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Abstract

Motivation: Variant calling from next-generation sequencing (NGS) data is susceptible to false

positive calls due to sequencing, mapping and other errors. To better distinguish true from false

positive calls, we present a method that uses genotype array data from the sequenced samples, ra-

ther than public data such as HapMap or dbSNP, to train an accurate classifier using Random

Forests. We demonstrate our method on a set of variant calls obtained from 642 African-ancestry

genomes from the Consortium on Asthma among African-ancestry Populations in the Americas

(CAAPA), sequenced to high depth (30X).

Results: We have applied our classifier to compare call sets generated with different calling methods,

including both single-sample and multi-sample callers. At a False Positive Rate of 5%, our method de-

termines true positive rates of 97.5%, 95% and 99% on variant calls obtained using Illuminas single-

sample caller CASAVA, Real Time Genomics multisample variant caller, and the GATK

UnifiedGenotyper, respectively. Since NGS sequencing data may be accompanied by genotype data

for the same samples, either collected concurrent to sequencing or from a previous study, our method

can be trained on each dataset to provide a more accurate computational validation of site calls com-

pared to generic methods. Moreover, our method allows for adjustment based on allele frequency (e.g.

a different set of criteria to determine quality for rare versus common variants) and thereby provides in-

sight into sequencing characteristics that indicate call quality for variants of different frequencies.
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1 Introduction

Whole-genome sequencing has become increasingly common as a

method to query genetic differences between individuals, both for

population genetic studies and studies of genetic factors contributing

to clinical phenotypes (Koboldt et al., 2013). Methods for translat-

ing sequenced fragments into individual genotype calls have gone

through a period of active development, and many different options

are available (Cleary et al., 2014; DePristo et al., 2011; Liu et al.,

2013). Each of them must account for the occurrence of sequencing

errors (Cheng et al., 2014) in determining whether a genetic variant

is present in a particular sample, a condition that becomes especially

challenging with lower sequencing depth, or in the case of a variant

that has either never been seen in a given population or that is very

rare (Reuter et al., 2015).

One key decision researchers make when choosing a variant

caller is whether to use a single-sample or multi-sample calling algo-

rithm. The argument in favor of multi-sample calling includes bor-

rowing information across individuals at sites of shared genetic

variation. While several pipeline comparison analyses have been

conducted (Cornish and Guda, 2015; Hwang et al., 2015; Yu and

Sun, 2013), limited work has been done to characterize the differ-

ences between the sets of variants generated by different calling al-

gorithms, making it challenging for researchers to make a principled

choice when designing an analysis pipeline. The increased computa-

tional burden of performing multi-sample calling across a large co-

hort means that benefits of such a calling method should be

understood before carrying out this phase of a study. In addition,

while genotype callers usually include some measure of quality or

call confidence as part of their output, room for improvement re-

mains in terms of better characterizing true variant calls from false

positives.

In this manuscript, we present a method for characterizing vari-

ant call sets produced with different calling algorithms in part to il-

lustrate that certain characteristics of individual variants make them

more or less likely to be called by different algorithms. We also pre-

sent a method for assessing variant call quality that incorporates ex-

ternal genotyping array data for each subject, in order to build and

train a classifier which distinguishes true variant calls from false

positives. Such external array data is sometimes or even frequently

available to accompany whole-genome sequencing data, either col-

lected concurrent to sequencing for sample quality control purposes,

or existing from a previous study of the same samples. We leverage

this additional resource to improve sequencing-based variant call

quality.

While other work has used Random Forests to classify variants

according to suites of characteristics, the focus has mainly been on

de novo (Francioli et al., 2015; T. G. of the Netherlands

Consortium, 2014) or somatic (Löwer et al., 2012) mutations. In

contrast, we focus here on using validation data generated on a gen-

otyping array, rather than through costly resequencing-based

validation.

