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Introduction
Chloroplasts are subdivided by three noncontiguous membrane 

systems into at least six suborganellar compartments that serve 

to segregate and organize several essential metabolic functions. 

The chloroplast outer and inner envelope membranes form the 

organelle boundary and effectively segregate chloroplast and 

cytoplasmic metabolism by controlling metabolite and ion 

transport (Joyard et al., 1998), whereas the internal thylakoid 

membrane performs the light harvesting and photophosphoryla-

tion reactions of photosynthesis. The vast majority of chloro-

plast membrane proteins are encoded in the nucleus (Bedard 

and Jarvis, 2005; Kessler and Schnell, 2006). As a result, the 

biogenesis of these membranes relies on the selective targeting 

and insertion of hundreds of proteins from their site of synthesis 

in the cytoplasm.

Except for the translocon component, Toc75, outer enve-

lope membrane proteins are targeted directly from the cyto-

plasm to the membrane via targeting signals contained within 

and adjacent to their transmembrane helices (Kessler and 

 Schnell, 2006). The majority of thylakoid membrane proteins 

contain cleavable N-terminal transit peptides that target them 

across the envelope. Import is mediated by the same translocon 

complexes within the outer (Toc) and inner (Tic) envelope mem-

branes that mediate the import of soluble proteins (Schnell, 

1998; Jarvis and Robinson, 2004). Upon import, thylakoid 

membrane proteins are released into the soluble stroma and 

 processed to remove their transit peptides, and intrinsic second-

ary targeting signals direct them to the thylakoid (Jarvis and 

Robinson, 2004). The protein translocons at the thylakoid are 

homologous to protein export translocons found in prokaryotic 

cytoplasmic membranes (e.g., Sec, SRP, and TAT pathways), 

indicating conservation in these targeting systems from the 

original bacterial endosymbiont (Keegstra and Cline, 1999; 

 Jarvis and Robinson, 2004).

The limited studies on targeting to the chloroplast inner 

envelope membrane (IM) leave open the question of whether 

nucleus-encoded proteins insert into the membrane during 

the import process via a stop-transfer mechanism or target to the 

membrane after the completion of import by inserting from the 

stromal side of the membrane. Two classes of nucleus-encoded 

integral IM proteins are known to exist. The fi rst class contains 

proteins that lack cleavable transit peptides (Miras et al., 2002; 

Nada and Soll, 2004). Although the targeting determinants for 

these proteins have not been completely defi ned, they appear 

not to use the Toc–Tic translocons for import.

The second, larger class consists of IM proteins, is synthe-

sized with cleavable transit peptides, and initially engages the 

Toc–Tic import machinery. The abundant inner membrane pro-

tein, Tic110, is a member of this class (Lubeck et al., 1996, 

1997). The analysis of deletion mutants and fusion proteins in-

dicates that the N-terminal region of Tic110, including its two 

transmembrane segments, is required for targeting to the IM 

(Lubeck et al., 1997). Interestingly, a fusion protein containing 

the N-terminal targeting determinants of Tic110 transiently 
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 accumulated as a soluble intermediate in the stroma before 

 inserting into the IM (Lubeck et al., 1997). In a subsequent study, 

dominant-negative mutants of Tic110 that disrupt Tic complex 

formation resulted in the accumulation of normal Tic110 in the 

stroma in vivo (Inaba et al., 2005). Consistent with the fusion 

protein studies, chloroplasts isolated from these mutants tran-

siently accumulated a soluble, mature form of Tic110 in in vitro 

import assays (Inaba et al., 2005). Collectively, the two studies 

suggested that Tic110 inserts into the membrane from the 

stroma after import.

In contrast to the studies with Tic110, in vitro import stud-

ies with several chloroplast polytopic membrane transporters 

led to the conclusion that IM proteins do not use stromal inter-

mediates en route to the membranes (Li et al., 1992; Brink et al., 

1995; Knight and Gray, 1995). In one case, soluble forms of fu-

sion proteins to the envelope phosphate translocator were ob-

served but were not shown to represent targeting intermediates 

(Knight and Gray, 1995). These results suggested that chloro-

plast IM proteins use a stop-transfer mechanism of targeting 

that results in direct insertion of the proteins into the inner 

membrane during import through the Toc–Tic system.

In this report, we wished to examine the process of target-

ing to the chloroplast IM by studying the import and insertion 

of a simple IM protein. To this end, we investigated the  targeting 

of pre-atTic40, a nucleus-encoded chloroplast inner membrane 

protein with a single transmembrane helix (Stahl et al., 1999; 

Chou et al., 2003). We show that the import and membrane 

 insertion of native pre-atTic40 involves a size intermediate that 

inserts into the inner membrane after import from the cytoplasm 

through the Toc–Tic machinery. Furthermore, we demonstrate 

that atTic40 and atTic110 can insert directly and selectively into 

isolated IM vesicles. These data are consistent with a pathway 

for the targeting of IM proteins that is independent of their 

 import from the cytoplasm.

Results
Import of pre-atTic40 involves 
a processing intermediate
A schematic diagram of the structure of Arabidopsis thaliana 

pre-atTic40 is shown in Fig. 1 A. The protein contains a 76-

amino-acid transit peptide that is removed upon import into 

chloroplasts. The single transmembrane helix is located within 

the N-terminal region between amino acids 106 and 127 of the 

preprotein with a C-terminal �35-kD soluble region extending 

into the stroma (Stahl et al., 1999; Chou et al., 2003). As a fi rst 

step in examining the targeting of pre-atTic40, we performed 

a time course of import of in vitro–translated [35S]-labeled pre-

 atTic40 into isolated pea chloroplasts (Fig. 1 B, lanes 2–4). In 

addition to pre-atTic40, two other major forms of atTic40 are 

apparent in the import assays. The polypeptide with the highest 

mobility was confi rmed to be mature atTic40 by comparing its 

mobility with that of endogenous atTic40 as detected by immuno-

blotting (unpublished data). In addition to mature atTic40, 

a major intermediate-sized form of the protein (int-atTic40) 

with a mobility between pre-atTic40 and atTic40 is observed in 

the import assays.

