
tissue-specific modules have tissue-specific biological functions,
some functions have been widely reported in the literature,
and we illustrated this in the results (Figure 2). From the
GO results of MDD, the biological function of ACC associated
modules is mainly related to a histone modification and the
enriched GO terms are involved in the formation of the H4
Histone acetyltransferase complex; it has been suggested that
abnormal activation of histone modification and epigenetic
inhibitory system may be related to the pathogenesis of MDD

in ACC (27). In CRE tissues, the top significantly enriched GO
functions are mainly associated with mitochondrial membrane
formation and mitochondrial cytochrome transport, while
CRE in BP is associated with respiratory chains, such as
mitochondrial respiration and cellular respiration. Our view
is also supported by a meta-analysis showing that the loss of
mitochondrial electron transport chain complex in CRE has
an effect on MDD and BP (28). Interestingly, the epigenes of
PFC-associated modules are significantly enriched perception-
related functions, which are manifested in the conduction
of vision and taste, PFC in BP is associated with receptor
activity. Overall, blood pathways mainly belonged to the
immune-inflammatory imbalance and kynurenine pathway,
while brain tissue pathways were enriched in the hypothalamic-
pituitary-adrenal axis (HPA), circular rhythm abnormalities,
mitochondrial dysfunction and oxidative stress, and changes
in neuroplasticity and neurotrophic signaling. These ideas are
conforming to the accepted hypothesis that falls within mood
disorders (29–31).

Apart from these tissue-specific modules, we also found
that some tissue-unspecified modules have a high correlation
with two different tissues simultaneously, implying to share the
same biological functions. The cyan and dark orange module
correlated with both HPC and STR of MDD, and mainly
enriched in metabolism pathway and o-glycan biosynthesis,
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FIGURE 2

(A,B) Correlation and p-value between co-expression network modules and tissues in MDD- and BP-. Correlation coefficient and p-value are
shown, and we defined the absolute correlation coefficient > 0.6 and p-value < 0.05 as the tissue-specific module. (C–J) GO and KEGG
analysis results of certain tissue-specific modules. We focus on the tissue-specific module, the results of functional enrichment analysis showed
that ACC is related to histone modification, CRE is participant in mitochondrial and ribosome function, PFC is related to cognition, and blood
tissue have a primary role in immune function.

respectively. Similarly, the dark turquoise and light yellow
module also have a higher correlation with both HPC and
STR of BP, and the pathway analysis was related to nutrition-
related pathways. Interestingly, HPC and STR also have closer
distance and similarities in the above-mentioned hierarchical
clustering. The relationship between HPC and STR has also been
reported; HPC and STR are both related to temporal processing
of memory; the association between real-world experiential
diversity and positive affect relates to hippocampal-striatal
functional connectivity (32, 33).

Functional analysis of co-expression in
major depressive disorder bipolar
disorder

We screened a total of 7,987 genes (intersection of MDD-
and BP- DEGs) from the 7 tissue samples shared by MDD
and BP (except AMY) and constructed a co-expression network
module based on the matrix of these genes. After parameter
optimization, it is ensured that the characteristic genes of
each module have the same distribution in MDD-BP. The two
diseases of BP and MDD are analyzed for the correlation of
the organization, and then the results of the two correlations

analysis are merged. We focus on the modules with the
consistency of positive and negative correlations in the two
diseases and set N/A for the inconsistent modules (Figures 3A–
F, 4A).

We focused on the consistency module of MDD-BP and
observed that the white module in CRE, the black and magenta
modules in PFC, and the cyan module in PBMC showed similar
positive or negative tendencies. These results suggest that the
KEGG pathway of the black module in PFC (r = 0.67) was
mainly related to metabolism and neuronal processes, such as
carbon metabolism and neuroactive ligand-receptor interaction,
while the magenta module in PFC (r = –0.93) was mainly
involved in cortipair synthesis and secretion, glycosphingolipid
biosynthesis-lacto and neolacto series, and morphine addiction.
The cyan module in PBMC (r = –0.98) was correlated with
amino-acid metabolism-related pathways (Figure 4).

