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The genotype and external phenotype of organisms are linked by so-called internal

phenotypes which are influenced by environmental conditions. In this study, we used five

existing -omics datasets representing five different layers of internal phenotypes, which

were simultaneously measured in dietarily perturbed mice. We performed 10 pair-wise

correlation analyses verified with a null model built from randomized data. Subsequently,

the inferred networks were merged and literature mined for co-occurrences of identified

linked nodes. Densely connected internal phenotypes emerged. Forty-five nodes have

links with all other data-types and we denote them “connectivity hubs.” In literature,

we found proof of 6% of the 577 connections, suggesting a biological meaning

for the observed correlations. The observed connectivities between metabolite and

cytokines hubs showed higher numbers of literature hits as compared to the number of

literature hits on the connectivities between the microbiota and gene expression internal

phenotypes. We conclude that multi-level integrated networks may help to generate

hypotheses and to design experiments aiming to further close the gap between genotype

and phenotype. We describe and/or hypothesize on the biological relevance of four

identified multi-level connectivity hubs.

Keywords: data integration, internal phenotype, transcriptomics, proteomics, metabolomics, microbiota,

gastrointestinal tract, systems biology

INTRODUCTION

The information encoded in the genome (genotype) and the external quantitative traits or
characteristics (phenotype) of an organism are linked to each other by several layers of so-called,
intermediate (Leuchter et al., 2014; Fontanesi, 2016) or internal (Houle et al., 2010) phenotypes.
Several of these internal phenotypic layers are shown in Figure 1 that visualizes the conceptual
relationship between the external phenotype (P), the genotype (G), the environment (E), and
the G&E interactions. The epigenome is tightly associated with the genome and represents
the programming of gene expression which is not dependent on the DNA code itself. The
transcriptome layer represents direct effects of the environment on the gene expression of the
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FIGURE 1 | Relationship between the external phenotype (P), the genotype (G), the environment (E), and the G&E interactions. The internal phenotypic layers and the

environmental factor with a darker outline are included in the present study.

(epi-)genome. Translation of the transcriptome into proteins
represents the next internal phenotype. The subsequent layer
is represented by complex metabolite profiles. The organism-
associatedmicrobiota, especially those in the gut, can be regarded
as a separate internal phenotypic layer, because it is not only
dependent on the host genome but also heavily influenced
by its environment, particularly by nutrition (Schwartz et al.,
2012; Montiel-Castro et al., 2013). Although, for several traits
the quantitative effects of the environment on the external
phenotypes are known (Gentry et al., 2004; Cani et al., 2008;
de Wit et al., 2011), the specific effects of the environment
on the internal phenotypes are largely unknown. Furthermore,
it is obvious to assume that the various layers of internal
phenotypes are connected to each other and that their joint
profiles ultimately determine the external phenotype (Leuchter
et al., 2014; Fontanesi, 2016). Unfortunately, most of these
assumptions are not based on solid evidence and at best represent
oversimplifications of the dynamic nature of processes involved
in determining external phenotypes. It, furthermore, partly
explains the knowledge gap that exists between the genotype and
the external phenotype.

Therefore, the objective of this study was to develop
methodologies to identify components in the internal phenotypic
layers that are connected to components in other internal
phenotypic layers. To this end, we integrated multi-scale
quantitative (–omics) data using a regression approach. The
used data sets were derived from a single experiment with
inbred mice which were exposed to five different dietary
interventions as a means to perturb the different internal
phenotypes.With a data-driven approach we were able to identify
a large number of potential connections between the various
intermediate phenotypes and for several we found proof of causal
relationships in literature. We have used networks to represent
the identified connections. The molecular components of each
internal phenotype (such as genes, metabolites, cytokines, or
bacterial groups) are represented as nodes in the network and
the identified connections between each data type are represented
as links or edges. The results of this study provide a basis to
understand how various internal phenotypic layers are connected
to each other. The identified connections may be crucial for the
identification of causal relationships (Civelek and Lusis, 2014)
between various biological scales and to uncover mechanisms
involved in determining external phenotypes.