As a fi rst step in defi ning the relationship between int-

atTic40 and mature atTic40, we examined their  suborganellar 

location. To this end, chloroplasts from each time point in 

import were treated with thermolysin or trypsin (Fig. 1 B). 

 Thermolysin has been shown to digest proteins that are exposed 

at the chloroplast surface, but it does not penetrate the outer 

membrane (Cline et al., 1984). In contrast, trypsin can pene-

trate the outer membrane and access the intermembrane space, 

digesting envelope proteins that are not protected by the inner 

membrane (Cline et al., 1981, 1984; Jackson et al., 1998). Fig. 1 B 

Figure 1. atTic40 targeting involves a size intermediate. (A) Schematic 
representation of the structure of pre-atTic40. The numbers indicate the 
 positions of amino acid residues within the primary structure. (B) In vitro–
translated [35S]pre-atTic40 was imported into isolated pea chloroplasts for 
the times indicated. Equivalent portions of each import reaction were 
treated in the absence (untreated) or presence of 100 μg/ml thermolysin 
(T-lysin) or 50 μg/ml trypsin to remove protein that was not fully imported. 
The total chloroplast fractions from each treatment and time point were 
 analyzed by SDS-PAGE and phosphorimaging. (C) [35S]pre-atTic40 was 
imported into isolated pea chloroplasts for 5 min. Equivalent portions 
were treated with the indicated concentrations of thermolysin or trypsin. 
(D) Quantitative analysis of the levels of protease-resistant int-atTic40 and 
mature atTic40 from the import reactions in B. (E) Chloroplasts from a 5-min 
import reaction were treated with 200 μg/ml trypsin or thermolysin in 
the presence or absence of 1% Triton X-100 as indicated. The samples 
were analyzed by SDS-PAGE and phosphorimaging to detect imported 
[35S]pre-atTic40 (left) or immunoblotting to detect Toc75 (right). (F) Pre-
 atTic40 is processed to int-atTic40 by the SPP. In vitro–translated pre-atTic40 
(lanes 1 and 2), int-atTic40 (lanes 3 and 4), or pretriose phosphate trans-
locator (pre-TPT; lanes 5 and 6) was incubated in the presence (+) or 
 absence (−) of a chloroplast stromal extract containing the SPP.
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demonstrates that mature atTic40 accumulates with time and 

becomes increasingly insensitive to either protease, consistent 

with targeting and insertion in the IM (Fig. 1 D). Similarly, the 

portion of int-atTic40 that is insensitive to protease digestion in-

creases with time, rising from 8–10% at 2 min to 40–45% of the 

total int-atTic40 at 30 min (Fig. 1 D). Toc75, a protein deeply 

imbedded in the outer membrane, is not digested with thermo-

lysin but is nearly completely degraded with trypsin (Fig. 1 E), 

confi rming the differential accessibility of the two proteases to the 

envelope compartments. These data suggest that int- atTic40, 

like atTic40, accumulates inside the inner membrane, where 

neither thermolysin nor trypsin can access the polypeptide. Both 

pea and A. thaliana chloroplasts gave similar patterns of  import, 

confi rming that the intermediate-sized product was a true import 

product and not an artifact of the heterologous import system 

(Fig. S1 A, available at http://www.jcb.org/cgi/content/full/

jcb.200605162/DC1). Pea chloroplasts were used for all subse-

quent experiments.

To ensure that the lack of atTic40 and int-atTic40 prote-

olysis was not a result of incomplete digestion, samples from 

the 5-min time point in import were treated with a range of 

thermolysin and trypsin concentrations (Fig. 1 C). Increasing 

the protease concentrations had no effect on the proportions 

of protease-insensitive atTic40 or int-atTic40. Furthermore, the 

addition of Triton X-100 to the samples before protease treat-

ment resulted in complete degradation of int-atTic40 and at-

Tic40 (Fig. 1 E), indicating that the proteins are not intrinsically 

protease resistant. These data confi rm that both forms are local-

ized inside the inner membrane.

Although atTic40 and int-atTic40 accumulate inside the 

chloroplast with time, a portion of each population is sensitive 

to both proteases. The highest levels of sensitive forms are ob-

served at early time points in import (Fig. 1 D). Their sensitivity 

to both proteases indicates that they are exposed at the surface 

of the chloroplast and therefore appear to be in the process of 

import into the organelle. These forms are similar to import inter-

mediates observed with stromal preproteins that are captured 

within the Toc–Tic machinery (Waegemann and Soll, 1991; 

 Olsen and Keegstra, 1992; Schnell and Blobel, 1993).

To obtain additional evidence that int-atTic40 accessed 

the stroma, we tested whether the stromal processing peptidase 

(SPP) that cleaves the transit peptides of soluble proteins 

(Lamppa and Abad, 1987; Abad et al., 1989) was involved in 

converting pre-atTic40 to the intermediate form. Analysis of the 

pre-atTic40 sequence identifi es a potential SPP processing site 

after amino acid 42 of the transit peptide (Emanuelsson et al., 

1999). Incubation of in vitro–translated pre-atTic40 with a stro-

mal extract results in the conversion of 35% of the precursor to 

an intermediate-size form coincident in size with int-atTic40 

(Fig. 1 F). The processing by SPP is likely to occur at the pre-

dicted cleavage site (residue 42) because the mobility of a trun-

cated form of pre-atTic40 lacking the fi rst 42 residues is identical 

to int-atTic40 (Fig. S1 B). Furthermore, the truncated form is 

not cleaved by the stromal extract (Fig. 1 F), eliminating the 

possibility of processing at another site. As a control, we also 

tested cleavage of the precursor to the triose-phosphate translo-

cator (pre-TPT; Knight and Gray, 1995). As expected, 50% of 

pre-TPT was converted to its mature form in the assay (Fig. 1 F). 

These data provide additional evidence that int-atTic40 is 

 exposed to the stroma before IM insertion and processing to 

mature atTic40.