In this presentation, because of our use of genotyping array data

as our gold standard, we limit ourselves to Single Nucleotide

Variants (SNVs) and not short insertions or deletions, although

those can be detected with sequencing data. We demonstrate our

method on a set of variant calls obtained from 642 high-coverage

African-ancestry genomes from the Consortium on Asthma among

African-ancestry Populations in the Americas (CAAPA) (Mathias

et al., 2016), sequenced to high depth (30X).

2 Results

To illustrate our method, we first identified SNVs on chromosome

22 from 642 high-coverage samples from CAAPA using three vari-

ant calling algorithms:

1. CASAVA from Illumina

2. Population caller from Real Time Genomics (RTG)

3. UnifiedGenotyper from the Genome Analysis Toolkit (GATK)

For Illumina, variants were called on each sample individually and

then merged into a combined-sample call set whereas for RTG and

GATK, variants were identified jointly across all 642 samples. In all

cases, the same set of 642 aligned read files (BAM files) was used.

The filters used to obtain the final call sets from the raw calls are

described in more detail in the Methods section.

Experimental validation of putative variants is expensive and dif-

ficult to perform for thousands of variants. Therefore, we focused

on variants identified in a single sample for which we have a tech-

nical replicate, referred to as Sample 1 and Sample 1R, allowing

variants to be partially validated. We characterize our results based

on whether a variant call appears in both replicates, with calls ap-

pearing in both assumed to be correct and those appearing in only

one potentially false positives. While such technical replicates are

not available for all our samples, we performed similar analysis on

an additional nine subjects, referred to as Samples 2–10, selected to

have characteristics spanning a range of values for sequencing qual-

ity (i.e. average depth and fraction of missing calls) and to have a

variety of ethnic backgrounds (see Supplementary Table S1 for a

summary of these characteristics across all 10 samples relative to the

full dataset).

2.1 Differentiating between call sets from different

algorithms
Figure 1 shows a Venn diagram of the overlap between the three

call sets for a single individual. From the figure, we can see that

about 65.3% of all variants (43 291 out of 66 335) are found by all

three methods. Nearly 19.1% of all variants (10 385 out of 66 335)

are found by only two out of three methods while 15.6% (12 658

out of 66 335) are found by only one method. To determine if any

variant features affected the ability of methods to detect a given vari-

ant, we trained a Random Forest classifier to identify which subset

of methods would identify a variant with given variant features.

One purpose of this exercise is to characterize the way different call-

ing algorithms incorporate information from different sources, so

we developed classifiers using both a limited set of features which

rely only on individual-level data, and a set of features that incorp-

orates information across samples, including allele frequencies and
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quality metrics. A detailed description of the variant features used

for the limited and the full classifier, which each include both fea-

tures specific to the individual dataset and those related to the loca-

tion of the variant in the genome, can be found in the Methods

section and in the Supplementary Table S2, including sources of

each measurement used.

Using strictly individual-level features without frequency infor-

mation produces an error rate of 25.69%, which is lower than the

error rate of a classifier that always predicts the majority class (error

rate 34.7%). Figure 2 shows which variant features are important

for classifying a given variant, including mapping quality, indel

proximity and allele balance. Interestingly, not only the coverage in

the chosen individual but also the total coverage at the site across all

individuals is important. Expanding to a classifier that allows a full

set of cross-sample summary information, including allele fre-

quency, overall variant quality and quality by depth, our classifier

achieves a 1.2% error rate, suggesting that the features examined do

in fact allow for distinctions between the call sets. Supplementary

Table S3 shows the result of this full classifier on the union of vari-

ants from the three calling methods for our single individual. While

using the frequency of the alternate allele in the full set of individuals

to determine whether a variant is present in one specific call set is

circular, this frequency is important for the classifier, especially for

the GATK and RTG callers, which combine information across

multiple samples when making a call (Supplementary Fig. S1).

Overall, the fact that variant features can be used to determine

which caller will call a particular variant motivates the development

of our call set-specific call quality assessment models presented

below.