MATERIALS AND METHODS

Origin of Data
We used data from an experiment with 6-week old inbred mice
that were fed for 4 weeks with six different semi-synthetic diets
(Kar et al., submitted). In brief: thirty-six 21-day-old C57BL/6J
mice (Harlan Laboratories, Horst, the Netherlands) were divided
into 6 groups and housed in pairs with ad libitum access to
diet and water. After adaptation for 1 week to a standard diet,
the mice were fed semi-synthetic diets containing 300 g/kg (as
fed basis) of one of the alternative protein sources for 28 days:
soybean meal; casein; partially delactosed whey powder; spray
dried plasma protein; wheat gluten meal and yellow meal worm.
At the end of the experiment, mice were sacrificed to collect
ileal tissue to acquire gene expression data, ileal digesta to study
changes in microbiota, blood serum to profile cytokines and
chemokines and blood and urine to profile amine metabolites.
All procedures were approved by the Animal Experimentation
Board at Wageningen University & Research Center (accession
number 2012062.c) and carried out according to the guidelines
of the European Council Directive 86/609/EEC dated November,
1986. Multi-omics data were obtained with regards to: whole
genome gene expression profiles of ileal tissue as measured
with Affymetrix GeneChip mouse gene 1.1 ST microarrays
(Affymetrix, Santa Clara, CA, USA); community scale
microbiota composition of ileal digesta by targeted-amplicon
DNA sequencing of the bacterial 16S rDNA V3 region on an
Illumina Mi-Seq sequencer; 23 serum cytokine and chemokine
concentrations (pg/ml) using a Bio-Rad Mouse 23-plex kit
(Bio-Rad, Hercules, CA, USA); and amine metabolic profiles
of serum and urine using an ACQUITY UPLC system coupled
online with a Xevo Tandem quadrupole mass spectrometer
(Waters) operated using QuanLynx data acquisition software
(version 4.1; Waters; Kar et al., in preparation). The data from
the ileum reflects the local effects of the dietary interventions,
the other three data assess the systemic effects.

Pre-processing and Selection of Data
An overview of the five types of data and their specifics are
given in Table 1. Supplementary Figure 1 has an overview of all
the analytical methods used in this study. Each dataset was pre-
processed in a similar way using the R package limma (Smyth,
2005) to find the differentially significant data-points. The data
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TABLE 1 | Pre-processing and specificities of each data-type.

Properties Transcriptomics Microbiota Cytokine Metabolomics serum Metabolomics urine

Sampling Ileum Ileum Serum Serum Urine

Before pre-processing 16,410 * 33 148 * 33 23 * 36 41 * 36 16 * 28

After pre-processing 52 * 33 22 * 33 13 * 36 26 * 36 16 * 28

Details of the site of sampling and data dimensions before and after pre-processing are indicated. The first number indicates the number of variables in the data and the second number

denotes the number of samples.

is first log transformed and then this data is fitted to a linear
model using the function lmFit (Phipson et al., 2016) which will
give back information on the differences between the data-points
in different samples and subsequently different comparisons of

control vs. treatment. Then we used the function eBayes (Phipson
et al., 2016) which applies an empirical Bayes method to compute
p-values for a t-statistic under the assumption that only 1%
of the data-points are differentially regulated among all the
data-points in the samples. This p-value is then subjected to a
Benjamini–Hochberg (Benjamini and Hochberg, 1995) multiple
testing correction, also known as a False Discovery Rate (FDR).

This analysis was done by comparing the data of each dietary
group against the data of the dietary group that received soy
bean meal as protein source, which is the most common source
of protein in animal diets. The FDR value of the data, is used
to gauge significance and data-points that were significant in at
least one of the five comparisons of the diets were included in the
integration analysis. Except for the Cytokine and Metabolomics
Serum (using the amine measurement), all the data-types had
some samples thrown out due to quality control. Two types of
metabolomics measurements were done on the sampled urine;
Amine and Acyl-carnitine, the amine dataset did not have
sufficient statistically significant data-points so was discarded.
We only work with the Acyl-carnitine measurement in urine.

Data Integration, Network Generation, and
Network Assessment
All significantly different data-points were used in the integration
which was initially performed with two datasets at a time, so
that from the 5 datasets 10 integrated networks were generated.
The integration was performed using the function sPLS (sparse
Partial Least Squares) in regression mode with ncomp = 5, from
the R package mixOmics (Lê Cao et al., 2009; Dejean et al.,
2011; González et al., 2012). The regression mode is used to
model causal relationship between variables in both datasets
by identifying combinations of variables between both datasets.
Weight vectors used in the regression modeling are termed
loading vectors. sPLS is used to perform simultaneous variable
selection in the two datasets to be integrated and employs LASSO
(Least Absolute Shrinkage and Selection Operator) penalization
(Tibshirani, 2011) on the loading vectors. This approach requires
one data set, X with nx elements, to be designated the predictor

and the other, Y with ny elements, the response. As an output,
the approach produces a matrix Ma(X,Y) of size nx × ny
representing the relevant correlations between both datasets, so
that:

maij =

{

0, if Yj independent of Xi

cor
(

Xi, Yj

)

, if Yj dependent on Xi
, with i ∈ {1, . . . , nx} and j ∈ {1, . . . , ny} (1)

Where cor
(

Xi, Yj

)

is Pearson’s correlation between elements i
and j from datasets X and Y , respectively. The correlation is
computed across all available samples (here corresponding to
dietary exposures).

