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Abstract

Aim: The hypothalamic‐pituitary‐adrenal (HPA) axis responds to changing environ-

mental demands including psychological stressors. The aim of the present study was

to assess whether the time of day effects on the acute response of HPA axis activ-

ity to acute psychological stress.

Method: We studied 27 healthy young subjects. The subjects were participated

two experiments as follows. In the first experiment, subjects were instructed to

keep their regular sleep schedule for 2 weeks which were measured by using a

wrist‐worn activity monitor. Afterward, to evaluate a diurnal rhythm of salivary cor-

tisol, eight saliva samples were collected during waking period every 2 hours from

when the subjects woke up. In the second experiment, the subjects were randomly

assigned to two groups. The Trier Social Stress Test (TSST) was performed either in

the morning (n = 14) or in the evening (n = 13). We measured diurnal rhythm of

salivary cortisol and stress response of salivary cortisol and heart rate by the TSST.

Morning and evening tests were started at 2 hours and 10 hours after woke up,

respectively.

Results: All subjects showed a normal diurnal rhythm of salivary cortisol concentra-

tion, with a peak in the morning immediately after awaking and a minimum in the

evening. The salivary cortisol response after the TSST was significantly increased

from the prestress level in the morning but not in the evening.

Conclusion: The HPA response to acute psychological stress was more pronounced

in the morning than in the evening, correlating with the circadian regulation of corti-

sol synthesis.
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1 | INTRODUCTION

The Hypothalamic‐pituitary‐adrenal (HPA) axis and the sympatho‐
adrenal medullary (SAM) system play a central role in stress

response. Firstly, the SAM system quickly reacts to stress and

thereby elicits increase of heart rate. Secondary, the HPA axis reacts

more slowly by secreting the glucocorticoid hormone, including corti-

costerone in rodents and cortisol in humans. The cortisol is the
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primary stress hormone in humans as an index of stress response of

HPA axis activity. The cortisol response to acute psychological stress

is influenced by subject's age,1,2 sex,3,4 and mood states.5,6 With

respect to the effect of sleep on the cortisol level, partial and total

sleep deprivation increase basal level of HAP axis activity.7,8 There is

also evidence that shorter sleep duration and lower sleep efficiency

are associated with higher cortisol response to acute psychological

stress.9

Regarding circadian rhythm of the HPA axis activity, cortisol has a

distinct circadian rhythm with a higher level in the early morning and

lower in the evening in humans.10,11 This rhythm is regulated by the

central circadian pacemaker of the suprachiasmatic nucleus (SCN) via

the preautonomic paraventricular nucleus (PVN) neurons projecting to

the sympathetic preganglionic intermediolateral neurons of the spinal

cord and splanchnic nerve innervation of the adrenal cortex.12,13

The Trier Social Stress Test (TSST) is the most widely used stan-

dardized laboratory stressor for human psychological stress

research.14 As for the salivary cortisol levels, the TSST leads to two‐
to fourfold increase from the prestress baseline levels.14 In addition,

the HPA axis activity response to the TSST is modulated by the time

of day when the test is performed.15 Most of previous studies using

the TSST were conducted in the morning and afternoon.16–20 Previ-

ously, Kudielka et al21 have reported that the ACTH and cortisol

responses to the TSST are higher in the morning (begun between

09:00 hours and 10:00 hours) compared to the afternoon (begun

between 15:00 hours and 16:00 hours). The time of day effect of

HPA axis response to TSST is limited comparing morning vs after-

noon but not evening (after 17:00 hours). As acknowledged by the

authors, a limitation of the previous study21 is that the times of

TSST were determined by the local clock time and sleep efficiency

in individual subjects before the TSST were not measured. This may

have obscured the influence of circadian rhythm and sleep duration

on the HPA axis activity. In the present study, we examined whether

the HPA axis differentially responses to morning and evening psy-

chological stress by TSST in healthy subjects. The times of TSST

were determined based on the individual differences in circadian

rhythms of salivary cortisol and sleep‐wake cycle.