2.2 Identifying true variant sites within a single call set
One feature of our dataset is that in addition to whole-genome

sequencing data, we obtained genotype microarray data from the

Illumina HumanOmni2.5 BeadChip (Omni). For each of the three

call sets, we used the Omni genotype data to learn a Random Forest

classifier that could predict whether or not a variant site detected in

a call set was truly variable or not. Using the Omni data, we declare

a site to be truly variable if it is variable in both the sequencing call

set and based on the Illumina array data; if the site is only variable

in the sequencing dataset but not based on the array data, we declare

it to be a false positive. For this task, we used a slightly different set

of features to that used earlier (see Methods and Supplementary

Table S2). Figure 3 shows the importance of various features for the

three Random Forest classifiers trained. As before, allele frequency

was the most important determinant for the Illumina call set and the

second most important for the GATK call set, while haplotype score,

a measure of evidence for more than two segregating haplotypes in

the sample, was the most important feature for the RTG call set.

Features of just slightly less importance were allele balance (AB,

highest relative importance for GATK), total coverage, haplotype

score, GC content and coverage. Figure 4 shows the receiver-

operating characteristic (ROC) curves for the three classifiers. We

see that all three classifiers have high sensitivity and specificity (true

positive rate>0.95 with false positive rate¼0.05), with area under

the curve (AUC) greater than 0.99. This suggests that truly variant

sites for each call set can be determined statistically using a

machine-learning algorithm (similar to the Gaussian mixture model

used by GATKs variant quality score recalibration (VQSR) scoring

scheme, but on an individual basis).

Results for the complete set of 10 subjects considered are

included in Supplementary Figures S2 (feature importance values),

S3 and S4 (ROC plots). From these figures, we can see that relative

importance of features in the classifier relative remain consistent

Fig. 1. Overlap between the three call sets for variants on chromosome 22 for

our individual of interest

Fig. 2. Feature importance for the Random Forest classifier distinguishing

calls made by different calling algorithms, limited to individual-level features.

Scale on the x-axis is unitless but indicates relative importance of the differ-

ent features

Fig. 3. Feature importance for call set-specific classifiers based on Omni

genotype data. Note that the frequency features refer to the estimates of the

allele frequency from the call set being studied. Also note that the

INDELPROX variable has a value of 0 for RTG
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across individuals. The ROC plots look very similar across subjects,

and in all cases the performance is strong with a True Positive Rate

of over 0.9 at a False Positive Rate of 0.05. Moreover, the relative

ordering of the results for the different callers is consistent. Taken

together, these results confirm that conclusions drawn from the ana-

lysis of Sample 1 hold across samples with a variety of sequencing

characteristics.

We evaluated the validity of our classifier scores by stratifying

sites by the call sets they were found in to compare score distribu-

tions for sites with varying degrees of concordance across call sets.

Figure 5 shows the results of this analysis. Considering the results

for the Illumina classifier (left panel in Fig. 5), we can see that sites

found in all three call sets have higher classifier scores (n¼43 291,

median score¼0.96) than sites found in two of three call sets

(n¼9605, median score¼0.92), with p < 2� 10�16 for a one-

sided t-test comparing these groups. Sites found only by the Illumina

call set have the lowest classifier scores (n¼4929, median score-

¼0.78), with p < 2� 10�16 for both one-sided t-tests comparing

them to the other two categories. Assuming discovery by many vari-

ant callers to be a signal that a site is truly variable, this suggests

that our learned classifiers can predict truly variable sites accurately.

For orthogonal validation, we used a technical replicate and gen-

erated variants using the three variant callers. For each site in the

original call set, we were therefore able to ascertain whether it was

found in both the original and replicate call sets or just one of the

two. Figure 6 shows the results of this analysis. We can see that sites

appearing in both replicates have a higher classifier score than those

appearing only in one replicate (for the one-sided t-test, p ¼ 1:063

�10�5 for illumina, p < 2:2� 10�16 for RTG and GATK).

For each call set, we used the fitted call set-specific classifer to

predict whether all discovered sites within the call set were variable.

Table 1 shows the results of this prediction. We see that of the three

methods, the Illumina call set has the largest number of sites pre-

dicted to be variable. The GATK call set has the highest proportion

of sites predicted to be variable, which is expected since the call set

was filtered using VQSR before our analysis. Overall, all three call

sets have a high proportion of variants predicted to be true calls by

our classifier.