To determine if fully imported int-atTic40 and mature at-

Tic40 had reached the IM, we fractionated chloroplasts from 2-, 

5-, and 30-min import reactions. The samples were treated with 

trypsin to remove external or partially imported atTic40, osmot-

ically lysed and separated into membrane and soluble fractions. 

As expected, the majority of mature atTic40 (�75%) parti-

tioned with the membrane fraction at the 5-min and 30-min 

time points (Fig. 2 B, left). In contrast, 88–94% of int-atTic40 

was not associated with the membrane at the three time points 

(Fig. 2 B, right). Collectively, the data in Figs. 2 and 3 suggest 

that the protease-insensitive form of int-Tic40 is soluble and 

 located in the chloroplast stroma.

Int-atTic40 is the precursor 
to mature atTic40
To confi rm that int-atTic40 is a true intermediate on the path-

way of IM targeting, we tested whether int-atTic40 was the 

precursor to mature, membrane-integrated atTic40. For this 

experiment (Fig. 3 A), chloroplasts were incubated with pre-

atTic40 in the presence of 0.1 mM ATP to form an early import 

intermediate that is inserted in the Toc–Tic machinery but has 

not fully crossed the envelope (pulse; Olsen et al., 1989; Olsen 

and Keegstra, 1992). The chloroplasts were isolated to remove 

any unbound translation product (Fig. 3 A, lane 1) and resus-

pended under import conditions to promote import of the early 

intermediate. Chloroplasts from each time point during the 

chase were lysed and separated into soluble and membrane 

fractions. As expected, bound pre-atTic40 was quantitatively 

converted to mature atTic40 after a 30-min chase (Fig. 3 A). 

Figure 2. The int-atTic40 accumulates in a chloroplast soluble compartment. 
(A) [35S]pre-atTic40 was imported into isolated pea chloroplasts for the 
times indicated. After import, the chloroplasts were treated with 50 μg/ml 
trypsin and reisolated, and the total fraction (T) was separated into 
 membrane (M) or soluble (S) fractions by osmotic lysis. The samples were 
analyzed by SDS-PAGE and phosphorimaging. Lane 1 contains 20% of 
[35S]-labeled pre-atTic40 (IVT) added to the original import reaction. 
(B) Quantitative analysis of the distribution of mature atTic40 (left) or int-
 atTic40 (right) between the soluble and membrane fractions of chloroplasts. 
N.D. indicates that the sample was below accurate detection levels.
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Both forms were predominantly associated with the membrane 

fraction. The abundance of total int-atTic40 peaks at 2 min of 

chase and then largely disappears by 30 min (Fig. 3 B). The 

peak of int-atTic40 follows the decrease in pre-atTic40 and pre-

cedes the accumulation of mature atTic40 (Fig. 3 B), consistent 

with it representing an intermediate in the conversion of pre-

atTic40 to atTic40. Furthermore, int-atTic40 accumulates in the 

soluble fraction of chloroplasts before conversion to atTic40 

(Fig. 3 A). Treatment of the chloroplasts from each time point in 

the pulse-chase experiment with thermolysin demonstrates that 

protease-resistant forms of both int-atTic40 and mature atTic40 

accumulate during the chase (Fig. 3 C). As expected,  membrane-

integrated atTic40 attains 90% protease resistance after the 

30-min chase (Fig. 3 D). The soluble int-atTic40 is almost 

 completely protease resistant at 7.5 min into the chase (Fig. 

3 D), confi rming that the intermediate is passing through the 

stroma en route to its insertion into the membrane.

To test whether int-atTic40 was the direct precursor to at-

Tic40, we performed a variation of the pulse-chase experiment. 

For this assay, isolated chloroplasts were incubated with pre-

 atTic40 for 5 min under import conditions to accumulate soluble 

int-atTic40 (Fig. 4 A). The chloroplasts were chilled to stop the 

import reaction and were treated with trypsin to remove pre-

atTic40 and int-atTic40 that had not been completely  imported 

into the organelle (Fig. 4 A). The treated chloroplasts were iso-

lated to remove the protease and incubated again under import 

conditions for 5 or 60 min (Fig. 4 A). The soluble int-atTic40 

that accumulated after 5 min of import could be quantitatively 

converted to membrane-integrated mature atTic40 by the addi-

tional incubation (Fig. 4 B). On the basis of these results, we 

conclude that the targeting of atTic40 involves a soluble inter-

mediate that targets to the IM after import into the stroma.

The intermediate region of int-atTic40 
is not essential for membrane targeting
A previous study on the import of pea Tic40 into isolated 

 chloroplasts did not report a size intermediate in IM targeting 

(Stahl et al., 1999). Although we observed a soluble intermediate 

with characteristics similar to int-atTic40 when we repeated 

import with pea pre-Tic40 (unpublished data), the size of the 

intermediate was only slightly larger than the mature protein, 

indicating that the intermediate processing site is distinct from 

that in pre-atTic40. The difference in processing between pea 

and A. thaliana Tic40 raised questions about the role of 

the  intermediate processing. Therefore, we tested whether the 

C-terminal region of the atTic40 transit peptide plays a role in 

IM targeting.

Figure 3. Int-atTic40 is an intermediate in the import and membrane tar-
geting of mature atTic40. (A) [35S]pre-atTic40 was incubated with isolated 
chloroplasts in the presence of 100 μM ATP to promote formation of an 
early import intermediate. The chloroplasts were isolated and incubated in 
the presence of 2 mM ATP to promote import of the bound pre-atTic40 for 
the times indicated (chase). The chloroplasts were separated into mem-
brane and soluble fractions by osmotic lysis and analyzed by SDS-PAGE 
and phosphorimaging. (B) Quantitative analysis of the total amounts of 
[35S]-labeled pre-atTic40, int-atTic40, and mature atTic40 in the combined 
soluble and membrane fractions from A. (C) Samples from the same import 
experiment in A, but the intact chloroplasts were treated with 100 μg/ml 
thermolysin before separation into membrane and soluble fractions. 
(D) Quantitative analysis of the percentage of protease-resistant int-atTic40 
or mature atTic40 (from C) relative to the total amount of each species 
(from A) at each time point in the import experiment. The samples in A and C 
were generated from the same import experiment and were analyzed on 
the same SDS-PAGE gel.

