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Abstract: The problem of two-dimensional bearings-only multisensor-multitarget tracking is ad-
dressed in this work. For this type of target tracking problem, the multidimensional assignment
(MDA) is crucial for identifying measurements originating from the same targets. However, the
computation of the assignment cost of all possible associations is extremely high. To reduce the
computational complexity of MDA, a new coarse gating strategy is proposed. This is realized by
comparing the Mahalanobis distance between the current estimate and initial estimate in an iterative
process for the maximum likelihood estimation of the target position with a certain threshold to
eliminate potential infeasible associations. When the Mahalanobis distance is less than the threshold,
the iteration will exit in advance so as to avoid the expensive computational costs caused by invalid
iteration. Furthermore, the proposed strategy is combined with the two-stage multiple hypothesis
tracking framework for bearings-only multisensor-multitarget tracking. Numerical experimental
results verify its effectiveness.

Keywords: bearings-only multisensor-multitarget tracking; multidimensional assignment (MDA);
coarse gating; Mahalanobis distance; maximum likelihood estimation; multiple hypothesis tracking

1. Introduction

Multitarget tracking (MTT) refers to jointly estimating the number of targets and their
states in the presence of false alarms and missed detections using single or multiple sen-
sors [1]. It has been widely used in many fields such as surveillance and tracking of ground
moving targets [2], maritime surveillance [3], sonar tracking of submarines [4], simultaneous
localization and mapping [5], unmanned air vehicles [6], etc. For different application
scenarios, tracked targets can be considered as point targets or extended targets [7]. If the
distance between the sensor and target is large enough as in radar-based air surveillance
applications, the target can be treated as a point target. In this case, it is usually assumed
that a target can give rise to at most one measurement in a scan [8]. However, if multiple
resolution cells of the sensor are occupied by a target, for example, in vehicle tracking using
automotive radar, the target is regarded as an extended target [9]. In such a case, each target
can give rise to multiple measurements [10]. Only point targets will be discussed below.

Multitarget tracking has been studied for decades and many effective algorithms are
available. The earliest and simplest MTT algorithm is the global nearest neighbor (GNN)
algorithm [11], which attempts to search for the single most likely hypothesis for track
update and new track initiation [12]. Although the GNN algorithm is intuitively attractive
and easy to implement, it is prone to track loss in scenarios with closely spaced targets and
high false alarm density [13]. The joint probabilistic data association (JPDA) algorithm is an
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extension of the probabilistic data association (PDA) algorithm to the multitarget case [14].
The standard JPDA algorithm evaluates the association probabilities of measurement-to-
track and combines them to obtain the state estimate of the target [15], which means that
one observation may contribute to updating multiple tracks [16]. Many variants of the
JPDA algorithm are abundant, such as the joint integrated PDA (JIPDA) algorithm [17]
and multiscan JPDA (MS-JPDA) algorithm [18]. Multiple hypothesis tracking (MHT) is
a deferred decision algorithm for MTT. It handles uncertainty of measurement-to-track
associations by considering all possible association hypotheses in subsequent multiple
scans [19]. Compared with GNN and JPDA algorithms that rely on the current scan,
the MHT algorithm is computationally expensive, but it has significantly better tracking
performance [20]. There are two different implementations of MHT algorithm, namely
hypothesis-oriented MHT [21] and track-oriented MHT [22]. Between them, the track-
oriented MHT algorithm, which uses the score function to evaluate the quality of tracks,
is considered a more effective alternative to a hypothesis-oriented MHT [21]. Among the
above three data association-based MTT algorithms, i.e., GNN, JPDA, and MHT, MHT is
considered as a leading algorithm in high false alarm density and dense target scenarios [23].

The random finite set (RFS) algorithm [24] represents the multitarget state and mea-
surements as a random finite set, which allows multitarget tracking to be cast in a Bayesian
framework to obtain an optimal multitarget Bayes filter. Due to the high computational
complexity of a multitarget Bayes filter [25], many approximate filters have been devel-
oped, such as probability hypothesis density (PHD) [26], cardinalized PHD (CPHD) [27],
second-order PHD [28], and multitarget multi-Bernoulli (MeMBer) [29] filters. It should
be note that none of these filters can obtain distinguishable target tracks. The generalized
labeled multi-Bernoulli (GLMB) [20] is the RFS based MTT algorithm that produces tracks.
In recent years, the GLMB filter has been widely studied, and fruitful achievements have
been achieved in both theory and application [30]. In addition, the GLMB filter has been
used to develop an MTT algorithm with structures similar to MHT [19].

Multisensor-multitarget tracking (MSMTT) has two basic architectures: centralized
and distributed tracking [7]. In centralized MSMTT, the raw measurements from all sensors
are sent to the fusion center (FC) where data association is followed by filtering, while
in distributed MSMTT, each sensor first processes its own measurements and then sends
the results to FC for further processing. Both frameworks have their own advantages
and disadvantages in terms of communication requirements, computational complexity,
performance, robustness, etc. In general, the centralized MSMTT framework has higher
accuracy [31]. However, in practical applications, due to network bandwidth limitations, it
is often not feasible to communicate all measurements to FC. Comparatively, the distributed
MSMTT framework can reduce communication cost and has better flexibility and reliability,
but it is more challenging.

For distributed MSMTT based on data association, one approach is that each sensor
sends the local track estimates to the FC, which performs track-to-track association and
fusion [32]. Another type of approach is to perform measurement space tracking at indi-
vidual local sensors to suppress clutter and then send the associated measurements to the
FC where the measurement-to-track association is performed [33]. In addition, distributed
MSMTT based on RFS has also been widely studied in recent years [34].

Depending on the types of sensors used, target tracking can be split into two classes:
active and passive tracking [35]. The sensors used for active tracking first transmit signals
(such as acoustic waves, electromagnetic waves) into the environment and then obtains
range, bearing, elevation, and other measurements of the target of interest from the received
echo [36]. Passive sensors sense the signal from the target of interest to acquire bearing,
elevation, and other measurements. In comparison, passive tracking has the advantages of
strong anti-interference and good concealment [37].

Passive tracking also involves a unique set of challenges. One of the key challenges
in bearings-only tracking is that the range between the passive sensor and the target is
unavailable. This results in an unobservability of the target state [38]. A basic observable
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condition is that the sensor performs a higher order maneuver than all targets [39]. An
alternative approach is to use multiple spatially separated sensors for triangulation, that
is, the passive MSMTT [40]. But for this approach, the attendant problem is the well-
known ghosting. In order to reduce the number of ghosts, three or more sensors should
be used [41]. In this case, multidimensional assignment (MDA) can be used to associate
the measurements from different sensors to identify common targets, which also makes
this approach computationally costly for a large number of measurements. One of the
main reasons is that in MDA, most of the time (at least up to 80%), is spent in calculating
the association cost [42]. To reduce calculation times, many fast MDA methods have been
proposed. Among them, it was proposed in [43] to cluster the measurements of different
sensors before forming possible association hypotheses, thus reducing the requirement for
calculating the association cost. In addition, two improved MDA methods using prior track
information were proposed in [44].

A new coarse gating strategy is studied for the passive MSMTT. First, in order to
reduce the computational complexity of MDA, a new coarse gating strategy is proposed.
Second, the proposed strategy is combined with a two-stage MHT (TS-MHT) framework
for distributed MSMTT. The remainder of the paper is organized as follows. Section 2
formulates the problems of bearings-only MSMTT. Section 3 briefly summarizes MDA for
measurement-to-measurement association. In Section 4, a new coarse gating is proposed.
Section 5 presents the combination of the proposed new coarse gating driven MDA with the
TS-MHT framework. Section 6 provides numerical examples to illustrate the effectiveness
of the proposed coarse gating strategy. Section 7 concludes the paper.

2. Problem Formulation and Notations

The two-dimensional (2D) bearings-only MSMTT is considered. The bearing measure-
ment is shown in Figure 1.