Since it is not trivial to determine the predictor and response
with biological data, we swapped the two types of data to compute
Mb(Y,X), a matrix of size ny × nx where the roles of X and Y have
been interchanged. Both matrices, Ma and Mb where combined
into a final matrixM(X,Y) size nx × ny using

M(X,Y) = Ma(X,Y) + t(Mb(Y,X)) (2)

where t represents matrix transposition. Thus, non-null elements
of the matrix M(X,Y) represent correlations between data types
that have been deemed associated. This matrix can be seen as
a weighted adjacency matrix representing a network where two
nodes Xi and Yj are connected via an edge if a non-null weight
can be assigned to the edge. This weight is represented by the
matrix valuemij.

To further prune the network of (possibly) spurious
interaction two additional thresholds (thl < 0; and thh > 0) were
imposed to obtain an unweighted adjacencymatrixA(X,Y)of size
nx × ny

Aij =

{

1 if mij ≥ thh or mij ≤ thl
0 if

∣

∣mij

∣

∣

<

∣

∣thl
∣

∣ and mij < thh
(3)

were |x| represents the absolute value. thl and thh where selected
for each network so that only top 5% of the highest (positive) and
lowest (negative) weights were kept for building the networks.

Networks represented by these adjacency matrix were
transformed into the edge-list format, a two column table of the
connected nodes in a network were each row represents an edge
and visualized in Cytoscape (Shannon et al., 2003; Ono et al.,
2015).

For each pair of integrated datasets a null model of the
association networks was constructed using a strategy based
on random permutations of measured values (Saccenti et al.,
2015). Measured data-points were randomly permuted over
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samples before data integration to obtain randomized datasets
that still retained the same value distribution for each variable.
The randomized datasets were then used for data integration
following the afore mentioned approach thereby generating
randomized associations networks. The process was iterated Nit

= 1,000 times for each pair of datasets; For each iteration,
k, the values of the dynamic cut-offs (thlk and thhk) (5% of
the highest and lowest correlation) were recorded. For the 10
pairwise combinations of datasets, the values obtained for thl and
thh obtained using the unpermuted dataset, were compared with
the distribution of values of thlk and thhk with k = {1,...,Nit} to
get networks from the random data to compare to the networks
from the biological data.

Network Merging and Topological Analysis
The 10 networks arising from pair-wise data integration of the
5 data sets were merged in a combined network including all
the nodes and edges of the 10 networks. This network is then
restricted by only including nodes present in at least two of
the separate networks. We used the igraph R package (Csardi
and Nepusz, 2006) to further analyze the network, which was
treated as non-directed, since no particular directionality was
assigned to the edges. We obtained values for the following
topological properties of the merged network (Barabasi and
Oltvai, 2004; Csardi and Nepusz, 2006; Zhu et al., 2007): Degree:
number of neighbors of a given node, that is the number of
nodes connected to it. Clustering coefficient of a node is the
ratio of the number of connections between the neighbors of
a node and the total number of possible connections between
said neighbors. Characteristic path length: median of the average
distance between a node and all the rest. Network density:
ratio between the total number of existing edges and the total
number of possible edges (given the number of nodes in
the network). Connected components maximal subgraphs in a
network such that each node is connected to all the rest by
means of network paths. For node level metrics, such as degree
or clustering coefficient average values were computed over all
nodes. Cytoscape was used for network visualization.

Literature Mining
To investigate the co-occurrence of the names of the connected
nodes in the association network, we used the R package
rentrez (Winter, 2016). This package searches for selected
keywords in PubMed abstracts while making use of the MeSH
(Medical Subject Headings) thesaurus to maximize results via
the API from NCBI. The search was not restricted to a specific
tissue type or organism. These results were examined, although
not exhaustively, to find literature evidence of established
relationships between nodes connected through identified edges;
these were then considered as true positive search results.

The script used to generate all these results will be made
available on request. All the above mentioned operations
were performed using existing functions from R packages.
The different steps involved are represented in Supplementary
Figure 1.