Joint analysis of tissue-specific genes
in different tissues

After GWAS systematic analysis, we obtained 678 and 790
disease-related genes, respectively (Supplementary Table 4).
The robust DEGs for RRA were sorted according to tissue logFC,
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FIGURE 3

(A) Hierarchical clustering using shared genes is similar to the clustering used for single disease. (B) Quantile-quantile plot of TOMs in MDD and
BP. The black points are TOMs before scaling, and the red points are TOMs after scaling. The closer the points lie to the reference line shown in
blue, the closer the distribution of TOM values in the two datasets. The closer the points in the graph are to the reference line marked in blue,
the more similar the TOM distributions of the two datasets are. (C) The hierarchical clustering graph between co-expression network modules.
Groups of eigengenes below the threshold represent modules whose expression profiles are too similar and should be merged. (D) Gene
dendrogram obtained by clustering the dissimilarity based on consensus topological overlap. The two-color rows show the preliminary
(unmerged) and final (merged) module assignments; in this study, 20 modules were obtained. (E,F) MDD and BP mainly contain modules with
consistent expression and inconsistent expression.

FIGURE 4

(A) Correlation between MDD-BP co-expression network and tissue. Here, the smaller absolute correlation coefficients and p-value between
MDD- and BP- was shown, while N/A represents for inconsistent modules. (B–E) We focus on the modules with the consistency of positive and
negative correlations in the two diseases, here we showed functional analysis of consistent modules, including CRE (white modules), PFC (black
and magenta modules), and PBMC (cyan module).

and the number of genes ranged from 148 to 469 in each tissue
type (Supplementary Table 6). Pearson correlation analysis
was further conducted with tissue-related gene expression
and demographic information of participants to exclude the
effect of confounding factors. These disease-related genes from

GWAS and RRA were verified carefully and were marked
with participating functions to determine tissue-specific disease-
related genes in MDD- or BP- group.

In MDD, we identified 163 tissue-specific disease-related
genes that participated in the function of the ACC, CRE,
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PFC, PBMC, and WB. In BP, we identified 122 tissue-
specific disease-related genes in CRE, PFC, and PBMC, and
16 tissue-specific genes in both MDD and BP from CRE,
PFC, and PBMC (Supplementary Table 7). Tissue-specific
genes were involved in several important biological processes
related to MDD and BP.

In MDD-, as the tissue-specific genes of the bisque4
module in PFC, IGFBP2 is mainly involved in response to
glucocorticoids and corticosteroids, while HTR1A participated
in an important sensory pathways: taste transduction. For
PBMC, the tissue-specific gene of the light skyblue module
is TNFSF4, which jointly plays a critical role in immune
response and regulatory T cell differentiation. For WB, tissue-
specific genes in the saddle brown module participate in the
immune-related pathway. In BP-, the pink module or PFC,
CHRM5, and LTB4R2 were the tissue-specific genes enriched
in neuroactive ligand-receptor interaction and calcium signaling
pathway. In the brown module, the tissue-specific genes PIK3R1
and WNT5A participated in the axon guidance and Alzheimer’s
disease. Tissue-specific genes of the PBMC yellow module
participated in the immune-related pathway.

In MDD-BP, we found the tissue-specific gene SST and
CRHBP in the black module of PFC in MDD and BP. The SST
gene was enriched in neuroactive ligand-receptor interaction,
and the tissue-specific gene CRHBP showed is related to the
regulation of hormone secretion and hormone transport. To
further validate the expression of SST and CRHBP genes in
MDD and BP, another dataset (GSE87610) was collected using
PFC obtained from patients with MDD and BP and healthy
controls. As shown in Figure 5, the mRNA levels of SST and
CRHBP were significantly downregulated in PFC obtained from
patients with MDD and BP. Based on the results of the WGCNA
analysis, it can be concluded that SST and CRHBP may be
candidate marker genes of MDD and BP.