Sensor s

Target i

Y

X

 ,s s
k kx y

 ,i i
k kx y

, ss i
k

Figure 1. Illustration of two-dimensional bearing measurement.

Assume that there are S synchronous passive sensors and sensor s, s ∈ {1, 2, · · · , S},
can acquire Ns bearing measurements {zs,js

k }
Ns
js=1 at time k. Here, Ns may not be equal to the

number of true targets due to false alarms and nonunity detection probability PDs of sensor
s. For the sake of simplicity, each target is assumed to move with nearly constant velocity
(NCV) in the XY-plane. Then, the discrete-time dynamic system can be written as follows:

xi
k = Fk−1xi

k−1 + wi
k−1, (1)

zs,js
k =

{
h
(
xi

k, ps
k
)
+ vs,js

k if zs,js
k originates from target i

z̃js
k otherwise

, (2)

where xi
k is the state vector consisting of the target position

[
xi

k yi
k
]′ and velocity

[
ẋi

k ẏi
k
]′,

i.e., xi
k =

[
xi

k ẋi
k yi

k ẏi
k
]′, Fk−1 is the state transition matrix for NCV motion model,

〈
wi

k−1

〉
is a sequence of zero-mean white Gaussian process noise, ps

k = [xs
k ys

k]
′ is the position of the

sensor s,
〈
vs,js

k
〉

is a sequence of zero-mean white Gaussian bearing measurement noise with
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variance σ2
s , and the measurement noises across sensors are independent; h is a nonlinear

function. The nonlinear relationship among βis
k , xi

k and ps
k is given by the following:

βs,is
k = h

(
xi

k, ps
k
)
= tan−1 (xi

k − xs
k, yi

k − ys
k
)
, (3)

where tan−1 refers to the four-quadrant inverse tangent function [45].
The purpose is to estimate the number of targets and their corresponding states in real

time. A list of nomenclatures is provided in Nomenclatures.

3. Measurement-to-Measurement Association

A brief description of measurement-to-measurement association is required to illustrate
the proposed strategy more clearly. For a single passive sensor, the range measurement
between target and sensor is not available, which makes the target state unobservable. Dur-
ing target tracking, especially for track initiation, at least two passive sensors are needed to
obtain the full position of the potential target. It should be noted that, in a two-dimensional
multitarget tracking scenario with only two sensors, one of the major problems is the occur-
rence of false intersections or ghosts . For example, as shown in Figure 2, the dashed lines of
different colors indicate bearing measurements originating from target 1, and the solid lines
of different colors indicate bearing measurements originating from target 2. Obviously, the
correct association pair cannot be identified with only two bearings-only sensors.

Sensor 1

Sensor 2

Target 1

Target 2

1 2
kz
，

2 1
kz
，

11
kz
，

2 2
kz
，

Ghost

Ghost

Figure 2. A scenario with 2 passive sensors and 2 targets.

Therefore, it is necessary to use three or more sensors if possible. However, the
consequent problem is that this also makes it computationally expensive for a large number
of measurements. Taking Figure 3 as an example, it shows the situation of two targets
observed by three passive sensors with measurement errors.

Sensor 1

Sensor 2

Sensor 3

Target 1

Target 2

1 2
kz
，

2 1
kz
，

11
kz
，

2 2
kz
，

3 1
kz
，

3 2
kz
，

Figure 3. A scenario with 3 passive sensors and 2 targets.

As shown in the above figure, the sets of measurements obtained by different sen-
sors originating from the targets can be denoted by {z1,1

k , z1,2
k }, {z

2,1
k , z2,2

k }, and {z3,1
k , z3,2

k },
respectively. For measurement-to-measurement associations, each candidate association,
consisting one measurement from each sensor, is denoted as the S-tuple of measurements
Zj1 j2 j3

k . Even in the case where there are no false alarms or missed detections, the number of
S-tuples is as follows:
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c =
(

2
1

)(
2
1

)(
2
1

)
= 2× 2× 2 = 8, (4)

where
(

m
n

)
denotes the number of combinations of selecting n choices from m choices.

The corresponding geometric relationship is shown in Figure 4.

Sensor 1

Sensor 2

Sensor 3

Target 1

2 1
kz
，

11
kz
，

3 1
kz
，

Target 2

(a)

Sensor 1

Sensor 2

Sensor 3

Target 1

Target 22 1
kz
，

11
kz
，

3 2
kz
，

(b)

Sensor 1

Sensor 2

Sensor 3

Target 1

Target 2

11
kz
，

2 2
kz
，

3 1
kz
，

(c)

Sensor 1

Sensor 2

Sensor 3

Target 1

Target 2

11
kz
，

2 2
kz
，

3 2
kz
，

(d)

Sensor 1

Sensor 2

Sensor 3

Target 1

Target 2

1 2
kz
，

2 1
kz
，

3 1
kz
，

(e)

Sensor 1

Sensor 2

Sensor 3

Target 1

Target 2

1 2
kz
，

2 1
kz
，

3 2
kz
，

(f)

Sensor 1

Sensor 2

Sensor 3

Target 1

Target 2

1 2
kz
，

2 2
kz
，

3 1
kz
，

(g)

Sensor 1

Sensor 2

Sensor 3

Target 2

1 2
kz
，

2 2
kz
，

3 2
kz
，

Target 1

(h)

Figure 4. Geometric relationship between sensors and S-tuples of measurements (a) Z111
k . (b) Z112

k .
(c) Z121

k . (d) Z122
k . (e) Z211

k . (f) Z212
k . (g) Z221

k . (h) Z222
k .

Each S-tuple of measurements is an association hypothesis. Obviously, only S-tuples
Z111

k and Z222
k (as in Figure 4a,h) originate from the targets, and the others are spurious

association hypotheses. Note that when there are false alarms or missed detections, and
the number of S-tuples that can be formed will increase.

The process of associating the S-tuples of measurements to targets is the well-known
measurement-to-measurement association problem. MDA based on likelihood ratio is
widely considered to be the most efficient method to deal with this problem, which
formulates the association between measurements from different sensors as a discrete
optimization problem given by the following:

min
ρ

j1 j2 ···jS
k

N1

∑
j1=0

N2

∑
j2=0
· · ·

NS

∑
jS=0

cj1 j2···jS
k ρ

j1 j2···jS
k (5)
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subject to
N2

∑
j2=0

N3

∑
j3=0
· · ·

NS

∑
jS=0

ρ
j1 j2···jS
k = 1, j1 = 1, 2, · · · , N1

N1

∑
j1=0

N3

∑
j3=0
· · ·

NS

∑
jS=0

ρ
j1 j2···jS
k = 1, j2 = 1, 2, · · · , N2

...
N1

∑
j1=0

N2

∑
j2=0
· · ·

NS−1

∑
jS−1=0

ρ
j1 j2···jS
k = 1, jS = 1, 2, · · · , NS

(6)

where js = 0 is the index of dummy measurement to indicate sensor s’s missed detection,
cj1 j2···jS

k is the cost of associating the S-tuple of measurements Zj1 j2···jS
k to a target, and ρ

j1 j2···jS
k

is a binary decision variable such that the following is the case.