RESULTS

Analysis of the Individual Datasets
A dietary intervention was performed on mice where the protein
content was changed and multi-omics data were obtained with
regard to: whole genome gene expression profiles of ileal tissue
(Transcriptomics), community scale microbiota composition of
ileal digesta (Microbiota), 24 different cytokine levels in blood
serum (Cytokine), and protein-associated metabolic profiles of
serum (Metabolomics Serum) and urine (Metabolomics Urine).
These data were pre-processed and analyzed separately by fitting
a linear model on the data-points and looking for differentially
expressed readouts in each treatment vs. the control. Each dataset
had its own p-value (corrected for multiple testing with the
Benjamini–Hochberg method) threshold, ranging from 0.001 to
0.1 for difference between the tested and reference diets. The
highest number of statistically significant entities was found
in Transcriptomics. Furthermore, all the measured variables in
Metabolomics Urine were found to be significantly different in at
least one comparison.

Pairwise Data Association and Network
Generation
We performed the integration by linking two data-types at a
time and in such a way that after the pairwise analysis all
the observed association data could be combined to build a
multi-level interaction network. Therefore, each data-type was
integrated with the other four types of data, resulting in 10
association networks. The topological characteristics of all these
10 networks are given in Table 2 and Figure 2, and the network
graphs are available in Supplementary Figure 2 as an image.
Data Sheet 1 has the networks in a format that can be uploaded
into Cytoscape in order to further explore the connectivities of
these networks by simply clicking on these nodes. Table 2 shows
the positive and negative thresholds that were used separately
for the association network. Connections between pairs of data
points with correlation values between the threshold values,
i.e., Low Threshold (negative threshold) and High Threshold
(positive threshold) as indicated in Table 2, were discarded
and the corresponding edges removed from the final network.
There were two disconnected sub-graphs in five of the networks
while the other five have only a single, fully connected graph.
Supplementary Figure 3 shows the pattern of changes induced
by the diet in three components of the network Microbiota &
Transcriptomics.

The largest network, in terms of nodes, is the Microbiota &
Transcriptomics network. This seems logical as it represents the
most comprehensive datasets and spacial interactions between
the two data-types are known to occur. Overall, networks
involving Transcriptomics data had higher number of nodes than
other networks. The smallest network with 18 nodes and 22 edges
was the Metabolomics Urine & Cytokine network.

Technical Validation of Pairwise Integration
Networks by Random Permutation
We performed the same method of integration on the five
different data-types after randomly permuting the measured
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TABLE 2 | The 10 individual correlation networks.

Network names (data A & data B) Low threshold High threshold No. of nodes (A) No. of nodes (B) Connected components

Metabolomics Serum & Metabolomics Urine −0.51 0.6 14 12 2

Metabolomics Serum & Microbiota −0.38 0.3 21 14 1

Metabolomics Serum & Transcriptomics −0.31 0.35 26 33 2

Metabolomics Serum & Cytokine −0.33 0.5 18 13 2

Metabolomics Urine & Microbiota −0.28 0.42 16 12 1

Metabolomics Urine & Transcriptomics −0.55 0.54 14 29 1

Metabolomics Urine & Cytokine −0.32 0.55 10 8 2

Microbiota & Transcriptomics −0.28 0.27 19 48 1

Microbiota & Cytokine −0.38 0.35 11 11 1

Transcriptomics & Cytokine −0.27 0.34 31 13 2

Each row represents one of the 10 correlation networks. Low Threshold and High Threshold represent the thresholds used for the correlation values. The 3rd and 4th columns have the

number of nodes in the network that belong to the first and second data, respectively. The last column displays the number of connected graphs in the network.

FIGURE 2 | Multilevel integration. This schematic image shows the number of

connections between each internal phenotypic level with the other levels in a

merged network. The colors of the parallelograms denote the internal

phenotypic level to which the data-types belong. Green is Metabolomics (light

green—Metabolite from Serum and dark green—Metabolite from Urine), blue

is Cytokines, red is Transcriptomics, and pink is Microbiota. Each line

connects two levels and the vertical number above the line indicates the

number of edges in the correlation network between those two phenotypic

levels. The number of connected nodes in each level is given in circles above

and below the connecting lines.

data, this process was iterated a 1,000 times. In this way, the
networks obtained from random permutations are considered a
null model with no biological information, and used to assess
the significance of the results obtained with the non-permuted
data. Figure 3 shows the spread of correlation values for the
integration of Metabolomics Serum and Transcriptomics. The
thresholds for network reconstruction were selected so that only
the 5% highest and lowest correlations were kept. The separation
between the values obtained for the integrated data and the
randomly permutated datasets indicates the high significance of

FIGURE 3 | Distribution of network correlations and random network cut-offs

of the Metabolomics Urine and Transcriptomics networks. The x-axis depicts

the range of correlation values and the y- axis shows its frequency. The gray

bars denote the distribution of the thresholds of the 1,000 random correlation

networks with frequency on the left y-axis. The red bars are distributions of the

correlation values of the inferred network with frequency on the right y-axis.

the edges in the integration networks. In this way, selection of
the 5% highest and lowest correlations and significant limits the
number of spurious correlations that could be due to chance
alone while retaining maximum information in the networks.