2.3 Adaptation of classifier to rare variants
Since rare variants are considered to be particularly difficult to call

accurately, we examined the performance of our classfiers on rare

variants, focusing only on the Illumina call set. First, we separated

our validation dataset into two groups according to allele frequency.

For Sample 1, there were 50 547 variable sites on the genotyping

array with minor allele frequency (MAF) of at least 5% in the

Illumina call set and 7278 sites with MAF<5%.

We then compared how well we detected these variants in three

settings: (i) using the classifier built on all data, and the cutoff cor-

responding to a false positive rate of 5% on all variants (no stratifi-

cation); (ii) using the classifier built on all data, but allowing for

separate cutoffs for common and rare variants, to ensure a 5% false

positive rate separately for each group (variable thresholds); and (iii)

refitting the Random Forests classifier separately for the two MAF

groups, and then picking the cutoff that corresponds to a 5% false

positive rate separately for each group (separate training).

Finally, we examined how many of the 50 547 common and

7278 rare sites are declared to be variable in each setting (Table 2).

Interestingly, the detection of rare variants is highest when no spe-

cial treatment is involved. This may in part be due to the fact that

there are relatively few rare sites available for training, so that model

accuracy suffers more from the lack of training data than from the

inhomogeneity between the training data and the data to which the

classifier is applied.
Fig. 4. Zoomed-in detail of ROC curves for call set-specific classifiers based

on Omni genotype data

Fig. 5. Call set-specific classifier scores for all sites, stratified by the call sets in which the site was found. Shown are calls from Illumina (left), RTG (center) and GATK

(right). Colors represent the number of call sets a particular variant was observed in, with pink for one call set, green for two call sets and blue for all three call sets

1150 S.S.Shringarpure et al.

Deleted Text: Figure 
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text: ,
Deleted Text: ,


3 Methods

For our analyses, we used alignment files (BAMs) that we received

from Illumina after sequencing for the 642 samples. Due to the num-

ber of samples included in the dataset and limits of computational

resources, all analyses were restricted to variants on chromosome

22. Alignment was performed as part of Illumina’s CASAVA pipe-

line using their in-house ELANDv2e software, which performs mul-

tiseed and gapped alignments, as well as orphan alignments and

repeat resolution. Variant calls were obtained from the alignment

files using three different pipelines as follows:

• Illumina: Raw calls were filtered first by removing any variants

near centromeres or other high copy regions by filtering based on

depth of coverage, and second by removing variants falling into

regions of segmental duplication. In addition, individual geno-

type calls were set to missing which had call quality scores below

20 or depth of coverage below 7. The merged multi-sample VCF

was then filtered for SNPs that failed Hardy–Weinberg equilib-

rium (HWE, p < 10�6). Calling was performed at Illumina,

where the sequencing was performed.
• RTG: We used the population caller from RTG (version 3.2) to

jointly obtain variant calls for the 642 samples. The multisample

VCF was filtered using the Adapative Variant Rescoring scheme

(minAVR ¼ 0.025). The resulting VCF was then filtered for

SNPs that failed HWE with p < 10�6.
• GATK: We used the GATK UnifiedGenotyper (version 3.5) to

jointly obtain variant calls for the 642 samples. The multisample

VCF was filtered using VQSR with annotations MD, MQ,

MQRankSum, ReadPosRankSum, FS, DP and InbreedingCoeff

(sensitivity ¼ 94%, to obtain a Ti/Tv ratio close to 2 for passing

variants). The resulting VCF was then filtered for SNPs that

failed HWE with p < 10�6.

Illumina also provided us with genotype microarray data from the

Illumina HumanOmni2.5 BeadChip (Omni). There are 33 234 SNPs

on the Omni array for chromosome 22. Of those, 4123 SNPs (12%)

have MAF < 0:01, 10 221 SNPs (31%) have MAF < 0:05 and 23

012 (69%) have MAF � 0:05.