ρ
j1 j2···jS
k =

{
1 if Zj1 j2···jS

k is associated with a candidate target
0 otherwise

. (7)

The equality constraints in Equation (6) are to ensure that each measurement is asso-
ciated with a unique target, or declared false, and that each target is assigned to at most
one measurement from each sensor. In Equation (5), cost cj1 j2···jS

k is defined as the following
negative log-likelihood ratio:

cj1 j2···jS
k = − ln

p
(
Zj1 j2···js

k | pi
k
)

p
(
Zj1 j2···js

k | pi
k = ∅

) , (8)

where p
(
Zj1 j2···jS

k | pi
k = ∅

)
is the likelihood that measurements in S-tuple Zj1 j2···jS

k are all

spurious, and p
(
Zj1 j2···js

k | pi
k
)

is the likelihood that these measurements originate from a
common target at position pi

k =
[
ξ i

k ηi
k
]′. They can be calculated as follows, respectively:

p
(
Zj1 j2···jS

k | pi
k = ∅

)
=

S

∏
s=1

[
1
ψs

]u(js)
, (9)

p
(
Zj1 j2···jS

k | pi
k
)
=

S

∏
s=1

(1− PDs)
1−u(js)

[
PDs p

(
zs,js

k | pi
k
)]u(js)

, (10)

where ψs is the volume of the field of view of sensor s, and u(js) is a binary indicator function.

u(js) =

{
1 if js 6= 0 ( an actual measurement of sensor s)
0 if js = 0 ( a dummy measurement )

. (11)

It should be noted that, in Equation (10), pi
k is unknown. Therefore, in order to

calculate likelihood p
(
zs,js

k | pi
k
)
, the corresponding Zj1 j2···jS

k is used to obtain the maximum
likelihood estimation (MLE) of the target position.

p̂i
k = arg max

pi
k

p
(
Zj1 j2···jS

k | pi
k
)

(12)

Substituting Equations (9), (10) and (12) into Equation (8), required cost cj1 j2···jS
k can be

calculated. Note that the optimization problem given by Equations (5) and (6) is NP-hard
for S ≥ 3. However, a number of efficient methods to obtain sub-optimal solution have
been proposed [46–49].
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4. A New Coarse Gating Strategy for MDA

The MLE p̂i
k of the position of potential target in Equation (12) is a nonlinear opti-

mization problem. In this section, a new coarse gating strategy is proposed to eliminate
infeasible association hypotheses by comparing the Mahalanobis distance between the cur-
rent estimate and initial estimate in an iterative process for the MLE of the target position.

Each S-tuple of measurements Zj1 j2···jS
k can form a corresponding stacked measurement

vector denoted by zj1 j2···jS
k =

[
z1,j1

k , z2,j2
k , · · · zS,jS

k
]′. The relationship between the stacked

measurement vector and position of the corresponding target can be written as follows:

zj1 j2···jS
k =


z1,j1

k
z2,j2

k
...

zS,jS
k

 =


h
(
pi

k, p1
k
)

h
(
pi

k, p2
k
)

...
h
(
pi

k, pS
k
)
+ wk = h

(
pi

k, ps
k
)
+ wk, s = 1, 2, · · · , S (13)

where pi
k = [ξ i

k ηi
k]
′ is the position of target in XY-plane, ps

k = [ξs
k ηs

k]
′ is the position of

sensor s, and wk is the stacked measurement vector of measurement noises with covariance
Rk = diag(σ2

1 , σ2
2 , · · · , σ2

S).
The MLE p̂i

k of the target position can be solved by iteration, and the iterative process
can be denoted [50] by the following:

p̂i,l+1
k = p̂i,l

k +
(
(Jl

k)
′R−1

k Jl
k

)−1
(Jl

k)
′R−1

k
[
zj1 j2···jS

k − h
(
p̂i,l

k , ps
k
)]

(14)

where the following is the Jacobian matrix:

Jl
k =

∂h
(
pi

k, ps
k
)

∂pi
k

∣∣∣∣∣
pi

k=p̂i,l
k

(15)

and p̂i,l
k is the position estimation of target after iteration l. The initial estimate p̂i,0

k can be
obtained from the intersection of the bearing measurements of any two of all sensors.

The mean square error of final target position estimate can be calculated by the following.

Ri,l+1
k , E

[(
p̂i,l+1

k − pi
k
)(

p̂i,l+1
k − pi

k
)′]

=
(
(Ji,l

k )′R−1
k Ji,l

k

)−1
. (16)

For stacked measurement vectors formed by incorrect associations, their elements
do not originate from common targets. Therefore, in this case, it is irrational to solve the
position estimation given in Equation (12). A natural idea is to analyze the differences
of different measurement vectors in the iterative process so as to roughly delete some
infeasible associations.

In the iteration, the initial position estimate p̂i,0
k can be obtained from the intersection of

any two bearing components of stacked measurement vector. Moreover, the corresponding
covariance Ri,0

k can be computed by Equation (16). Note that the initial estimate (p̂i,0
k , Ri,0

k )

is determined by the measurements of only two sensors, while the estimate (p̂i,l
k , Ri,l

k ) after
l iterations, l ≥ 1, is determined by the measurements of all sensors together. That is,
these two estimates are not generated by the same measurements. If these measurements
are not originated from a common target, the position estimate p̂i,l

k will deviate from the
initial estimate p̂i,0

k in the iterative process. This will easily result in inconsistencies between
these two estimates. Here, the inconsistency between two estimates refers to the fact that
the difference between their means is greater than what can be expected based on their
respective error covariance estimates [51].

Taking Figure 4c in Section 3 as an example, the stacked measurement vector formed
by the S-tuple of measurements Z121

k is z121
k =

[
z1,1

k , z2,2
k , z3,1

k
]′. Suppose that, in the iterative

process, the initial position estimate (p̂i,0
k , Ri,0

k ) is obtained by the bearing measurements of



Sensors 2022, 22, 1802 8 of 21

sensors 1 and 3. If the initial estimate (p̂i,0
k , Ri,0

k ) and the estimate (p̂i,l
k , Ri,l

k ) after l iterations,
l ≥ 1, are as shown in Figure 5, it means that the two estimates are inconsistent with
each other. It should be noted that Figure 5 is only a schematic diagram and not a real
experimental result. Numerical experiments will be presented in Section 6.

Sensor 1

Sensor 2

Sensor 3

 ,0 ,0ˆ ,i i
k  kp R

 ˆ ,k kp R

1,1
kz

2,2
kz

3,1
kz

i, l i, l

Figure 5. An illustration of the inconsistency between the two estimates. (p̂i,0
k , Ri,0

k ) is the initial
estimate and (p̂i,l

k , Ri,l
k ) is the estimate after l iterations.

Therefore, it is necessary to quantitatively analyze the difference between the two esti-
mates. One mechanism for detecting statistically significant deviations between estimates
is to calculate the Mahalanobis distance [52]. The Mahalanobis distance between estimates
(p̂i,0

k , Ri,0
k ) and (p̂i,l

k , Ri,l
k ) is defined as follows.

di,l
k =

(
p̂i,0

k − p̂i,l
k
)′(Ri,0

k + Ri,l
k
)−1(p̂i,0

k − p̂i,l
k
)
. (17)

It can be roughly interpreted to mean that p̂i,l
k lies within an ellipsoid centered around

p̂i,0
k [53]. A larger Mahalanobis distance tends to indicate that the two estimates are

inconsistent; that is, the components in the corresponding stacked measurement vector do
not originate from the common target [51]. Therefore, it is necessary to set an appropriate
threshold T according to the measurement accuracy of the sensors. When di,l

k ≤ T, it means
that the components may originate from the common target. In this case, iteration (14) will
be repeated until l > Nmax or the following occurs:

∆p , ‖p̂i,l+1
k − pi,l

k ‖ < ε (18)

where Nmax is preset maximum number of iterations, ‖ · ‖ is the norm of a vector, ε

is a sufficiently small positive real number. Final position estimate p̂i,l
k will be used to

calculate assignment cost cj1 j2···jS
k . When di,l

k > T, this means that measurements in the
vector originate from different targets. Therefore, the iteration will be terminated and the
corresponding association cost will be assigned to infinity.

A threshold T is required to detect inconsistencies between the two estimates (p̂i,0
k , Ri,0

k )

and (p̂i,l
k , Ri,l

k ), l ≥ 1, which decides whether it is necessary to further calculate the asso-

ciation cost cj1 j2···jS
k for MDA. The choice of the threshold T is inherently problem depen-

dent [54]. In bearings-only MSMTT, it is closely related to the position and measurement
accuracy of the passive sensors. In order to avoid deleting incorrect associations, the
threshold should not be too small. For a small number of remaining incorrect associations,
the subsequent MDA can be used for further identification. In practical applications, an a
priori threshold can be determined in advance with the help of cooperative targets.