Similar results were obtained for most of the integration
networks (Supplementary Figure 3). In three of the networks,
there is an overlap between the correlation values from the
inferred network and the values arising from the randomly
generated networks. The overlaps are in the networks
Metabolomics Urine & Microbiota, Metabolomics Urine &
Cytokine, and Transcriptomics & Cytokine network. The highest
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overlap appears in the first two and mostly affects edges with
negative correlations.

Merged Network
All the 10 integration networks (Data Sheet 1) were merged
and only nodes linked with nodes of at least two other data-
types were kept (see Table 3). The gene expression data has
the highest number of nodes in the merged network. However,
nodes with the highest degree (number of connecting edges)
arise from the microbiota data, with S24-7 having 57 neighbors
and Bifidobacterium having 47 neighbors. The merged network
encompasses 45 nodes that are connected to all the other types
of data. For that reason we denote them “Connectivity hubs” and
they are included in Table 3 and Supplementary Table 1.

Functional Validation of Merged Network
by Text Mining
A PubMed literature search for co-occurrence of linked nodes
gave results for 6% of the links corresponding to 37 edges.
We further investigated reported causality effects between the
nodes in question. Most of the retrieved results are related to
metabolites and cytokines measurements whereas a few results
confirming causal relationships were found involving gene nodes.
We were able to find literature confirmation pertaining to
associations for six out of the 10 pair-wise connections between
phenotypes, as summarized in Table 4. Supplementary Table 2
contains all the PubMed identifiers from the literature mining
and Supplementary Table 3 has phrases from a maximum of
three PubMed abstracts from the results. Among the nodes
with literature results, four are from Microbiota, two from
Transcriptomics, 15 from Metabolomics Serum, three from
Metabolomics Urine, and six from Cytokines. The node with the
highest number of hits in literature is Tnfa which co-occurs 8,563
times with nine metabolites from the Metabolomics Serum data
and one bacterial group (Bifidobacterium).

TABLE 3 | Characteristics of the merged network.

Network statistics

Total number of nodes 112 (45)

Total number of edges 577

Number of Metabolomics Urine nodes 15 (8)

Number of Metabolomics Serum nodes 24 (11)

Number of Cytokine nodes 13 (7)

Number of Transcriptomics nodes 43 (12)

Number of Microbiota nodes 17 (7)

Degree range 2–57

Average number of neighbors 10.35

Clustering coefficient 0.20

Characteristic path length 2.31

Network density 0.09

Connected components 1

Characteristics of the merged correlation network. The number of nodes from each data-

type are given in rows three to seven. Between brackets the number of connectivity hubs

is indicated.

Of the 30 data-points from all the types of data that have
literature results, 15 are connectivity hubs. One such connectivity
hub is Glutathione (GSH) which has 21 direct neighbors from
four data-types as shown in Figure 4. This hub is especially
interesting because six of the connected nodes (Carnitine,
Tnfa, Il-1b, Il17c, Bifidobacterium, and Dapk2) have textual co-
occurrences found by the text mining algorithm. The terms GSH
and Tnfa were found 2,231 times in the abstracts of Pubmed
indexed articles. Full text inspection shows that some of the
connections are causal relationships as one of the connected
nodes activates or inhibits the other.