2 | METHODS

2.1 | Subjects

A total of 27 healthy young subjects, 7 females and 20 males, com-

pleted the study (mean age ± SD, 20.5 ± 1.9 years) as paid volun-

teers. All subjects were recruited through advertisements at the

Hokkaido University in Japan. They were nonobese (mean body

mass index ± SD, 21.2 ± 2.4 kg/m2) and were in good physical condi-

tion. They did not have jobs in the early morning or late night and

rotating night shift. All subjects had no personal history of psychi-

atric, endocrine, or sleep disorders. Before starting the experiment,

the subjects completed a questionnaire of morningness‐eveningness
preference (Morningness‐Eveningness questionnaire: MEQ)22 and

mood states (Profile of Mood States 2nd Edition: POMS2).23 The

mean of MEQ score in all subjects was 53.5 ± 5.9 (mean ± SD), and

total mood disturbance (TMD) score of POMS2 was 46.2 ± 5.1,

respectively. The mean and distribution of MEQ and TMD scores

were essentially normal.22,23 All subjects gave written informed con-

sent prior to entering the study, which allowed them to withdraw

from the experiment whenever they wanted. This study was

approved by the ethical committee of Hokkaido University Graduate

School of Education (no. 17‐41) and conducted according to the

Declaration of Helsinki.

2.2 | Experimental protocol

Beginning 2 week prior to the experiment (baseline), the subjects

were instructed to keep their regular sleep‐wake cycle at night and

to conduct a self‐recording of a sleep diary. To evaluate objective

sleep and sleep quality, they were instructed to wear a data collec-

tion device (MotionWatch 8; Camtech Co. Ltd., Actiwatch‐L;
Minimitter, Bend, OR, USA), which recorded wrist activity and light

intensity. On the last day of the baseline period, diurnal rhythm of

salivary cortisol level was estimated. The subjects were instructed to

collect saliva samples at 2 hours intervals from right after waking up

and repeated eight times. In addition, the subjects were instructed

to prohibit taking caffeine and performing exercise throughout the

day which are known to influence the cortisol level via activating the

sympathetic system. Saliva samples were collected with a cotton

swab (Sarstedt, Numbrecht, Germany), placed in the subject's mouth

for 3 minutes. After sampling, saliva samples were immediately fro-

zen in −30°C until the assay.

Within one week after the baseline period, all subjects under-

went the TSST for investigating the psychological stress response of

HPA axis in laboratory setting.14 A slight modification was made to

the standard TSST protocol.14 Figure 1 illustrates the experimental

protocol of TSST. After arrival at the laboratory, subjects rested for

30 minutes in room A (prestress period). The subject was taken to a

second room (room B) by the experimenter where three trained

experts were already sitting at a table and video camera was

installed. In room B, the subject sat on a chair in front of the experts

and was interviewed about personal information by the experts, and

then the experts explained task the subject would have to perform

subsequently for 5 minutes (anticipation period). Next, the subjects

were asked to step in front of the video camera and instructed to

start free speech for 5 minutes and subsequent performance of a

mental arithmetic for 5 minutes (test period). Afterward, the subject

returned to room A and rested for 30 minutes (poststress recovery

period). Saliva samples were taken at each phase of the TSST

(30 minutes after arrival at the laboratory, 0, 10, 20, 30 minutes

after the TSST) by using a cotton swab. Beat‐to‐beat heart rate (HR)

was monitored continuously throughout the experiment.

To determine the time of day effect of acute stress response on

the HPA axis, the subjects were randomly assigned to two groups by

using random allocation software GraphPad Software (GraphPad Soft-

ware Inc., CA, USA), morning group (n = 14; 10 males, 4 females) and

evening group (n = 13; 10 males, 3 females) (Table 1). The subjects
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performed TSST only one time either in the morning or in the evening,

because there is a high degree of habituation of the HPA axis

response with repeated TSST.20,24 The time of day is standardized

with respect to the habitual sleep‐wake cycle, where the wake‐up time

was defined as zeitgeber time 0 (ZT0). Therefore, the morning test

was started at ZT2 (begun between 08:00 hours and 10:00 hours) and

the evening test was at ZT10 (begun between 17:30 hours and

20:00 hours), respectively. For seven female subjects, the TSST was

only done during their follicular phase, since the significant cortisol

response to the TSST was only demonstrated during the follicular

phase but not the luteal phase.25

2.3 | Sleep measurement

Subject's sleep quality and quantity during the 2‐week baseline period

was determined from the sleep diary and the Actiware-Sleep version

3.4 software (Minimitter, Bend, OR, USA), at 1 minutes epochs, and

medium sensitivity. We analyzed the mean of actiwatch based sleep

period time (SPT), total sleep time (TST), and percent of sleep effi-

ciency. The SPT was defined as the length of the sleep interval from

the first epoch counted as sleep to the last epoch counted as sleep in

the main sleep interval.The TST was defined as total number of min-

utes counted as sleep in the main sleep interval, in hours. The sleep

efficiency was defined as the ratio of TST to SPT, as a percentage.