For some infeasible associations, terminating the iterations when the Mahalanobis
distance between the initial estimate of the iterative estimate is greater than a set threshold
T can effectively save computational cost. The proposed strategy is denoted by coarse
gating in iterations (CGI). The CGI-driven MDA is summarized in Algorithm 1.
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Algorithm 1: CGI driven MDA

Input: position ps
k = [ξs

kηs
k]
′ of each sensor, stacked measurement vectors,

minimum threshold ε of iterations, maximum number Nmax of iterations,
threshold T

Output: the binary decision variable ρ
j1 j2···jS
k in Equation (5)

1 foreach stacked measurement vector zj1 j2···jS
k do

2 calculate the initial position estimate p̂i,0
k and covariance Ri,0

k using any two
non-dummy measurements;

3 l ← 1;
4 while (∆p > ε and l < Nmax) do
5 calculate the position estimation p̂i,l

k after l iterations and corresponding
covariance matrix Ri,l

k via Equations (14) and (16), respectively;
6 calculate Mahalanobis distance di

k via Equation (17);
7 only if;
8 if di,l

k > T then
9 cj1 j2···jS

k ← +∞;
10 break;
11 end
12 calculate ∆p via Equation (18);
13 l ← l + 1;
14 end

15 calculate the assignment cost cj1 j2···jS
k via Equation (8);

16 end
17 solve the optimization problem in Equation (5)

5. Two-Stage MSMTT

In this section, the CGI-driven MDA is combined with a TS-MHT framework to
perform bearings-only MSMTT. The framework is given in Figure 6.

MHT 
CGI

MHT

MHT

..
.

..
.

Effective 
measurements

Bearing 
measurements 

of sensor 1

Bearing 
measurements 

of sensor 2

Bearing 
measurements 

of sensor S

Effective 
measurements

Effective 
measurements

MDA
Stacked 

measurement 
vectors

MHT

First stage Second stage 

Tracks

Figure 6. Framework of TS-MHT.

First, MHT is performed at each sensor, and only the measurements used to update
the tracks are sent to the FC. Here, these measurements are referred to as “effective mea-
surements.” Second, the effective measurements from different sensors are combined and
augmented to form stacked measurement vectors. Note that each measurement vector is a
potential association hypothesis. The proposed CGI is then used to eliminate infeasible asso-
ciation hypotheses. After this, the measurement-to-measurement association is performed
using the MDA algorithm. Finally, target tracks are obtained by using the second stage MHT.
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The advantages of the above framework are mainly in the following aspects. In
the framework shown in Figure 6, using the first stage MHT can eliminate most of the
false measurements obtained by individual sensors, thus reducing the number of stacked
measurement vectors. This further reduces the computational requirement of associations,
and it also helps improve the accuracy of MDA. In turn, accurate data association facilitates
track initialization in the second stage MHT and avoids infeasible hypothesis generation.

5.1. First Stage MHT

For the first stage, bearings-only multitarget tracking needs to be performed at each
local passive sensor. Many existing methods are available [23,33,55]. Since this part is not
the focus of this work, only one of the methods is considered.

The method proposed in [33] is to define the target state in Cartesian coordinates, thus
performing single sensor state-space tracking. It should be noted that in [33], the target
moves in three-dimensional space, and frequency information is available. In order to
use the strategy for two-dimensional bearings-only MSMTT, it is simplified so that the
dynamical system of the target can be described by Equations (1) and (2).

First, the one-point initialization approach is performed by combining the detection
range of the sensor and all measurements at the initial time. Suppose that the detection
range of sensor s is within the interval [rs

min, rs
max]. Correspondingly, the initial range

between the target and the sensor and the corresponding variance can be calculated [33]
as follows.

rs =
rs

min + rs
max

2
, σ2

r =
(rs

max − rs
min)

2

12
. (19)

Then, the estimate of the initial state vector and the associated covariance are the
following:

x̂js
0|0 =


xjs

0
ẋjs

0
yjs

0
ẏjs

0

 =


rs sin(zs,js

0 ) + xs
0

0
rs cos(zs,js

0 ) + ys
0

0

, (20)

Pjs
0|0 = J′RJ, (21)

where the following is the case:

R = diag
(
σ2

r , σ2
s , σ2

ẋ , σ2
ẏ
)
, (22)

J =
∂zs,js

0

∂x̂js
0|0

, (23)

and σ2
s represents the measurement noise variance of sensor s, and σ2

ẋ and σ2
ẏ are the velocity

variances based on their a priori maximum values.
It should be noted that, for this method, parameter rs is only used for track initiation.

That is to say that only bearing measurements are used to update tracks during the course
of track maintenance. In addition, the measurements used for updating will be sent to the
second stage.

5.2. Second Stage MHT

After the first stage MHT, most false measurements from each local sensor are elimi-
nated, and the effective measurements are sent to the FC. Considering that the tracking
performance of single passive sensor is quite limited in the first stage, these effective mea-
surements can be divided into three categories: measurements originated from the target,
false measurements due to false association, and dummy measurements due to missed
detection. Therefore, in the second stage, the measurement-to-measurement association
still needs to be performed.
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First, all effective measurements from different sensors are combined and augmented
to form stacked measurement vectors. Each stacked measurement vector is a potential
association hypothesis. Then, the proposed CGI is used to delete infeasible associations.
For each stacked measurement vector, in the iterative process of obtaining the MLE of target
position, if the Mahalanobis distance di,l

k between the initial estimate (p̂i,0
k , Ri,0

k ) and the
iterative estimate (p̂i,l

k , Ri,l
k ) is greater than threshold T, then the association is determined

as infeasible and deleted. When di,l
k ≤ T, the estimate from the final iteration is naturally

regarded as the MLE of the target position in the XY-plane, i.e., the solution of Equation (12).
At the same time, it can be used for subsequent MDA. Finally, target tracks are obtained
through the second stage MHT.

6. Illustrative Examples

In this section, five illustrative examples are presented. First, a scenario with three
stationary targets (Scenario 1) is used to illustrate that, for incorrect associations, the initial
estimation and iterative estimation generated in the iterative process are often inconsistent
so as to verify the rationality and feasibility of the proposed strategy CGI. Second, a scenario
with 18 stationary targets (Scenario 2) is used to compare the performance difference of
three methods, MDA, CGI-driven MDA, and clustering-based MDA [43], to verify the
effectiveness of the proposed strategy. Finally, a single-target tracking scenario (scenario 3)
and multi-target tracking scenarios (scenarios 4 and 5) are used to further validate the
performance of the framework shown in Figure 6.

6.1. Verification of Inconsistency

This subsection uses a numerical example about stationary targets to illustrate the
difference in Mahalanobis distance between the current and initial estimates in an iterative
process for the MLE of different target positions so as to verify the feasibility of the CGI
proposed in Section 4.

Suppose there are three fixed passive sensors located at (0 m, 0 m), (1000 m, 600 m),
and (3000 m, 0 m) in the XY-plane. At time k, sensor s, s ∈ {1, 2, 3}, acquires bearing
measurements {zs,1

k , zs,2
k }, where zs,1

k and zs,2
k represents the measurements originated from

the targets 1 and 2, respectively. The positions of these two targets in the XY-plane are
(1500 m, 200 m) and (1800 m, 500 m). The standard deviations of the measurement errors
of these three sensors are σs = 17.5 mrad, s ∈ {1, 2, 3}.

In the absence of false alarms and missed detections, eight stacked measurement
vectors, i.e., association hypotheses, can be obtained. Figure 7 shows the bearing measure-
ments of each sensor in one of the Monte Carlo runs, where the dashed lines represent the
measurements originated from target 1, and the solid lines represent the measurements
originated from target 2. Figures 8–10 show initial estimate (p̂i,0

k , Ri,0
k ) and iterative estimate

(p̂i,l
k , Ri,l

k ), l = Nmax obtained using these stacked measurement vectors. Note that the only
condition for iteration termination in this scenario is l > Nmax. The uncertainty of the
position estimates in the XY-plane is represented by the 95% probability ellipses.