For each of our questions of interest, we constructed a random

forest classifier using the ‘randomForest’ package (Liaw and

Wiener, 2002) written in R (R Core Team, 2014). Random forest

classifiers are collections of decision trees that allow non-linear

interactions between features and are robust to over-fitting

(Breiman, 2001). We used 1000 trees for our analysis due to the

large number of variants.

3.1 Distinguishing between call sets
In this analysis the objective is to predict what call sets a variant site

will appear in. We used a number of variant features for the call set-

specific classifiers. Many of them were chosen to be among the fea-

tures used in GATK’s VQSR scoring scheme, but our approach to

classification differs from that used in the GATK through our use of

Random Forests. Supplementary Table S2 describes the features

used and Supplementary Figure S5 illustrates how these features are

correlated with one another.

3.2 Call set specific classifiers
3.2.1 Features selected

We used a number of variant features for the call set-specific classi-

fiers. Supplementary Table S2 describes the features used. Based on

results from the previous analysis, read allele imbalance measured

using a RankSum test (such as BaseQualityRankSum) was not very

informative for classification and were replaced by a Fisher test

score of allele balance for this analysis.

Table 1. Predicted number of true variant sites from three different

call sets using fitted call set-specific classifiers

Variant caller Total sites Predicted variant sites Rate

Illumina 57 825 54 023 93%

RTG 54 275 45 297 83%

GATK 51 201 49 485 97%

Table 2. Number of predicted variant sites for the Illumina classifier,

with percentages indicating fraction of total common SNPs (out of

50 547) or rare SNPs (out of 7278). The results are stratified by allele

frequency, with common SNPs having frequency 5% or larger

Method Common SNPs Rare SNPs

(n ¼ 50 547) (n ¼ 7278)

No stratification 47 828 (95%) 6354 (87%)

Variable thresholds 48 870 (97%) 6043 (83%)

Separate training 47 547 (94%) 5280 (73%)

Fig. 6. Call set-specific classifier scores for all sites stratified by whether the site was found in both Sample 1 and Sample 1R or only one sample. Shown are calls

from Illumina (left), RTG (center) and GATK (right). Colors represent the number of replicates a particular variant was observed in, with pink for one replicate only

and green for both replicates
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3.2.2 Ground truth data

For our classification task, we used the Omni genotype calls as

ground truth. Therefore, we were able to use the sites overlapping

between the Omni SNPs and the variant calling output from the

sequencing data as our labeled set. Sites that were heterozygous or

homozygous alternate in the Omni genotype calls for the chosen in-

dividual were lableled ‘1’ while sites which were homozygous refer-

ence were lableled ‘0’.

3.2.3 Prevention of overfitting

Note that Random Forests incorporates protection against overfit-

ting by only using trees not containing the site to be predicted when

performing prediction after model building has been performed. In

this way, it is similar to cross-validation.

3.2.4 Unbalanced class problem

On intersecting the sequencing variant calls with Omni genotype

data to obtain labeled sites, we observed that the ratio of the number

of sites lableled ‘1’ to those labeled ‘0’ was nearly 100:1 (11

506:184 for illumina, 10 376:170 for RTG and 11 465:184 for

GATK). In classification tasks, this can be problematic since it can

bias the classifier towards increasing accuracy by always predicting

the majority class.

To avoid this problem we used the SMOTE method (synthetic

minority over-sampling technique) by Chawla et al. (2002) imple-

mented in the R software (Torgo, 2010). This method oversamples

the minority class by creating synthetic examples of the minority

class from existing examples. It also undersamples the majority class

for improved performance.

4 Discussion

Here, we present a method of using random forests to both charac-

terize different variant call sets and to assess call quality taking into

account a wide variety of data features in a flexible way. We show

that for sequencing data like ours, e.g. with relatively deep (30x)

coverage, both single-sample and multi-sample calling methods pro-

vide calls with very good accuracy. We illustrate our method on a

single sample for which we had a technical replicate, as well as 9

additional samples selected to be representative of our dataset as a

whole, to provide further insight into the behavior of our classifier.