Discussion

Tissue-specific genes are a class of genes that are highly
expressed in specific tissues and play a role in transcriptional
regulation, development, stress response, and even disease
development (34–36). Therefore, the study of brain-specific
genes is conducive to comprehensively understanding the
function and mechanism of mood disorder. Since Genotype-
Tissue Expression (GTEx) project has completed RNA
sequencing data of 1,641 samples across 43 tissues from 175
individuals and some tissue-specific genes, gene networks
and genetic variants have been identified to address each
respective tissue’s unique functions (37). A study described
the methods for analyzing numerical approximations of
tissue specificity of human genes to identify candidate
cancer biomarkers. The results show that most human
genes (nearly 98%) are expressed with low specificity in
many tissues, and only a few genes have very specific
tissue expression profiles. These tissue-specific genes are
important for selecting new therapeutic targets and new
diagnostic serum biomarkers (38). Another study developed
a computational pipeline for calculating the prioritization of
disease-gene candidates by integrating tissue-specific, gene
expression, protein-protein interaction networks, ontology-
based similarity, and topological measures. By means of
this pipeline, a list of 32 prioritized Alzheimer’s disease
(AD) genes were produced and two AD susceptibility genes
including PSEN1 and TRAF1 were correctly identified
(39). However, it is still very challenging to determine
the tissue-specific functions of various brain regions,
although the recent emergence of spatial transcriptomic
has provided the possibility to study the tissue specificity
of brain regions (40). To the best of our knowledge, this
study is the first to report on overall functional similarities

FIGURE 5

(A,B) Boxplot of SST and CRHBP expression in GSE87610. P-value of Anova analysis were also presented for each gene in Control, BP and MDD
samples.
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and specificities between tissues obtained from patients
with MDD and BP.

Weighted gene co-expression network analysis is essential
to elucidate co-expression patterns or hub genes from genome-
wide expression profiling (41, 42). Most WGCNA studies
focused on identifying the modules associated with certain
phenotypes and extracting the potential hub genes centered
as co-expression networks on the basis of connectivity. In
the current study, we utilized the algorithms of WGCNA
and explored the association between tissue and co-expression
patterns to identify the tissue-specific genes and pathways.
Single dataset analysis often makes the results difficult to repeat
due to the characteristics and errors of the data set itself (7),
and it is more to show the characteristics of its own single data
set. Similarly, there are risks in the data integration process,
and bias may come from removing batch effects from multiple
datasets or reducing the characteristics of a single set of data.
However, in general, the use of multi-data combined analysis
is more in line with the purpose of our research, which can
more comprehensively understand the overall occurrence and
development of the disease, and screen more credible and
reliable disease functional modules.

We emphasized the need to focus on tissue-specific modules,
the brain tissue-specific modules were analyzed to be at a
significant level for the association between co-expression genes
and tissues, which also reflect the biological functions of the
differential genes specifically enriched into a particular tissue of
patients who are depressed. In the study of MDD and BP, blood
and brain tissue samples are always the main sample sources. We
have included both kinds of tissues in our research to compare
their similar yet different aspects in the development of diseases
from an overall perspective. Our results showed that MDD and
BP blood samples contained several tissue-specific modules,
including epigenes enriched in immune and inflammatory
pathways, such as the Th1 and Th2 cell differentiation pathway
and human T-cell leukemia virus 1 infection pathway. Immune
and inflammatory pathways have been detected in MDD and BP
blood samples using single-disease analysis, indicating that the
two diseases are likely caused by an immune disorder affecting
the function of the CNS (43–45). Preclinical studies and those
examining postmortem brain tissues have shown that cytokine-
related inflammatory mechanisms play contributory roles in
depression. Additionally, compounds, including infliximab and
sirukamab, targeting inflammatory genes show antidepressant
effects (46, 47). Our present study also highlights the essential
role of inflammation-related immune processes in depression.
Interestingly, changes in the expression profile of blood can
partially reflect changes in brain tissue (48). In tissue similarity,
with respect to physiological function, HPC and STR are both
related to temporal processing of memory and hippocampal-
striatal functional connectivity. In sum, we presumed that
MDD and BP are systematic disorders having tissue-specific
abnormalities of the brain and blood.