From Figure 8a,f, when all components of the stacked measurement vector originate
from the same target, the uncertainty ellipse of the iterative estimate is smaller than that of the
initial estimate, and these two estimates are consistent. From Figure 8b,d,e, it can be observed
that these two estimates obtained by z121

k , z211
k , and z221

k are inconsistent. For the other two
stacked measurement vectors z112

k and z212
k , since the initial and iterative estimates are too

far away from each other, they are shown in the subfigures of Figures 9 and 10, respectively.
It can be observed that the uncertainty ellipses of the iterative estimates are extremely large.
For this two cases, the initial and iterative estimates are also obviously inconsistent.

It can be demonstrated through the above experiments that for many infeasible
associations, the two estimates, (p̂i,0

k , Ri,0
k ) and (p̂i,l

k , Ri,l
k ), obtained in the iterations are

often inconsistent.
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Figure 7. Scenario 1 with 2 stationary targets and 3 passive sensors.

Furthermore, for each stacked measurement vector, the Mahalanobis distances be-
tween initial estimate (p̂i,0

k , Ri,0
k ) and all iterative estimates (p̂i,l

k , Ri,l
k ), l = {1, 2, · · · , Nmax}

are calculated. Table 1 presents the minimum and maximum Mahalanobis distances ob-
tained in the iterative process with the different stacked measurement vectors. It is the
statistic obtained from 2000 Monte Carlo runs.
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Figure 8. The initial estimate and the estimate after l iterations obtained using different stacked
measurement vectors. (a) z111
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Figure 9. The initial estimate and the estimate after l iterations obtained using the stacked measure-
ment vector z112

k . (a) Initial estimate. (b) Estimate after l iterations.
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Figure 10. The initial estimate and the estimate after l iterations obtained using the stacked measure-
ment vector z212

k . (a) Initial estimate. (b) Estimate after l iterations.

Table 1. Mahalanobis distances between the initial estimate and the iterative estimates.

z111
k z112

k z121
k z122

k z211
k z212

k z221
k z222

k

Minimum Mahalanobis distances 0.8336 80.9022 17.9394 3.8289 4.7382 102.5766 15.8057 0.4970

Maximum Mahalanobis distances 1.1744 5.1467× 104 45.7706 4.7942 7.0418 2.1429× 104 56.0292 0.5112

It can be observed that, throughout the iterative process, the Mahalanobis distances ob-
tained by using correctly associated vectors z111

k and z222
k are significantly smaller. Therefore,

infeasible associations can be effectively eliminated by setting an appropriate threshold T.

6.2. CGI Driven MDA for Stationary Targets

In this subsection, the impact of the proposed CGI on the performance of MDA will
be analyzed. This scenario, as illustrated in Figure 11, consists of 3 bearing-only passive
sensors, 1 cooperative target, and 18 unknown non-cooperative targets.
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x(m)

-4000

-3000

-2000

-1000

0

y
(m

)

Sensor 1 Sensor 2 Sensor 3

Tragets Cooperative traget

Figure 11. Scenario 2 with 18 stationary targets and 3 passive sensors.

The positions of three passive sensors in the XY-plane are (−2000 m, −2500 m),
(2500 m, −2750 m), and (200 m, −3500 m), respectively. The standard deviations of the
measurement errors for all sensors are σs = 1 mrad, s ∈ {1, 2, 3}. The position of the
cooperative target is (600 m, −1600 m). The positions of other unknown non-cooperative
targets are shown in Table 2. For the sake of simplicity, it is assumed that all sensors have
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unity detection probability for each target and there are no false measurements. It is also
supposed that, at some point before these unknown targets are detected, three passive
sensors can only acquire the bearing measurements originating from the cooperative target.

Table 2. Positions of all targets in XY-plane.

(−1500 m, −500 m) (−900 m, −500 m) (−300 m, −500 m) (900 m, −500 m) (1500 m, −500 m) (−1500 m, −500 m)

(−1500 m, −1000 m) (−900 m, −1000 m) (−300 m, −1000 m) (900 m, −1000 m) (1500 m, −1000 m) (−1500 m, −1000 m)

(−1500 m, −1500 m) (−900 m, −1500 m) (−300 m, −1500 m) (900 m, −1500 m) (1500 m, −1500 m) (−1500 m, −1500 m)

In order to set a reasonable threshold T for the proposed CGI, the bearing measure-
ments originating from the cooperative target are used iteration of Equations (14) and (16).
The maximum Mahalanobis distance between the initial estimate (p̂i,0

k , Ri,0
k ) and each itera-

tive estimate (p̂i,l
k , Ri,l

k ), l ∈ {1, 2, · · ·Nmax}was dmax = 11.6977 over 2000 Monte Carlo runs.
Considering that the Mahalanobis distance is closely related to the geometric structure
between the sensors and the cooperative target, threshold T should not be less than dmax.
In order to avoid deleting the correct association, the threshold in this scenario is set to
T = 12.

The Lagrangian relaxation method in [48] is used to obtain suboptimal solutions of
the MDA problem in Equation (5). Table 3 presents the performance comparison of three
different methods, MDA, CGI driven MDA, and clustering-based MDA [43], based on a
2000-run Monte Carlo average. The experimental results are obtained on MATLAB R2020b
with Intel(R) Core(TM) i5-9500 CPU @3.00GHz and RAM of 8 GB.

Table 3. The performance comparison of different methods.

MDA Clustering-Based MDA CGI Driven MDA

Number of all S-tuples 5832 5832 5832

Number of S-tuples after coarse gating - 103.74 83.82

Number of identified targets 19.58 18.97 18.02

Percent correct association 33.35% 81.67% 99.61%

Execution time to calculate assignment costs 3.9069 s 0.3917 s 0.3625 s

Execution time to obtain suboptimal solution 0.9163 s 0.1457 s 0.3543 s

It can be observed from Table 3 that the number of S-tuples reduced from 5832 to 83.82
after CGI. Moreover, the correct association rate of CGI-driven MDA is 99.61%, much higher
than that of the other two methods. This means that CGI can effectively eliminate a large
number of infeasible associations and can significantly improve the correct association rate
of MDA. In addition, for MDA, the execution time to calculate the assignment costs of all
S-tuples is 3.9069 s. This takes about 81% of the total execution time. For CGI-driven MDA,
the execution time for calculating all assignment costs is only 3 s, which accounts for about
50% of the total execution time. Obviously, the proposed CGI driven MDA has a significant
improvement in both computational efficiency and correct association probability. For the
clustering-based MDA method, the execution time of obtaining the suboptimal solution of
Equation (5) by the Lagrangian relaxation algorithm is less than that of the proposed CGI-
driven MDA method. This is due to the fact that the clustering method decomposes the entire
assignment problem into smaller subproblems, thus improving computational efficiency.

Table 4 illustrates the impact of five different thresholds on the performance of the
proposed CGI-driven MDA. It can be observed that the larger T is, the larger the number of
S-tuples obtained after CGI, and the more execution time is required. The correct association
rate when T = 1 is 78.14%, which is less than the correct association rate when T = 12.
Therefore, it is not the case that the smaller the threshold is, the better. Smaller thresholds
may result in the removal of some correct associations. Moreover, it can be found that when
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T = 24, the correct association rate is significantly smaller than the other two groups. This
is mainly due to the large number of retained S-tuples, which results in the degradation of
the performance of the Lagrangian relaxation algorithm used.

Table 4. The effect of different threshold T on the performance of CGI driven MDA.