Figure 4. Soluble int-atTic40 is the immediate precursor to membrane-
inserted atTic40. (A) [35S]pre-atTic40 was imported into isolated pea chlo-
roplasts for 5 min. The chloroplasts were treated with trypsin, reisolated, 
and incubated under import conditions for the times indicated. After im-
port, the total chloroplasts (T) were separated into soluble (S) and mem-
brane (M) fractions. Lanes 2–4 contain total, membrane, and soluble 
fractions from the 5-min import reaction before protease treatment and 
subsequent incubation. (B) Quantitative analysis of the levels of total int-
 atTic40 and mature atTic40 at each time point in the postimport incubation 
of trypsin-treated chloroplasts.
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We generated a series of increasingly larger deletion mu-

tants in the intermediate sequence (residues 43–76; Fig. 1 A) 

and examined their import and insertion properties. All dele-

tions disrupt the putative processing site that gives rise to ma-

ture atTic40. Elimination of the four C-terminal residues of the 

transit peptide does not signifi cantly affect import effi ciency or 

processing to an intermediate size (Fig. 5 A). However, larger 

deletions dramatically reduce import effi ciency in addition to 

inhibiting processing to the mature size (Fig. 5 A).

Although import effi ciency is reduced, deletions up to 

∆58-76 appeared to target and insert into the IM, albeit with 

somewhat lower effi ciencies than pre-atTic40 (Fig. 5 B). The 

effects of deletions larger than ∆58-76 on IM targeting could 

not be determined because of the combination of poor import 

effi ciency and aberrant cleavage (Fig. 5 A), presumably because 

of disruption of the SPP processing site. To further ensure that 

the soluble forms of the deletions were productive intermedi-

ates in the targeting pathway, we performed a chase experiment 

similar to that shown in Fig. 4 using the ∆58-76 mutant (Fig. 5 C). 

The ∆58-76 soluble intermediate can be chased to the mem-

brane with a 30-min incubation, similar to authentic int-atTic40. 

Collectively, these results indicate that the intermediate  sequence 

of the transit peptide participates in import but is not essential 

for membrane insertion.

To further explore the determinants for pre-atTic40 

 targeting, we replaced its transit peptide with that of the small 

subunit of rubisco (psTP-Tic40). The import effi ciency of this 

construct was comparable to pre-atTic40, but the protein was 

converted to mature atTic40 directly with no apparent inter-

mediate processing (Fig. 6 A). Remarkably, the chimera targeted 

to the IM, albeit with approximately one half the effi ciency of 

pre-atTic40 (Fig. 6 B). These results are consistent with the 

conclusion that the int-atTic40 intermediate sequence is not 

 required for membrane integration but might facilitate the 

 process. Finally, we tested whether the transmembrane helix of 

atTic40 was required for IM targeting. As expected, deletion 

of the transmembrane region (∆TM-atTic40) had little effect 

on import but completely eliminated membrane integration 

(Fig. 6, A and B).

Int-atTic40 inserts into isolated 
IM vesicles
To test directly whether membrane insertion is independent of 

import, we studied the ability of int-atTic40 to integrate into 

isolated IM vesicles. Inside-out IM vesicles were purifi ed from 

isolated chloroplasts using previously published procedures 

(Keegstra and Yousif, 1986; Young and McCarty, 1993). To 

 ensure that the majority of the vesicles were inside out, thereby 

exposing the inner face of the IM to the external buffer, we tested 

the protease sensitivity of the IM marker proteins psTic110 

and psTic22 (Cline et al., 1985; Shingles and McCarty, 1995; 

Fig. 7 A). The bulk of psTic110 (�95 kD) extends into the stroma 

Figure 5. The intermediate region of the int-atTic40 transit pep-
tide is not required for membrane targeting. (A) [35S]-labeled pre-
atTic40 (FL) and deletion mutants spanning the indicated amino 
acids of pre-atTic40 were imported into isolated chloroplasts for 
30 min and subsequently treated in the presence (+) or absence 
(−) of trypsin. IVT, 20% of the in vitro–translated protein used in 
each reaction. The graph presents quantitative analysis of the im-
port effi ciency of each construct presented as a percentage of the 
amount of import observed with wild-type pre-atTic40. (B) Analysis 
of total (T), soluble (S), and membrane (M) fractions of chloroplasts 
from 30-min import reactions of [35S]-labeled pre-atTic40 and the 
transit peptide deletion mutants. The graph presents quantitative 
analysis of the distribution of the total atTic40 species between 
membrane and soluble fractions for each construct. (C) [35S]pre-
 atTic40 and [35S]pre-atTic40–∆58-76 were imported into isolated 
pea chloroplasts for 5 min, treated with trypsin, reisolated, and 
incubated under import conditions for the times indicated. The total 
chloroplasts were separated into soluble and membrane fractions 
by alkaline extraction. Lanes 2 and 10 contain total (T) chloro-
plasts from the 5-min import reaction before protease treatment 
and subsequent incubation. Lanes 1 and 9 contain 20% of the 
translation product used for each of the import reactions.
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(Kessler and Blobel, 1996; Jackson et al., 1998), whereas psTi22 

is bound to the outer face of the IM in the  intermembrane space 

(Kouranov et al., 1999). The majority of psTic110 is degraded 

by either trypsin or thermolysin, whereas psTic22 is resistant 

to both proteases, indicating that the isolated vesicles are pre-

dominantly inside out (Fig. 7 A i). Disruption of the vesicles 

with Triton X-100 resulted in complete degradation of psTic110 

and psTic22 (Fig. 7 A i). To quantify the proportion of inside-

out vesicles in the population, we imported radiolabeled atTic110 

into chloroplasts and treated isolated IM vesicles from these 

chloroplasts with thermolysin (Fig. 7 A ii). Greater than 90% 

of the radiolabeled atTic110 was degraded within 30 min, 

suggesting that at least 90% of the vesicle population was in the 

inside-out orientation.