To further explore differences between the call sets, we also

looked at results stratified by allele frequency bin, with three differ-

ent proposed modeling choices. Here there were some differences in

performance depending on which thresholds or models were

applied, with different thresholds chosen for classifying rare and

common sites resulting in nearly 800 additional sites being predicted

as variant (Table 2). In light of these results, we conclude that the

optimal calling method to apply may depend on what the intended

use of the variant calls is, with different applications (e.g. population

level vs variant specific analyses) best served by different calling

methods. For example, recent work (Han et al., 2014) discusses po-

tential biases in site-frequency spectrum estimation that can result

from low-coverage sequencing data where rare variants are more

likely to be missed. For an application like this, multi-sample calling

would be most appropriate to leverage information from many sam-

ples. However, in general applications or when sequencing coverage

is high as it is in our dataset, we have not observed a large impact on

downstream results comparing the different call sets. As part of the

analysis in the CAAPA flagship publication, we compared some

downstream results generated with both the Illumina single-sample

call set and the RTG multi-sample call set and found no difference

in the overall patterns seen in the count of deleterious alleles by indi-

vidual or by group (see Supplementary Information of Mathias et al.,

2016). We do note that our false positive rate of 5% may be con-

sidered high for applications to disease genetics, and suggest that the

standard practice of validating any interesting findings either

through replication or through further genotyping should still be

used. Finally, modifications to the method presented here to target a

particular allele frequency class, such as modifying the quality

threshold for different frequency bins, or potentially retraining the

classifier on different subsets of the data split by frequency bin, are

also possible if variants in a particular frequency range are of special

interest in a particular application.

Collecting genotype array data to accompany whole-genome

sequencing data, or performing sequencing on samples that have al-

ready been used in a GWAS and therefore have genotype array data

available, is currently common practice for the purpose of sample

verification. Our work indicates that it is also valuable to have array

data as an orthogonal validation dataset for QC purposes and to as-

sess overall call quality of the variant calls from the sequencing data.

If genome-wide array data is not available for all sequenced samples,

investing in such data for at least a subset of samples would allow

construction of a classifier to apply across all samples to improve

variant call quality.

In contrast to the frequently used VQSLOD values provided by

the GATK’s VQSR algorithm, which does not require external

sample-specific validation data, but may rely on publicly available

data, our method provides a call-specific, rather than site-specific

quality measure. This makes a direct comparison between our

method and using the VQSLOD values as a filter difficult.

As an alternative to the SMOTE method, weighting the observa-

tions in the different classes to give a more balanced training set is a

possibility. We also implemented this and found that performance

was not as good as what we present here (Supplementary Fig. S6).

An application of our classifier to low-coverage data is a direc-

tion for possible future work. While our dataset has relatively deep

average coverage at 30x, we believe our method would be poten-

tially even more valuable on lower-coverage data. With less infor-

mation available from the sequencing reads themselves, the context

that the variants fall into may provide important additional infor-

mation that our classification method can discover from the gold-

standard array data, allowing greater discrimination of borderline

variant calls.

Another area for future work is to extend our method to short

insertions and deletions (indels), although this would not be

straightforward due to the lack of a training dataset like the geno-

type array data that is available for SNVs in our study. If such a

training dataset could be obtained, a similar method to ours could

be used to better assess indel call quality.

A potential extension to the work presented here would be to de-

velop a method of producing a consensus call set based on the results

of the classifier output for each set of variant calls. We could pro-

duce a combined result from the different calling methods using a

weighted combination (e.g. weighted by the quality score assigned

by our classifier) or a latent variable model. This would be similar to

work presented in DePristo et al. (2011) but with a more flexible ap-

proach to assigning weights to the various possible calls.

5 Conclusion

We demonstrate that differences between call sets generated by dif-

ferent variant callers can be explored and interpreted using machine
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learning methods like Random Forests. In addition, we show that

Random Forests can be used to identify which variant calls from a

specific call set are likely to be true.
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