T = 1 T = 6 T = 12 T = 16 T = 24

Number of all S-tuples 5832 5832 5832 5832 5832

Number of S-tuples after CGI 29.43 61.03 83.82 95.89 114.93

Number of identified targets 18.27 18.01 18.02 18.37 19.68

Percent correct association 78.14% 99.33% 99.61% 87.61% 69.39%

Execution time to calculate assignment costs 0.3597 0.3397 s 0.3625 s 0.3472 s 0.3439 s

Execution time to obtain suboptimal solution 0.0164 0.0964 s 0.3543 s 0.8761 s 1.3270 s

6.3. TS-MHT for Single Target Tracking in Clutter

In this subsection, a single target tracking scenario is considered to verify the perfor-
mance of the TS-MHT framework shown in Figure 6.

There are four passive sensors located at (1000 m, 2250 m), (1000 m,−2250 m), (6000 m,
2250 m), and (6000 m, −2250 m), respectively. Each sensor can only measure the bearing to
the target, and the sampling interval is 10 s. Their measurement errors are modeled as zero-
mean Gaussian white noises with same standard deviations σs = 17.5 mrad, s ∈ {1, 2, 3, 4}.
The maximum detection range of each sensor is 5 km and the detection probability is
PDs = 0.9, s ∈ {1, 2, 3, 4}. False measurements are uniformly distributed over the detection
range and their number is Poisson distributed with an average of 4 false measurements
per sensor per scan. Target moves in two dimensions with NCV, and its initial position
and velocity are [3500 m, −4000 m] and [0 m/s, 7.2 m/s], respectively. The process noise
covariance is Q = 0.012 I. The true trajectory of the target motion and the sensor positions
are shown in Figure 12, where the detection range of each sensor is indicated by dashed
lines of different colors.
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Figure 12. Scenario 3 for single target tracking with 4 passive sensors.

Figure 13 shows the tracking results of each sensor at the first stage. Here, threshold
T is set to 16. Superficially, there are significant differences between the tracking results
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of each sensor and the true track of the target. This is due to the unobservability of target
state for single passive sensor. Although, in track initiation, the initial position estimate of
the target can be obtained by the detection range of the sensor, it is also inaccurate.
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Figure 13. Tracking results of first stage MHT in each local sensor. (a) Sensor 1. (b) Sensor 2. (c) Sensor 3.
(d) Sensor 4.

It should be noted that, for the first stage of the TS-MHT framework shown in Figure 6,
its main purpose is to eliminate as many false measurements as possible by using prelim-
inary tracking. Moreover, only the measurements used to update these tracks are sent
to the second stage in real time. That is to say that it is more interested in whether the
measurements sent to the second stage originate from the true target than in the accuracy
of target state estimation. From Figure 13, it can be observed that the number of tracks
obtained by sensors are all one. These estimated numbers of tracks are close to the number
of true target. In addition, the estimated tracks by each sensor and the true track of the
target are on the same side of the corresponding sensor, and their orientations with respect
to the sensors are roughly the same. This means that the tracking results of the first stage
may not be that bad, although the tracking results still need to be further improved by the
measurements from other sensors during the second stage.

Figure 14 shows the tracking result of the second stage. It can be observed that the
second stage MHT can effectively track the target in clutter. At the same time, this in turn
shows that CGI-driven MDA can effectively delete infeasible associations.

The execution time of each stage is calculated over 2000 Monte Carlo runs. For the
first stage, the average execution time per frame of the MHT algorithm in each sensor is
approximately equal, and it is about 1.0741 s. For the second stage, the average execution
time of MHT algorithm is 0.1782 s per frame. Obviously, the execution time of the second
stage MHT is significantly smaller than that of the first stage MHT. This is due to the fact that
the first stage can effectively eliminate a large number of false measurements, thus effectively
reducing the number of feasible assumptions in the second stage. It should be noted that the
effective measurements in the first stage are sent to the second stage in real time.
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In addition, to verify the effect of different thresholds T on tracking performance,
the root mean square error (RMSE) is used to measure the performance of target tracking,
as shown in Figure 15. It can be observed that when T = 16, tracking performance is
significantly better than the other two groups. Combined with the experimental results of
Scenario 2, it can be further demonstrated that when preset threshold T is too large or too
small, and it may result in a decrease in the correct association rate of MDA, which further
affects tracking performance.
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Figure 14. Tracking results of second stage MHT.
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Figure 15. Position RMSE of different threshold T.

6.4. TS-MHT for Multitarget Tracking in Clutter

Consider two multitarget tracking scenarios with four sensors. For scenario 4, as
shown in Figure 16a, the two targets move simultaneously along the Y direction with a
nearly constant speed of 6.2 m/s, and their initial positions are [3500 m, −3500 m] and
[6500 m, −3500 m], respectively. For scenario 5 as shown in Figure 16b, the initial positions
of the two targets are [5000 m, −3500 m] and [8500 m, 0 m], and their initial velocities are
[0 m/s, 7.2 m/s] and [−5.2 m/s, 0 m/s], respectively. The other parameters are the same as
in Scenario 2.

By comparing Figures 16 and 17, it can be observed that the proposed strategy can
effectively tackle MSMTT.
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Figure 16. Multitarget tracking scenarios with 4 passive sensors. (a) Scenarios 4. (b) Scenarios 5.
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Figure 17. Tracking results. (a) Scenarios 4. (b) Scenarios 5.

7. Conclusions

The bearings-only multitarget tracking problem is investigated for synchronous pas-
sive sensors. In the target tracking process, especially for track initiation, MDA can be used
to identify the measurements originating from common targets. In order to reduce the
computational cost of the multidimensional assignment and improve its correct association
rate, a new coarse gating strategy, the CGI, has been proposed first. For MDA, iterative
processes can be used to obtain the MLE of target position corresponding to each possible
association and, thus, further calculate the assignment cost of that association. Since the
initial estimate and the iterative estimate are not obtained by the same measurements,
it has been proposed to eliminate infeasible associations by using the Mahalanobis dis-
tance between the initial estimate and the iterative estimate as a measure. The feasibility
and effectiveness of the proposed CGI is verified by two scenarios, i.e., scenarios 1 and
2, respectively. In addition, MDA driven by this strategy is combined with the TS-MHT
framework for distributed MSMTT. Numerical examples have verified the performance of
the proposed strategy. Moreover, the effectiveness of the proposed strategy in the tracking
process is further verified by two scenarios of single target and multitarget in clutter.
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Abbreviations
The following abbreviations are used in this manuscript:

MSMTT Multisensor-multitarget tracking;
MDA Multidimensional assignment;
MLE Maximum likelihood estimation;
TS-MHT Two-stage multiple hypothesis tracking;
MTT Multitarget tracking;
GNN Global nearest neighbor;
PDA Probabilistic data association;
JPDA Joint probabilistic data association;
JIPDA Joint integrated probabilistic data association;
MS-JPDA Multiscan joint probabilistic data association;
MHT Multiple hypothesis tracking;
RFS Random finite set;
PHD Probability hypothesis density;
CPHD Cardinalized probability hypothesis density;
GLMB Generalized labeled multi-Bernoulli;
FC Fusion center;
CGI Coarse gating in iterations;
2D Two-dimensional;
RMSE Root mean square error;
NCV Nearly constant velocity.