As an initial substrate for the vesicle insertion reaction, a 

soluble stromal extract containing int-atTic40 (Fig. 7 B, lane 2) 

was isolated from chloroplasts after a 5-min pre-atTic40 import 

reaction (Fig. 7 B, lane 1). This extract was incubated with isolated 

IM vesicles, and the association of int-atTic40 and mature atTic40 

with the vesicles was assayed by differential centrifugation. As 

evident in Fig. 7 B, int-atTic40 bound to IM vesicles.  Binding 

was time dependent, with the majority of int-atTic40 (55%) 

associated with the vesicles during the incubation (Fig. 7 B, 

graph). A small but substantial fraction of the int-atTic40 is 

converted to a form with a mobility identical to mature atTic40, 

suggesting that a portion of int-atTic40 is processed to atTic40 

upon association with vesicles. Extending the incubation to 

2.5 h increased the proportion of int-atTic40 that was converted 

to atTic40 in the presence but not the absence of IM vesicles 

(Fig. 7 C). Extraction of the vesicles with alkaline buffer dem-

onstrates that the membrane-associated forms of atTic40 are 

Figure 7. Int-atTic40 can insert into isolated inverted inner membrane 
vesicles. (A) Isolated IM vesicles are inside out. (i) IM vesicles (20 μg 
 protein) were treated in the presence or absence of trypsin (1 μg trypsin/mg 
IM protein) or thermolysin (10 μg thermolysin/mg IM protein) on ice for 
30 min. The samples were analyzed by SDS-PAGE and immunoblotting with 
psTic110 or psTic22 antiserum. (ii) IM vesicles were isolated from chloro-
plasts containing imported [35S]atTic110 and treated in the presence or 
absence of thermolysin as in panel i for the times indicated. The levels of 
[35S]atTic110 were detected and quantifi ed using SDS-PAGE and phosphor-
imaging. (B) [35S]int-atTic40 from a stromal extract binds to IM vesicles. 
A stromal extract (50 μg protein) containing [35S]int-atTic40 was incubated 
with isolated IM vesicles (30 μg protein) for the times indicated. The quan-
titative analysis presents the distribution of int-atTic40 between soluble (S) 
and membrane (M) fractions at each time point in the insertion reaction. 
Lane 1 contains a sample of the total chloroplasts (CP) used as the source 
for the stromal extract. Lane 2 contains a sample of stromal extract equiva-
lent to that added to the IM vesicle insertion reaction. Lanes 9 and 10 pres-
ent the distribution of int-atTic40 from a reaction that lacked added IM 
vesicles. (C) IM vesicles from an int-atTic40 insertion reaction similar to that 
in B were incubated in the absence (−) or presence of alkaline buffer to 
extract peripheral proteins (pH 11.5) or with thermolysin to test int-atTic40 
topology (T-lysin). The samples were separated into membrane and soluble 
fractions after the treatments.

Figure 6. The transmembrane helix of atTic40 is required for membrane 
targeting. (A) [35S]-labeled pre-atTic40 (atTic40), mature atTic40 fused to 
the transit peptide of SSU (psTP-Tic40), or a deletion mutant of pre-atTic40 
lacking its transmembrane segment (∆TM) were imported into chloroplasts 
for 30 min. After import, the chloroplasts were treated with thermolysin, 
 reisolated, and total (T), membrane (M), or soluble (S) fractions were 
 analyzed by SDS-PAGE and phosphorimaging. IVT, 20% of the in vitro–
translated protein used in each reaction. (B) Quantitative analysis of distri-
bution of each protein between the membrane and soluble fractions of 
chloroplasts after import. N.D. indicates that the sample was below accu-
rate detection levels.
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integrated into the membrane bilayer (Fig. 7 C). Furthermore, 

treatment of the vesicles with thermolysin after the insertion 

reaction results in complete degradation of the atTic40 proteins 

(Fig. 7 C), indicating that they correctly inserted with the bulk 

of their sequences exposed at the inner face of the IM.

As a control for vesicle targeting specifi city, we tested the 

binding and insertion of int-atTic40 to canine pancreatic micro-

somal membranes. Binding to the heterologous membranes was 

insignifi cant when compared with control reactions lacking 

membranes (Fig. 8 A). As an additional control, we tested the 

protein dependence of int-atTic40 insertion into IM vesicles by 

treating the IM vesicles with varying concentrations of thermo-

lysin before the insertion reaction (Fig. 8 B). The protease treat-

ments dramatically reduced the binding and processing of 

int-atTic40 in IM vesicles, demonstrating the requirement of 

proteinaceous components at the IM for insertion.

We also examined the energy dependence of the insertion 

reaction (Fig. 8 C). The stromal extract containing atTic40 was 

dialyzed to remove free nucleotides before the insertion reac-

tion. As shown in Fig. 8 C, int-atTic40 bound and inserted into 

vesicles with similar effi ciencies in the absence of added nucle-

oside triphosphates or in the presence of ATP or GTP. This ob-

servation suggests that direct insertion into the IM does not 

require nucleotide hydrolysis.

Finally, we examined the role of stromal factors in int-

 atTic40 targeting by testing whether in vitro–translated forms of 

atTic40 could target directly to vesicles. We compared the tar-

geting of in vitro–translated int-atTic40, atTic40, or the ∆TM-

atTic40 mutant to stromal int-atTic40 (Fig. 9). Remarkably, 

in vitro–translated int-atTic40 and atTic40 both associated 

with vesicles and inserted into the membranes with effi ciencies 

only slightly lower than that observed for stromal int-atTic40 

(Fig. 9, graph). Furthermore, in vitro–translated int-atTic40 was 

partially processed to mature atTic40. As expected, in vitro–

translated mature atTic40 was not processed (Fig. 9). These 

data confi rm that int-atTic40 processing to mature atTic40 

 occurs upon association with the IM. The ∆TM-atTic40 mutant 

showed no signifi cant association or insertion into the  membrane 

vesicles (Fig. 9), confi rming the selectivity of the insertion 

 assay. Collectively, these results indicate that in vitro–translated 

int-atTic40 is capable of inserting into isolated IM vesicles, 

suggesting that specifi c stromal factors are not required for the 

targeting reaction.