DISCUSSION

In this study we developed and used a set of computational
methods to identify components in internal phenotypic layers
that are connected to components in other internal phenotypic
layers of an organism. We successfully integrated multi-scale
quantitative (-omics) data, derived from a single experiment with
inbred mice and which were exposed to five different diets. Here
the mice had been exposed to the dietary intervention for 4
weeks. Four weeks is a significant amount of time in the life
of mice and previous studies comparing the development of
mice and humans (specifically the immune system in Holladay
and Smialowicz, 2000) indicate that the development of different
systems is much faster in mice than in humans. Hence it is
reasonable to assume that the mice have adapted to the new
diet in 4 weeks. Since the data originated from an animal
experiment that was not designed for the detection of genetically
and/or dietarily induced differences in external phenotypes,
we only focused on the connectivity between 5 intermediate
phenotypic levels. Some studies have reported pairwise data
integration of two (Lu et al., 2014; Rajasundaram et al., 2014;
Benis et al., 2015) or three data sets (Adourian et al., 2008).
But this is, to the best of our knowledge, the first time
that an integration of such heterogeneous data-types from
different tissues, arising from a single experiment, has been
reported. The approach as described here could, in principle,
be applied on any number and type of datasets, as long as
they are from the same experiment, from samples at the same
time-point and have comparable dimensions of differentially
regulated data.

TABLE 4 | Overview of text mining results.

Data connections PubMed Ids Distinct edges

Cytokines & Metabolomics Serum 9,554 16

Metabolomics Serum & Metabolomics Urine 906 6

Microbiota & Metabolomics Serum 254 7

Microbiota & Cytokines 250 5

Transcriptomics & Microbiota 83 3

Metabolomics Serum & Transcriptomics 59 2

The first column shows the types of data that are connected by the edges that were found

in the PubMed literature search.
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FIGURE 4 | Glutathione sub-network. This figure shows the 21 connections of

the node Glutathione in the merged network. The different colors of nodes

indicate the data-type of internal phenotypic level of that node, pink is

Microbiota, red is Transcriptomics, blue is Cytokines, and green is Metabolites

(light green—Metabolites from Serum and dark green—Metabolites from

Urine). Oval nodes are connectivity hubs. Dotted lines show un-validated

edges and continuous, thicker edges show connections also present in the

results retrieved from scientific literature. Edge color, yellow and purple,

indicates positive and negative correlations, respectively.

Internal Phenotypic Data and Pairwise
Data Integration
Each used data-type represents a different internal phenotype and
a different layer of the system that (co-) drives the manifestation
of external phenotypes.We subjected each data-type to a separate
analysis in order to correlate only those changes induced by the
dietary intervention. Nodes with significantly different values
could easily be identified in each of the sampled tissues and
fluids (ileum, blood, and urine) thereby representing the local and
systemic effects of the interventions and the need of a multi-scale
approach.

In order to investigate connections between the five data-
types we used sPLS, an integration method that can be applied to
several types of data, two at a time. This method can also handle
the dimensionality problem of biological datasets where the
number of variables is usually higher than the number of samples.
sPLS has been previously used for integration of microbiota
with gene expression data (Benis et al., 2015; Steegenga et al.,
2016), and measurements on cell wall polysaccharides of fibers
with phenotypic characterizations of fibers in cotton balls
(Rajasundaram et al., 2014).

We performed pairwise integration of the datasets, resulting in
10 networks with varying spreads of correlation values. Deciding
on a threshold to distinguish genuine from spurious correlations
is a major bottleneck for the definition of association networks.
While a 0.8 threshold (absolute value) has been suggested
for gene expression data (Schäfer and Strimmer, 2005), other
authors suggested smaller values (0.6) in metabolomics data sets
(Camacho et al., 2005). The correlation values greatly depend on
the biological dataset under study and its dimensionality. There
are several methods to choose a threshold based on the data: use
assigned p-values as threshold; use network characteristics of the
correlations; or use a percentage of the correlation distribution.

When evaluated by Borate et al. (2009) they concluded that
threshold selection methods based on network properties such
as the clustering coefficient are best for gene co-expression
networks. This would not work here because the generated
networks always induce connections between data points of
different type and as a result they have a zero clustering coefficient
for every node. While integrating two types of metabolomics
datasets with gene expression of the tissues in which they
were measured Adourian et al. (2008) assigned p-values to the
correlation values and then set a threshold. Selecting a threshold
is further complicated by the possible appearance of spurious
correlations due to a common response variable influencing the
connecting nodes (A is correlated to B, A is correlated to C,
therefore, B and C appear correlated). Regarding gene expression
data, multiple methods (reviewed for example in Marbach et al.,
2012) have been developed to minimize the number of falsely
predicted associations. In this study, we used the top 5% of the
correlation values because this dynamic threshold (separate for
the positive and negative values) eliminates bias toward the size
of the datasets. To further evaluate the impact of the correlation
scores we have inspected the correlations between some linked
nodes. Supplementary Figure 3 shows an extreme case in which
transcript abundance of two genes negatively correlated with the
abundance of a bacterial group. This might induce a spurious
association between the genes. Spurious associations due to a
common response variable influencing the connecting nodes
are more likely to appear when both nodes are of the same
type. Therefore, to further minimize the number of spurious
associations we have focused on associations between different
internal phenotypes.