Nomenclatures

Notations Definitions
S Number of sensors
s Sensor index, s = 1, 2, · · · , S
i Target index
k Time index
js Bearing measurement index acquired by sensor s
Ns Number of bearing measurements acquired by sensor s
zs,js

k The jsth bearing measurement acquired by sensor s at time k
βs,is

k True bearing between target i and sensor s
z̃js

k False measurements
xi

k State vector of target i at time k
ps

k Position vector of sensor s
Fk State transition matrix at time k
wi

k Process noise vector of target i at time k
vs,js

k Measurement noise of sensor s at time k
σ2

s Measurement noise variance of sensor s
Zj1 j2···jS

k An S-tuple of measurements, one from each sensor
cj1 j2···jS

k Cost of associating S-tuple of measurements with a target
ρ

j1 j2···jS
k Binary decision variables

PDs Detection probability of sensor s
ψs Volume of the field of view of sensor s
u
(

js
)

Binary indicator function
l iteration index
zj1 j2···jS

k Stacked measurement vector corresponding to S-tuple Zj1 j2···jS
k

pi
k Position vector of target i

p̂i,0
k Initial position estimate of target i
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p̂i,l
k Position estimation of target i after iteration l

Ri,l
k Covariance matrix corresponding to the position estimate p̂i,l

k
Jl

k Jacobian matrix
di,l

k Mahalanobis distance
T Threshold

References
1. Mallick, M.; Vo, B.N.; Kirubarajan, T.; Arulampalam, S. Introduction to the issue on multitarget tracking. IEEE J. Sel. Top. Signal

Process. 2013, 7, 373–375. [CrossRef]
2. Mallick, M.; Bar-Shalom, Y.; Kirubarajan, T.; Moreland, M. An improved single-point track initiation using GMTI measurements.

IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 2697–2714. [CrossRef]
3. Lima, K.M.D.; Costa, R.R. Cooperative-PHD Tracking Based on Distributed Sensors for Naval Surveillance Area. Sensors 2022, 22,

729. [CrossRef] [PubMed]
4. Luo, J.; Han, Y.; Fan, L. Underwater Acoustic Target Tracking: A Review. Sensors 2018, 18, 112. [CrossRef] [PubMed]
5. Bahraini, M.S.; Rad, A.B.; Bozorg, M. SLAM in Dynamic Environments: A Deep Learning Approach for Moving Object Tracking

Using ML-RANSAC Algorithm. Sensors 2019, 19, 3699. [CrossRef]
6. Panicker, S.; Gostar, A.K.; Bab-Hadiashar, A.; Hoseinnezhad, R. Recent Advances in Stochastic Sensor Control for Multi-Object

Tracking. Sensors 2019, 19, 3790. [CrossRef]
7. Mallick, M.; Krishnamurthy, V.; Vo, B.N. Multitarget Tracking Using Multiple Hypothesis Tracking. In Integrated Tracking,

Classification, and Sensor Management: Theory and Applications; Wiley: Piscataway, NJ, USA, 2012; pp. 163–202. [CrossRef]
8. Lundquist, C.; Granström, K.; Orguner, U. An Extended Target CPHD Filter and a Gamma Gaussian Inverse Wishart Implemen-

tation. IEEE J. Sel. Top. Signal Process. 2013, 7, 472–483. [CrossRef]
9. Tang, X.; Li, M.; Tharmarasa, R.; Kirubarajan, T. Seamless Tracking of Apparent Point and Extended Targets Using Gaussian

Process PMHT. IEEE Trans. Signal Process. 2019, 67, 4825–4838. [CrossRef]
10. Hoher, P.; Wirtensohn, S.; Baur, T.; Reuter, J.; Govaers, F.; Koch, W. Extended Target Tracking with a Lidar Sensor Using Random

Matrices and a Virtual Measurement Model. IEEE Trans. Signal Process. 2022, 70, 228–239. doi: 10.1109/TSP.2021.3138006.
[CrossRef]

11. Smith, J.; Particke, F.; Hiller, M.; Thielecke, J. Systematic Analysis of the PMBM, PHD, JPDA and GNN Multi-Target Tracking
Filters. In Proceedings of the 2019 International Conference on Information Fusion, Ottawa, ON, Canada, 2–5 July 2019.

12. Ishtiaq, S.; Wang, X.; Hassan, S. Multi-Target Tracking Algorithm Based on 2-D Velocity Measurements Using Dual-Frequency
Interferometric Radar. Electronics 2021, 10, 1969. [CrossRef]

13. Blackman, S.S.; Popoli, R. Design and Analysis of Modern Tracking Systems; Radar Library: Norwood, MA, USA, 1999.
14. Bar-Shalom, B.Y.; Willett, P.K.; Tian, A.X. Tracking and Data Fusion: A Handbook of Algorithms; YBS Publishing: Storrs, CT,

USA, 2011.
15. He, S.; Shin, H.S.; Tsourdos, A. Joint Probabilistic Data Association Filter with Unknown Detection Probability and Clutter Rate.

Sensors 2018, 18, 269. [CrossRef]
16. Blackman, S. Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 5–18. [CrossRef]
17. Musicki, D.; Evans, R. Joint integrated probabilistic data association: JIPDA. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1093–1099.

[CrossRef]
18. Roecker, J. Multiple scan joint probabilistic data association. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 1204–1210. [CrossRef]
19. Chong, C.Y.; Mori, S.; Reid, D.B. Forty Years of Multiple Hypothesis Tracking. J. Adv. Inf. Fusion 2019, 14, 131–153.
20. Vo, B.N.; Mallick, M.; bar Shalom, Y.; Coraluppi, S., III; Osborne, R.; Mahler, R.; Vo, B.T. Multitarget Tracking. Wiley: Hoboken, NJ,

USA, 2015; doi: 10.1002/047134608X.W8275. [CrossRef]
21. Reid, D. An algorithm for tracking multiple targets. IEEE Trans. Autom. Control. 1979, 24, 843–854. [CrossRef]
22. Bar-Shalom, Y.; Blackman, S.S.; Fitzgerald, R.J. Dimensionless score function for multiple hypothesis tracking. IEEE Trans. Aerosp.

Electron. Syst. 2007, 43, 392–400. [CrossRef]
23. Coraluppi, S.; Rago, C.; Carthel, C.; Bale, B. Distributed MHT with Passive Sensors. In Proceedings of 2021 International

Conference on Information Fusion, Sun City, South Africa, 1–4 November 2021.
24. Mahler, R.P.S. Advances in Statistical Multisource-Multitarget Information Fusion; Artech House: Norwood, MA, USA, 2014.
25. Moratuwage, D.; Adams, M.; Inostroza, F. δ-Generalized Labeled Multi-Bernoulli Simultaneous Localization and Mapping with

an Optimal Kernel-Based Particle Filtering Approach. Sensors 2019, 19, 2290. [CrossRef]
26. Mahler, R. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1152–1178.

[CrossRef]
27. Mahler, R. PHD filters of higher order in target number. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1523–1543. [CrossRef]
28. Schlangen, I.; Delande, E.D.; Houssineau, J.; Clark, D.E. A Second-Order PHD Filter With Mean and Variance in Target Number.

IEEE Trans. Signal Process. 2018, 66, 48–63. [CrossRef]
29. Vo, B.T.; Vo, B.N.; Cantoni, A. The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations. IEEE Trans.

Signal Process. 2009, 57, 409–423. [CrossRef]

http://doi.org/10.1109/JSTSP.2013.2254034
http://dx.doi.org/10.1109/TAES.2015.140599
http://dx.doi.org/10.3390/s22030729
http://www.ncbi.nlm.nih.gov/pubmed/35161477
http://dx.doi.org/10.3390/s18010112
http://www.ncbi.nlm.nih.gov/pubmed/29301318
http://dx.doi.org/10.3390/s19173699
http://dx.doi.org/10.3390/s19173790
http://dx.doi.org/10.1002/9781118450550.ch5
http://dx.doi.org/10.1109/JSTSP.2013.2245632
http://dx.doi.org/10.1109/TSP.2019.2932873
http://dx.doi.org/10.1109/TSP.2021.3138006
http://dx.doi.org/10.3390/electronics10161969
http://dx.doi.org/10.3390/s18010269
http://dx.doi.org/10.1109/MAES.2004.1263228
http://dx.doi.org/10.1109/TAES.2004.1337482
http://dx.doi.org/10.1109/7.395216
http://dx.doi.org/10.1002/047134608X.W8275
http://dx.doi.org/10.1109/TAC.1979.1102177
http://dx.doi.org/10.1109/TAES.2007.357141
http://dx.doi.org/10.3390/s19102290
http://dx.doi.org/10.1109/TAES.2003.1261119
http://dx.doi.org/10.1109/TAES.2007.4441756
http://dx.doi.org/10.1109/TSP.2017.2757905
http://dx.doi.org/10.1109/TSP.2008.2007924