Figure 8. The insertion of int-atTic40 into IM vesicles is selective and re-
quires proteinaceous components at the membrane. (A) Int-atTic40 does 
not bind to canine pancreatic microsomes. A stromal extract containing 
[35S]int-atTic40 was incubated in the absence (−) or presence of isolated 
IM vesicles (30 μg protein) or canine pancreatic microsomes (Mc; 30 μg 
protein) for 2.5 h. After the reaction, the samples were separated into 
membrane (M) and soluble (S) fractions. The quantitative analysis presents 
the distribution of combined [35S]-labeled int-atTic40 and atTic40 between 
the membrane and soluble fractions from each reaction. (B) Int-atTic40 in-
sertion into IM vesicles relies on protease-sensitive membrane components. 
Isolated IM vesicles were treated with the indicated concentrations of ther-
molysin before incubation with stromal extract containing [35S]int-atTic40. 
The fraction of [35S]int-atTic40 that associated with the membranes after al-
kaline extraction is shown in lanes 2–4. Lane 1 contains a sample of stro-
mal extract equivalent to that added to each reaction. (C) Int-atTic40 
targeting to IM vesicles does not require exogenous nucleoside triphos-
phates. A dialyzed stromal extract containing [35S]int-atTic40 was incu-
bated with IM vesicles in the absence (−) or presence of 2 mM ATP or GTP 
as indicated. The reactions were separated into membrane and soluble 
fractions by alkaline extraction and analyzed by SDS-PAGE and phosphor-
imaging. Lane 1 contains a sample of stromal extract equivalent to that 
added to each reaction. Lanes 8 and 9 contains stromal extract that was 
incubated in the absence of IM vesicles and subsequently treated with 
alkaline buffer.

Figure 9. atTic40 targeting to IM vesicles does not require stromal 
 components. Stromal extract containing [35S]int-atTic40 or in vitro–translated 
[35S]int-atTic40, [35S]atTic40, or [35S]∆TM-atTic40 (reticulocyte lysate) was 
incubated with isolated IM vesicles for 2.5 h as described in Fig. 7. The 
total (T) and alkaline-resistant fraction (M) that associates with IM vesicles 
is shown. IVT, 20% of the in vitro–translation products added to each 
 targeting assay.
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atTic110 also inserts into isolated 
IM vesicles
Previous studies on the import of Tic110 suggested that 

this IM protein also utilizes a soluble targeting intermediate 

(Lubeck et al., 1997; Inaba et al., 2005). Therefore, we exam-

ined the ability of in vitro–translated atTic110 to insert into IM 

vesicles. Fig. 10 A demonstrates that mature atTic110 binds to 

IM vesicles, and �50% of the bound protein is integrated into 

the membrane. As controls, we tested the binding and insertion 

of atTic110 lacking one (atTic110-∆TM1 or atTic110-∆TM2) 

or both of its transmembrane segments (atTic110Sol; Fig. 10 A). 

Consistent with previous in vitro import experiments, the binding 

and insertion of the deletion mutants was dramatically lower 

than for full-length atTic110. atTic110 showed considerably 

lower binding and no appreciable insertion into pancreatic 

micro somal membranes (Fig. 10 B), demonstrating the mem-

brane specifi city of the reaction. Overall, the data with atTic40 

and atTic110 demonstrate that these proteins can insert directly 

into the IM from a soluble state independent of protein import 

from the cytoplasm.

Discussion
We investigated the mechanism of import and insertion of at-

Tic40 to better understand the process of protein targeting to the 

chloroplast IM. We demonstrate that the targeting and insertion 

of this simple single-pass transmembrane protein involves a solu-

ble intermediate that inserts into the IM after it completes import 

from the cytoplasm. These observations were extended by our 

demonstration that atTic40 and a second IM protein, atTic110, 

can insert directly and selectively into isolated IM vesicles. These 

data are consistent with earlier observations with Tic110 (Lubeck 

et al., 1997; Inaba et al., 2005) and indicate that IM targeting of 

Tic110 and Tic40 involves soluble intermediates.

 Both preTic40 and preTic110 appear to initially use the 

general Toc–Tic pathway for import into the organelle (Lubeck 

et al., 1996, 1997; Stahl et al., 1999) and are processed by SPP, 

generating soluble, stromal intermediates. The intermediates in-

sert into the IM from the stroma side of the membrane. Insertion 

is dependent on information within the transmembrane helices of 

the proteins (Figs. 6, 9, and 10) and requires proteinaceous com-

ponents of the inner membrane (Fig. 8). Our initial studies sug-

gest that insertion occurs independent of nucleoside triphosphate 

hydrolysis (Fig. 8) or the need for stromal factors (Fig. 9).

The precise role of the two-step processing of the pre-

 atTic40 transit peptide in targeting, if any, remains to be deter-

mined. Our data indicate that the intermediate region, spanning 

amino acids 43–76 of the transit peptide, participates in import 

but is not required for IM insertion (Fig. 5). Furthermore, the 

intermediate processing site does not appear to be conserved 

because the pea orthologue of Tic40 appears to be initially pro-

cessed at a site much closer to the C-terminal end of the transit 

peptide (Stahl et al., 1999; unpublished data). The initial cleav-

age to generate int-atTic40 during import is mediated by SPP 

(Fig. 1). The data in Figs. 7, 8, and 9 indicate that the fi nal pro-

cessing step requires association with the inner membrane. 

Therefore, the processing could be performed by a specifi c en-

velope protease. Although the protease responsible for pro-

cessing int-atTic40 to mature atTic40 remains to be identifi ed, 

two potential processing peptidases have been identifi ed at the 

 envelope (Inoue et al., 2005; Bolter et al., 2006).

Although our data demonstrate that import and IM target-

ing are independent processes, one observation suggests that 

the two reactions can be coupled under some circumstances. 

The protease protection studies of pre-atTic40 import demon-

strate that both int-atTic40 and mature atTic40 are largely ex-

posed to the chloroplast surface at the earliest time points in 

import and, therefore, have not completed the import process 

(Fig. 1). Protease-resistant forms corresponding to fully im-

ported int-atTic40 and mature atTic40 accumulate with time in 

the standard import assay (Fig. 1) and in our import pulse-chase 

experiment (Fig. 3), reaching their maximum levels at later time 

points. Collectively, these observations suggest that IM tar-

geting can initiate while int-atTic40 is in the process of import. 