2.4 | Salivary cortisol

Salivary free cortisol concentrations were measured by using a sali-

vary cortisol ELISA kit (kit No. 1‐3002, Salimetrics LLC, State

College, PA, USA). The lowest detection limit of the assay is

0.33 nmol/L. Inter‐assay and intra‐assay variance were 3.0% and

2.6%, respectively. The incremental area under the curve (iAUC) was

calculated by the trapezoid method using 0, 10, 20, 30 minutes sali-

vary cortisol level after the TSST.

2.5 | Statistical analysis

Statistical calculations were performed using a nonparametric test,

since the salivary cortisol data were classified as not normally dis-

tributed by the Shapiro‐Wilk normality test. Analysis of time series

data was tested with Friedman test and post hoc Wilcoxon signed‐
rank test. Comparison of two independent values was analyzed by

Mann‐Whitney U test. Significant correlation between two values

was analyzed by Spearman rank order correlation test. Graph Pad

Prism version 7 (GraphPad Software Inc., San Diego, CA) was used

for all statistical analysis. A P value <0.05 considered presence of a

statistically significant difference.

3 | RESULTS

3.1 | Sleep measurements prior to the TSST

The mean of SPT, TST, and sleep efficiency were 6.9 ± 0.8 hours

(mean ± SD), 6.1 ± 0.7 hours, and 89.5 ± 5.2% in all subjects for

2 weeks prior to the TSST. These parameters were not significantly

different between the morning test group (SPT, 6.8 ± 1.1 hours;

TST, 6.1 ± 0.8 hours; sleep efficiency, 89.7 ± 4.8%) and evening test

group (SPT, 6.9 ± 0.5 hours; TST, 6.2 ± 0.7 hours; sleep efficiency,

89.2 ± 5.9%).

3.2 | Diurnal rhythm of salivary cortisol

To determine the time of TSST at two different circadian phases,

diurnal rhythm of salivary cortisol was examined eight times a day

every 2 hours from ZT0 (the time of woke up) to ZT14 on the last

day of the baseline period. Figure 2 indicates the diurnal rhythm of

salivary cortisol measured on the last day of baseline period in the

all subjects (n = 27). Friedman test revealed significant diurnal rhyth-

micity of salivary cortisol (P < 0.01). The salivary cortisol level

showed a peak value at ZT0 (10.2 ± 0.8 nmol/L, mean ± SEM) and

lowest value at ZT14 (1.0 ± 0.2 nmol/L) on average (Figure 2A).

There was a significant difference in between ZT2 (7.0 ± 0.7 nmol/L)

and ZT10 (3.1 ± 0.4 nmol/L) when the TSST was undertaken in the

Room A

Baseline period (30 min)
Anticipation (5 min) 

Room ARoom B

Recovery period (30 min)
+ TSST (10 min)

Saliva for
Cortisol

(Baseline)

Saliva for
Cortisol
(0 min)

Saliva for
Cortisol

(+10 min)

Saliva for
Cortisol

(+20 min)

Saliva for
Cortisol

(+30 min)

Continuous measurement of electrocardiogram
F IGURE 1 Experimental protocol of
Trier Social Stress Test (TSST)

TABLE 1 Descriptive statics for the morning and evening test
group subjects

Morning test group Evening test group P

N 14 (10 men, 4

women)

13 (10 men, 3

women)

Age, y 20.9 ± 1.9 21.2 ± 2.6 0.941

Body mass

index

21.3 ± 2.4 20.9 ± 2.3 0.645

MEQ scorea 52.1 ± 6.7 55.4 ± 4.8 0.287

TMD scoreb 47.6 ± 5.2 44.0 ± 4.3 0.163

Values are means ± SD.
aMorningness‐eveningness questioner (MEQ) score (higher scores = more

morningness).
bTotal mood disturbance (TMD) score of POMS2 (higher score = greater

mood state disturbances).
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morning and evening tests, respectively (P < 0.01, Wilcoxon signed‐
rank test) (Figure 2B).

3.3 | Salivary cortisol and heart rate responses to
TSST

Salivary cortisol levels of mean time course during the TSST and

incremental area under the curve of cortisol (iAUC0–30 minutes) from

the morning (ZT2) test and evening (ZT10) test groups are shown in

Figure 3. In the morning test group, Friedman test revealed signifi-

cant changes of salivary cortisol level on the course of TSST

(P = 0.015). After the TSST, the salivary cortisol levels at 0 minutes

(6.4 ± 1.2 nmol/L) and 10 minutes (8.1 ± 1.8 nmol/L) were signifi-

cantly increased from that at the pretest level (5.1 ± 0.9 nmol/L)

(P < 0.05, Wilcoxon signed‐rank test, Figure 3A). On the other hand,

in the evening test group, salivary cortisol levels showed a similar

trend with the morning test group but did not show the significant

changes on the course of TSST (P = 0.08, Friedman test, Figure 3A).