We further validated the observed correlations by comparing
them with a null model obtained by randomly permuting the
data along the samples (Eguíluz et al., 2005; Saccenti et al.,
2015). In the randomly permuted samples we expect all inferred
associations to be spurious, as the permutation process destroys
any possible correlation between the variables. In that case,
even the correlations corresponding to the highest and lowest
5% of the population would be spurious. The values of the
correlations deemed significant in the experimental data sets
are found to be higher than these false positives. In two of the
networks, Metabolomics Urine & Microbiota and Metabolomics
Urine & Cytokine (the smallest network), the significance of
the negative correlation values could not be established as we
observed a considerable overlap between the negative correlation
values of this network and the negative thresholds of the
random networks. This calls for caution when biologically
interpreting these networks. For five of the networks we observed
a very clear separation of the random thresholds and the
start of the correlation values in the network (Supplementary
Figure 4). The other networks showed slight overlaps between
the random threshold distribution and the network correlation
distribution. This extra validation step reassured us that the
observed correlations are rooted in biological phenomena. To
our knowledge this technical validation step is not common in
current studies of this type.

The edges of the inferred networks, indicate significant
computationally-determined correlations between values of
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connected nodes. Our approach does not require a mechanistic
model on how the associations are established and in each
network these associations may be caused through entirely
different mechanisms. In some cases the associations would be
due to causal relationships between the connected nodes, such as
increased expression levels of a cytokine gene linked to increased
cytokine levels. However, in many cases, the associations could
be indirect, mediated by elements that have not been measured
in the experimental set up. In a formal mathematical model,
they are considered hidden variables. Such would be the case
of, for example, the changes in the metabolite levels of urine.
These changes might have been caused by the colonic microbiota,
in turn affected by the ileal microbiota. Since we only used
the ileal microbiota data, we observe correlations between the
ileal microbial populations and the urine metabolite levels which
could be in reality, indirect relationships mediated by the colonic
microbiota.

Network of Connected Internal Phenotypes
The pair-wise integration method allowed us to merge the 10
individual networks into a single network. Correlations within
a dataset were deliberately excluded from this study because we
only wanted to focus on connections between different internal
phenotypes, where little work has been done. Thus, in the 10
networks, all detected connections are between two different data
types and every node has a zero clustering coefficient. However,
in the merged network, a non-zero clustering coefficient emerges
as a result of nodes connecting to multiple data types (Table 3).
This emphasizes the biological relevance of this method because
the 10 networks were built without any information on cross-
linking. Thus, we identified individual nodes that directly or
indirectly participate in processes of the other four individual
networks. Because they seem to connect different internal
phenotypes, we denoted them “Connectivity Hubs.” Starting the
procedure as developed and applied here with networks with
non-zero clustering coefficients (correlating within a dataset)
would, however, not alter the connections between internal
phenotypes.

Functional Validations of Phenotype
Connections
Results of the text-mining were used to validate some of the
identified links. This revealed insights into the mechanistic
relationships between the variables predicted to be linked to
each other. Thirty-seven of the 577 (6%) computational inferred
links have already been described in literature as detected by
our text-mining approach, which was not exhaustive because
it focused only on text in journal abstracts. This indicates that
our method identifies currently known biological interactions.
The rest of the predicted links have not been discovered and
investigated yet, have not been mentioned in abstracts, or do
not exist in the biological system. Furthermore, by inspecting
some of the retrieved abstracts and corresponding articles, we
were even able to find causal relationships between some of
the computational identified nodes where one of the nodes was
used as an experimental perturbation and the other node was
measured as a response parameter. Some examples are shown

in Supplementary Table 3. Several indirect associations were also
validated through reports on experiments where nodes, found to
be connected in this study, were measured in response to another
perturbation. During text-mining, in order to retrieve as many
results as possible, search terms were matched against the MeSH
thesaurus, irrespective of the organism, and all the synonyms
were included in the search. The downside to this approach is the
inclusion of several false textual associations. The most striking
case is that of the identified association between Glutathione and
Il17c. In the literature results, the reported association is between
Glutathione and Il17a and not Il17c. Through the thesaurus, Il17c
was mapped to Il17 and subsequently to Il17a thereby giving rise
to that falsely identified association in literature.