Figure 10. The inner membrane protein, atTic110, also targets to iso-
lated IM vesicles. (A) In vitro–translated [35S]-labeled atTic110 or atTic110 
lacking one (atTic110-∆TM1 or atTic110-∆TM2) or both (atTic110Sol) 
transmembrane segments was incubated with isolated IM vesicles. The 
vesicles were recovered by differential centrifugation (T) and separated 
into membrane (M) and soluble (S) fractions by alkaline extraction. The 
quantitative analysis presents the amount of total or membrane-integrated 
[35S]-labeled protein that associated with IM vesicles. (B) In vitro– translated 
[35S]atTic110 was incubated with IM vesicles (30 μg protein) or canine 
pancreatic microsomal membranes (Mc; 30 μg protein). The vesicles 
were recovered by differential centrifugation (total) and extracted with 
 alkaline buffer (membrane). The quantitative analysis presents the amount 
of total or membrane-integrated [35S]-labeled protein that associated with 
IM vesicles.



PROTEIN TARGETING TO THE CHLOROPLAST INNER MEMBRANE • LI AND SCHNELL 257

The fact that the intermediate accumulates in the stroma with 

time suggests that the rate of import of pre-atTic40 from the cyto-

plasm exceeds the rate of insertion into the inner membrane, 

 resulting in the inability of the insertion reaction to keep pace 

with import.

Our studies provide compelling evidence that the import 

and membrane insertion of atTic40 and atTic110 are indepen-

dent processes. However, we cannot rule out the possibility 

that other IM proteins (e.g., polytopic transporters) use a stop-

transfer mechanism. In mitochondria, both processes appear to 

operate for targeting of proteins to the IM (Herrmann, 2003; 

Herrmann and Neupert, 2003; Herrmann and Bonnefoy, 2004; 

Preuss et al., 2005). Nucleus-encoded mitochondrial IM pro-

teins appear to initially engage the general import machinery 

of the outer mitochondrial membrane (TOM complex; Rehling 

et al., 2004). A small number of nucleus-encoded mitochondrial 

IM proteins are inserted into the membrane from the matrix after 

they complete import (Herrmann, 2003; Herrmann and Neupert, 

2003; Herrmann and Bonnefoy, 2004). The Oxa1 pathway 

 mediates insertion of several of these proteins (Herrmann et al., 

1997; Baumann et al., 2002; Herrmann and Bonnefoy, 2004). 

This pathway is a member of the Oxa1/Alb3/YidC family of 

protein export pathways that are conserved from prokaryotes. 

Oxa1 and a second pathway also mediate the insertion of 

 mitochondria-encoded IM proteins (Herrmann, 2003; Frazier 

et al., 2006). However, for the majority of mitochondrial IM 

proteins, complete translocation into the matrix is interrupted 

by stop-transfer sequences, resulting in the lateral insertion of 

the proteins into the lipid bilayer via the Tim22 or Tim23 com-

plexes (Herrmann and Neupert, 2003; Rehling et al., 2004). 

Additional studies with a wider array of chloroplast IM pro-

teins should demonstrate whether stop-transfer mechanisms 

also exist in chloroplasts.

Although the pathway of Tic40 and Tic110 targeting in 

chloroplasts and the Oxa1 pathway in mitochondria are analo-

gous at fi rst examination, it is unclear whether the chloroplast 

proteins use a conservative targeting pathway. Genomic and pro-

teomic studies fail to identify proteins homologous to bacterial 

export pathways in the chloroplast IM (Ferro et al., 2002, 2003; 

Froehlich et al., 2003; Jarvis, 2004; Gerdes et al., 2006). Further-

more, the conserved protein export pathways, including the 

Oxa1/YidC homologue, Alb3, are all present at the thylakoid 

membrane (Jarvis and Robinson, 2004). Therefore, the relation-

ship of the chloroplast IM targeting translocon to the conserved 

translocons at the molecular level remains to be determined. 

Identifi cation of the factors involved in IM targeting in the chlo-

roplast will provide more defi nitive evidence for the molecular 

mechanism of this novel membrane protein targeting system.

Materials and methods
cDNAs and construction of atTic40 mutants
Complete pre-atTic40 (available from GenBank/EMBL/DDBJ under acces-
sion no. BT006595) and pre-psTic40 (available from GenBank/DMBL/
DDBJ under accession no. AY157668) coding regions were amplifi ed from 
total seedling cDNA by RT-PCR. The atTic40 cDNA was modifi ed by over-
lap extension PCR to introduce a silent mutation that eliminated the internal 
Nco1 restriction site. Both cDNAs were cloned into the Nco1 and BamH1 
sites of pET21d.

The atTic40 deletion mutants were generated by overlap extension 
PCR of the atTic40 cDNA to eliminate the specifi c residues indicated in the 
fi gures. The psTP-Tic40 construct (pET21d-pssuTP-matTic40) corresponds to 
the 57 amino acids of the complete transit peptide of the pea small subunit 
of rubisco (Pain and Blobel, 1987), fused to mature atTic40. The recombi-
nant int-atTic40 (pET21d-int-atTic40) and mature atTic40 (pET21d-atTic40) 
constructs for in vitro translation lack the N-terminal 42 and 76 amino 
 acids of pre-atTic40, respectively. The int-atTic40 construct contains an addi-
tional Gly codon following the initiation codon to introduce a 5′ Nco1 
 restriction site. The atTic110∆TM1 (pET21d-mature atTic110-∆TM1-His) 
and atTic110∆TM2 (pET21d-mature atTic110-∆TM2-His) constructs con-
tained deletions of amino acids 43–62 and 70–89 of mature atTic110, 
 respectively. The atTic110 and atTic110Sol constructs were previously 
 described (Inaba et al., 2005).