Sensors 2022, 22, 1802 21 of 21

30. Beard, M.; Vo, B.T.; Vo, B.N. A Solution for Large-Scale Multi-Object Tracking. IEEE Trans. Signal Process. 2020, 68, 2754–2769.
[CrossRef]

31. Chen, H.; Kirubarajan, T.; Bar-Shalom, Y. Performance limits of track-to-track fusion versus centralized estimation: Theory and
application [sensor fusion]. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 386–400. [CrossRef]

32. Yu, Y.; Hou, Q.; Zhang, W.; Zhang, J. A Sequential Two-Stage Track-to-Track Association Method in Asynchronous Bearings-Only
Sensor Networks for Aerial Targets Surveillance. Sensors 2019, 19, 3185. [CrossRef] [PubMed]

33. Lexa, M.; Coraluppi, S.; Carthel, C.; Willett, P. Distributed MHT and ML-PMHT Approaches to Multi-Sensor Passive Sonar
Tracking. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020. [CrossRef]

34. Shen, K.; Dong, P.; Jing, Z.; Leung, H. Consensus-Based Labeled Multi-Bernoulli Filter for Multitarget Tracking in Distributed
Sensor Network. IEEE Trans. Cybern. 2021, 1–12. doi: 10.1109/TCYB.2021.3087521. [CrossRef]

35. Kazimierski, W.; Zaniewicz, G. Determination of Process Noise for Underwater Target Tracking with Forward Looking Sonar.
Remote Sens. 2021, 13, 1014. [CrossRef]

36. Wang, M.; Qiu, B.; Zhu, Z.; Xue, H.; Zhou, C. Study on Active Tracking of Underwater Acoustic Target Based on Deep Convolution
Neural Network. Appl. Sci. 2021, 11, 7530. [CrossRef]

37. Li, X.; Lu, B.; Ali, W.; Jin, H. Passive Tracking of Multiple Underwater Targets in Incomplete Detection and Clutter Environment.
Entropy 2021, 23, 1082. [CrossRef] [PubMed]

38. Zhang, Y.; Lan, J.; Mallick, M.; Li, X.R. Bearings-Only Filtering Using Uncorrelated Conversion Based Filters. IEEE Trans. Aerosp.
Electron. Syst. 2021, 57, 882–896. [CrossRef]

39. Mušicki, D. Bearings only single-sensor target tracking using Gaussian mixtures. Automatica 2009, 45, 2088–2092. [CrossRef]
40. Do, C.T.; Nguyen, T.T.D.; Nguyen, H.V. Robust multi-sensor generalized labeled multi-Bernoulli filter. Signal Process. 2022,

192, 108368. [CrossRef]
41. Bar-Shalom, Y.; Li, X. Multitarget-Multisensor Tracking: Principles and Techniques; YBS Publishing: Storrs, CT, USA, 1995.
42. Deb, S.; Pattipati, K.; Bar-Shalom, Y. A multisensor-multitarget data association algorithm for heterogeneous sensors. IEEE Trans.

Aerosp. Electron. Syst. 1993, 29, 560–568. [CrossRef]
43. Chummun, M.; Kirubarajan, T.; Pattipati, K.; Bar-Shalom, Y. Fast data association using multidimensional assignment with

clustering. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 898–913. [CrossRef]
44. Sathyan, T.; Sinha, A.; Kirubarajan, T.; Mcdonald, M.; Lang, T. MDA-Based Data Association with Prior Track Information for

Passive Multitarget Tracking. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 539–556. [CrossRef]
45. Mallick, M. A Note on Bearing Measurement Model. Mach. Eng. 2018. doi: 10.13140/RG.2.2.13441.35681. [CrossRef]
46. Leung, H. Neural network data association with application to multiple-target tracking. Opt. Eng. 1996, 35, 693–700. [CrossRef]
47. Carrier, J.Y.; Litva, J.; Leung, H.; Lo, T.K.Y. Genetic algorithm for multiple-target-tracking data association. In Proceedings of the

SPIE Conference on Acquisition, Tracking, Pointing, Orlando, FL, USA, 7 June 1996; Volume 2739. [CrossRef]
48. Deb, S.; Yeddanapudi, M.; Pattipati, K.; Bar-Shalom, Y. A generalized S-D assignment algorithm for multisensor-multitarget state

estimation. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 523–538. [CrossRef]
49. Poore, A.B.; Robertson, A.J. A New Lagrangian Relaxation Based Algorithm for a Class of Multidimensional Assignment

Problems. Comput. Optim. Appl. 1997, 8, 129–150. [CrossRef]
50. Bar-Shalom, Y.; Kirubarajan, T.; Li, X.R. Estimation with Applications to Tracking and Navigation; Wiley: New York, NY, USA, 2001.
51. Uhlmann, J.K. Covariance consistency methods for fault-tolerant distributed data fusion. Inf. Fusion 2003, 4, 201–215. [CrossRef]
52. Uhlmann, J., Introduction to the Algorithmics of Data Association in Multiple-Target Tracking. In Handbook of Multisensor Data

Fusion; CRC Press: Boca Raton, FL, USA, 2008; Chapter 3. [CrossRef]
53. Collins, J.; Uhlmann, J. Efficient gating in data association with multivariate Gaussian distributed states. IEEE Trans. Aerosp.

Electron. Syst. 1992, 28, 909–916. [CrossRef]
54. Klingner, J.; Ahmed, N.; Correll, N. Fault-tolerant Covariance Intersection for localizing robot swarms. Robot. Auton. Syst. 2019,

122, 103306. [CrossRef]
55. Coraluppi, S.; Carthel, C.; Coon, A. An MHT Approach to Multi-Sensor Passive Sonar Tracking. In Proceedings of the 2018

International Conference on Information Fusion, Cambridge, UK, 10–13 July 2018. [CrossRef]

http://dx.doi.org/10.1109/TSP.2020.2986136
http://dx.doi.org/10.1109/TAES.2003.1207252
http://dx.doi.org/10.3390/s19143185
http://www.ncbi.nlm.nih.gov/pubmed/31331045
http://dx.doi.org/10.1109/AERO47225.2020.9172674
http://dx.doi.org/10.1109/TCYB.2021.3087521
http://dx.doi.org/10.3390/rs13051014
http://dx.doi.org/10.3390/app11167530
http://dx.doi.org/10.3390/e23081082
http://www.ncbi.nlm.nih.gov/pubmed/34441221
http://dx.doi.org/10.1109/TAES.2020.3034023
http://dx.doi.org/10.1016/j.automatica.2009.05.008
http://dx.doi.org/10.1016/j.sigpro.2021.108368
http://dx.doi.org/10.1109/7.210094
http://dx.doi.org/10.1109/7.953245
http://dx.doi.org/10.1109/TAES.2011.5705690
http://dx.doi.org/10.13140/RG.2.2.13441.35681
http://dx.doi.org/10.1117/1.600661
http://dx.doi.org/10.1117/12.241914
http://dx.doi.org/10.1109/7.575891
http://dx.doi.org/10.1023/A:1008669120497
http://dx.doi.org/10.1016/S1566-2535(03)00036-8
http://dx.doi.org/10.1201/9781420053098.ch4
http://dx.doi.org/10.1109/7.256316
http://dx.doi.org/10.1016/j.robot.2019.103306
http://dx.doi.org/10.23919/ICIF.2018.8455402

	Introduction
	Problem Formulation and Notations
	Measurement-to-Measurement Association
	A New Coarse Gating Strategy for MDA
	Two-Stage MSMTT
	First Stage MHT
	Second Stage MHT

	Illustrative Examples
	Verification of Inconsistency
	CGI Driven MDA for Stationary Targets
	TS-MHT for Single Target Tracking in Clutter
	TS-MHT for Multitarget Tracking in Clutter

	Conclusions
	References