On the basis of tissue-specific modules, we found 1,074
tissue-specific genes. Some of these genes have been reported
previously, while others were newly found in our present
study. IGFBP2, a tissue-specific gene in PFC tissues, mainly
responded to glucocorticoids and corticosteroids, appear to play
a governing role in insulin-like growth factor (IGF) regulation
in the central nervous system. This protein in the alterations
in neurodevelopment and neuroprotection has been observed
in mood disorder by another study (49). HTR1A, which is
one of the serotonin receptor polymorphisms (5-HTR1A, 5-
HTR2A), is suggested to be involved in the pathogenesis
of MDD and the antidepressant treatment response (50–
52). Tissue-specific gene CHRM5, which is one of the
receptors in the cholinergic system, and the antidepressant
imipramine have a better therapeutic effect (53, 54). Another
tissue-specific gene, LTB4R2, in which the exon region was
identified as the number one depression-related differential
methylation region (P = 1.27 × 10−14) (55). It has been
reported that PIK3R1 is a potential target of BP from the
genome and methylation groups, respectively, and a vector
machine was adopted to fit different gene combinations to
evaluate diagnostic value for bipolar disorder, the combination
“PIK3R1 + FYN” in the SVM model showed the best
diagnostic value (56–58). Our results indicate that WNT5A
is a tissue-specific gene in PFC, during neuro-development,
and in the adult brain, the Wnt signaling pathway plays a
crucial role in neural stem-cell proliferation, differentiation,
and migration, and in neuroplasticity and neurogenesis.
Wnt signaling is triggered in cell autonomously by time-
dependent expression of WNT5A and activation of non-
canonical signaling (59–61). ADCY2 is involved in cortisol
synthesis, and elevated cortisol levels affect HPA axis activity
(30, 31, 62). Therefore, tissue-specific genes may affect the
pathogenesis and pathophysiology of MDD and BP.

A recent meta-analysis examining genome-wide studies of
eight psychiatric disorders, including MDD and BP, found
that genetic factors were shared within these eight psychiatric
disorders (63). Psychiatric polygenic risk score (PRS) models,
based on genotypic and phenotypic data, can modestly
discriminate between MDD and BP (64). Our present study is
the first to use WGCNA and joint analysis to comprehensively
screen for sharing signature genes at the tissue level. We found
that tissue-specific genes SST and CRHBP were shared in
both MDD and BP; this finding was validated by independent
studies on MDD and BP, which are detailed in what follows.
Studies examining patients with MDD and human postmortem
brain tissues have shown that somatostatin, encoded by
SST, significantly decreases in the dorsolateral PFC (dlPFC),
subgenual anterior cingulate cortex (sgACC), and the AMY
(65). Studies in patients with BD also found reduced levels
of somatostatin and somatostatin-related neurons in various
brain tissues (66). Similar changes were found in patients
with schizophrenia and AD (67). These findings suggest
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that reduced somatostatin expression directly contributes to
mood dysfunction. A candidate gene association study has
shown that CRHBP is involved in modulating treatment using
SSRI antidepressants (68). Additionally, decreased CRHBP
expression has been shown in the tissues of men with MDD, BP,
and SCZ (69, 70). Combined validation of independent datasets
has shown that dysregulated mRNA expression of SST and
CRHBP is shared in MDD-BP, and this plays a critical role in the
etiology of mood disorders. These findings suggest that genes
found in our combined analysis can be used to obtain reliable
characteristics of gene-expression patterns and pathways.

Conclusion

In conclusion, our comprehensive integrated analysis of
multi transcriptional studies, GWAS, and RRA successfully
found tissue-specific gene modules and their function in MDD
and BP. Additionally, we investigated the co-expression patterns
and identified tissue-specific genes that play important roles
in mood disorders.
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