Chloroplast isolation and in vitro import assays
Import substrates were generated using a coupled in vitro transcription–
translation system derived from reticulocyte lysate (Promega). Chloroplast 
isolation from pea and A. thaliana and the in vitro import experiments 
were performed as previously described (Smith et al., 2002). For the time 
course of in vitro import, reactions were stopped at the indicated time 
points by rapid dilution with three volumes of ice-cold 50 mM Hepes-
KOH, pH 7.5, and 330 mM Sorbitol (HS buffer). Protease treatments 
were performed by dividing the import reactions into three equal parts 
and diluting each with threefold excess ice-cold HS buffer alone or buffer 
containing trypsin (50 μg/ml fi nal concentration) or thermolysin (100 
μg/ml fi nal concentration). The reactions were incubated on ice for 30 
min, and proteolysis was stopped with 1 mM PMSF, 0.05 mg/ml TLCK, 
0.1 mg/ml soybean trypsin inhibitor, and 2 μg/ml aprotinin (trypsin 
 inhibitor; Jackson et al., 1998) or 10 mM EDTA (thermolysin inhibitor). The 
chloroplasts were isolated through 40% Percoll silica gel containing the 
corresponding protease inhibitor, washed once with HS buffer, and pro-
cessed for SDS-PAGE analysis. All quantitative analysis of radiolabeled 
samples was performed with a FLA-5000 phosphorimager and Multi 
Gauge v. 3.0 software (Fujifi lm).

Chloroplast lysis and fractionation
Chloroplasts were lysed by suspension in HS buffer to a concentration of 
0.5–1 mg chlorophyll/ml and diluted with fi ve volumes of 2 mM EDTA. The 
lysate was mixed vigorously and incubated on ice for 10 min. The samples 
were adjusted to 0.2 M NaCl, and the membrane fraction was collected 
by centrifugation at 18,000 g for 30 min at 4°C (Smith et al., 2002). For 
alkaline extraction, the membrane pellet was resuspended with a small vol-
ume of HS buffer and diluted with 20 volumes of 0.2 M Na2CO3, pH 12. 
The samples were homogenized with a Tefl on homogenizer (Kontes Glass 
Co.) and incubated at room temperature for 10 min, and the membrane 
fraction was collected by centrifugation at 100,000 g for 15 min. The sol-
uble fractions were removed and concentrated by precipitation in 20% 
 trichloroacetic acid.

SPP assay
The stromal extract was prepared as previously described (Abad et al., 
1989; Tranel and Keegstra, 1996). For the SPP processing assays, 1 μl of 
in vitro–translation product was incubated with 20 μl stromal extract at 
26°C for 90 min. As a control, 1 μl of in vitro–translation product was 
mock treated with 20 μl of 5 mM Hepes-KOH, pH 8.0.

Pulse-chase experiments
For the pre-atTic40 binding and chase experiments in Fig. 3, isolated chloro-
plasts were depleted of internal ATP by incubation in the dark at room 
 temperature for 15 min. In vitro–translated pre-atTic40 was depleted of nu-
cleotides by gel fi ltration. The early import intermediate was generated by 
incubating chloroplasts with pre-atTic40 in the presence of 100 μM ATP 
 under import conditions (Olsen et al., 1989; Schnell and Blobel, 1993). The 
chloroplasts were reisolated through 40% Percoll silica gel, washed once 
with ice-cold HS buffer, and resuspended in ice-cold HS buffer containing 
50 mM KOAc and 4 mM MgOAc (import buffer) without ATP. A fraction 
was removed as the 0-min sample, and the remaining chloroplasts were di-
luted into 10 volumes of import buffer containing 2 mM ATP at 26°C. Equal 
fractions of the import reaction were removed at 2, 4, 7.5, and 30 min, 
 reisolated, and separated into membrane and soluble fractions.

For the experiment in Fig. 4 to test int-atTic40 conversion to atTic40, 
chloroplasts (400 μg chlorophyll) were incubated with pre-atTic40 for 5 min 
under standard import conditions. The reaction was stopped, and chloro-
plasts were treated in the absence or presence of trypsin as described in 
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Chloroplast isolation and in vitro import assays. After recovery through 
Percoll silica gel, the chloroplasts were suspended to 2 ml in prewarmed 
(26°C) import buffer containing 2 mM ATP. Equal fractions of the reaction 
mixture were collected at 5 and 60 min, reisolated, and separated into 
membrane and soluble fractions.

In vitro insertion of int40 into isolated IM vesicles
The chloroplast IM vesicles were isolated as described previously (Keegstra 
and Yousif, 1986). The membranes were recovered by differential centrifu-
gation and stored in HS buffer containing 1 mM dithiothreitol at −80°C.

The stromal extract containing int-atTic40 was isolated using chloro-
plasts from a 5-min pre-atTic40 import reaction as described in SPP assay. 
The chloroplasts (1–2 mg chlorophyll/ml fi nal concentration) were lysed 
hypertonically with 10 mM Hepes-KOH, pH 8.0, and 10 mM MgCl2 (Yuan 
et al., 1991) on ice for 10 min. The stromal fraction was separated from 
the membrane fraction by centrifugation at 40,000 g for 30 min, adjusted 
to 50 mM Hepes-KOH, pH 7.5, 50 mM KOAc, and 4 mM MgCl2, and 
stored at –80°C.

For a typical in vitro insertion assay, 15 μl of isolated stromal extract 
(50 μg protein) or 1 μl in vitro–translated atTic40 or atTic110 protein was 
incubated with 30 μg inner membrane vesicles under conditions identical 
to those used for standard chloroplast import assays. The vesicle insertion 
was performed at 26°C for 1 or 2.5 h. Then, three volumes of ice-cold 
HS buffer were added and the vesicles were reisolated by spinning at 
100,000 g for 20 min. The vesicles were washed once with HS buffer 
and resuspended in 30 μl HS buffer before further treatments, such as 
 carbonate extraction.

Online supplemental material
Fig. S1 shows that the int-atTic40 targeting intermediate is observed 
 during import into both pea and A. thaliana chloroplasts. Online supple-
mental material is available at http://www.jcb.org/cgi/content/full/
jcb.200605126/DC1.
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