Incremental area under the curve of cortisol (iAUC0–30 minutes) in the

morning test group was significantly higher value than that in the

evening test group (morning vs evening, 217 ± 47 nmol/L× minutes

vs 63 ± 19 nmol/L × minutes, P = 0.0014, Mann‐Whitney U test,

Figure 3B). During the TSST, the means of heart rate were signifi-

cantly increased by ca. 15 beats/min on average from those at the

pretest values in each group, whereas there was no significant

difference between the two groups (Figure 4). There was no sig-

nificant relationship between the subject's sleep efficiency and

iAUC0–30 minutes of salivary cortisol (n = 27, r = −0.183, P = 0.218,

Spearman rank order correlation test).

4 | DISCUSSION

We could demonstrate that acute stress response to the HPA axis

induced by the TSST showed the significant time of day difference

(morning vs evening) in normal young subjects. The HPA axis activity

has a powerful response to acute psychological stress in the morning

rather than in the evening (Figure 3), whereas the sympatho‐adrenal
medulla system in terms of increase of HR did not show a significant

time of day difference between the two groups (Figure 4).
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With respect to time of day effect of cortisol response to the

TSST, the cortisol response to the TSST in the morning and afternoon

showed a similar and significant increases, but the AUC was signifi-

cantly higher in the morning than in the afternoon.21 In the present

study, the TSST in the evening showed no significant increase of corti-

sol response (Figure 3). Previous and present observations suggest

that the HPA axis response to acute psychological stress attenuates in

the evening compared to the morning and afternoon.

The HPA axis activity in terms of cortisol level in humans shows

a distinct circadian rhythm with higher level in the morning and

lower in the evening.26 In mammals including humans, the circadian

pacemaker is located in the SCN of anterior hypothalamus. The SCN

entrains to an environmental LD cycle, and then the time signals are

transmitted to the adrenal gland via the central sympathetic interme-

diolateral cell column of the spinal cord.13 As shown in Figure 2, cir-

cadian rhythm of salivary cortisol concentration showed a normal

diurnal pattern, suggesting that their circadian pacemaker could

entrain to an external LD cycle and drive the HPA axis rhythmicity.

Regarding the present findings that salivary cortisol concentra-

tions during the TSST and iAUC0–30 minutes were higher in the morn-

ing than in the evening (Figure 3). Although the underlying

mechanism about time of day effect of HPA axis response to stress

is still unknown, cortisol level at the prestress baseline would be

related to net increase in cortisol after exposure to stressors. In

humans, the response of the adrenal cortex to ACTH is a major

source of variation in the cortisol response to stressors.27 The animal

studies also demonstrated that adrenal responsiveness to the ACTH

exhibits a daily rhythm, with a higher sensitivity leading to higher

corticosterone release in the evening than in the morning.28,29 If

humans and rodents had the same circadian rhythm of adrenal

responsiveness to ACTH, the present finding that psychological

stress in the morning produced a greater increase of cortisol

secretion rather than in the evening is consistent with the previous

studies in rodents. Taken together previous studies in rodents28,29

and in humans,21 we believe that the HPA axis activity response to

acute psychological stress is under the control of circadian rhythm

of ACTH and glucocorticoid hormone which are strictly regulated by

circadian pacemaker in the SCN. In addition to a recent study,30 the

salivary cortisol concentration after high intensity exercise as an

index of exercise stress is higher in the morning than in the evening.

Collectively, the HPA axis activity responses to exercise and psycho-

logical stresses depend on time of day when subjects were exposed

to stressors. With respect to the subject's chronotype of MEQ, we

attracted the subjects whose chronotypes were intermediate type.

There are in line of studies demonstrate that cortisol awaking

response, total cortisol secretion over the day, and cortisol secretion

after exercise stress are associated with an individual chronotype.30–

33 Further studies would be needed to assess whether the HPA axis

activity response to psychological stressors depends on the time of

day and individual chronotypes in humans.

In summary, we could demonstrate that the HPA axis activity

response to acute psychological stress is higher in the morning than

in the evening, relating with circadian rhythm of cortisol concentra-

tion. In clinically, it is important to concern the subject's circadian

rhythm and time of day when assess individual HPA axis activity

responses to various stressors.
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