In order to increase the precision and recall of text mining
searches, and overcome problems associated to the use of a
thesaurus, one needs to move from mining text, to mining the
knowledge embedded in the text and the use of data hidden in
public databases. Such an approach requires the use of knowledge
management tools and representations that can be automatically
accessed (Antezana et al., 2009). Semantic web technologies
represent a new class of tools that include natural language
processing, ontologies, machine learning algorithms and much
more to facilitate integration knowledge from heterogeneous
sources. The expansion of the use of semantic technologies in
the life sciences domain will allow associating concepts such that
inferences on causality, regulation, organism, or tissue can be
made using high-throughput methods and automated reasoning.

Among the interactions retrieved from the automated
literature search, a high prevalence of associations involving
cytokines and/or metabolites was observed. In fact, such type of
interactions represent 97% of the retrieved results. This probably
highlights the extraordinary amount of work that has been done
in these types of data in the past. On the opposite extreme, only
8% of the retrieved interactions involved associations between the
expression of genes, reflecting the fact that most of the available
gene expression data originates from genome-wide techniques.
In such type of experiments, papers, especially abstracts, usually
report on systems behaviors and pathways and less frequently on
the individual behavior or role of individual genes and connected
response nodes.

Validated Connectivity Hubs
Even though we only performed integrations of two datasets at
a time, we find data-points (metabolites, cytokines, genes, or
microbial groups) that correlate with different types of data. We
identified 45 connectivity hubs in the merged network that seem
to have associations with all four types of data. More than 30%
of them are involved in links that were retrieved in literature.
To further support the biological relevance of identified multi-
level connectivities we discuss the implications of two of the 15
biologically validated connectivity hubs as examples. The two
connectivity hubs were chosen because of the large amount of
literature results for these hubs. The first hub, Tnfa has the
highest number of literature results among all the nodes in the
network and the other hub, Glutathione, has literature validations
to the most number of data-types.
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Tnfa is a connectivity hub in the merged network, with links
to several neighbors belonging to the four other types of data.
The position of this cytokine in our merged network shows that
it plays a role in processes of the other internal phenotypes. The
literature validated links are between Tnfa and two other types of
data (Metabolomics Serum, Microbiota). Many of the validated
links represent causal relationships. With regards to immune
responses and as a drug target, Tnfa has been studied in great
detail (Cicha and Urschel, 2015). The un-validated edges show
that Tnfa could be a regulator of other internal phenotypes as
well, than currently known.

Themetabolite Glutathione (GSH)wasmeasured in the serum
and in the merged network is a connectivity hub proving that
it is vital part of the system that connects several internal
phenotypes. Among the 15 connectivity hubs with functionally
validated links, GSH is the only one that has validated links
to all other data-types based on our literature mining. These
results support our claim of GSH being a connectivity hub, a
biological component influencing several internal phenotypes.
Several PubMed results for GSH are from in-vivo studies where
GSH was administered to alleviate symptoms of a disease. Our
literature results show that GSH has been studied in relation
to all different types of data. Of the six validated links in our
merged network, five represent proven causal relationships (see
Figure 4 and discussion of the functional validation). These
neighboring nodes in the merged network are mostly related
to immune and homeostatic mechanisms. GSH is a tripeptide,
ubiquitously distributed in living cells and plays an important
role in the intracellular defense mechanism against oxidative
stress (Diaz-Vivancos et al., 2015; Couto et al., 2016). It is known
that GSH metabolism is very important for the antioxidant
and detoxifying action of the intestine. It is also essential for
the maintenance of the luminal thiol-disulfide ratio involved
in regulation mechanisms of the protein activity of epithelial
cells (Iantomasi et al., 1997) which could be important since the
intervention is changes in protein. Our results also demonstrate
the manifold and central role of GSH when it comes to proteins,
peptides and amino acids in nutrition. These observations
indicate that the presented merged network represents, at least
in part, associations of biological phenomena.

Potential Relevance of Selected
Connectivity Hubs
There are 30 connectivity hubs in the merged network that
do not co-occur with their connected nodes in our literature
search. However, the prominence of these nodes in our merged
network indicates that they could represent potential relevant
interactions with components of the other internal phenotypes.
In order to demonstrate how the results of this study may be
used to hypothesize on functional relationships between different
molecular components, we here describe the potential biological
relevance of two highly linked connectivity hubs, Tmem72 and
S24-7. Both hubs are not yet described in literature abstracts in
conjunction with other data-types.

The high number of connectivity hubs in the Transcriptomics
layer suggest that the expression of several intestinal genes is

involved in many more interactions than currently known. None
of the observed Transcriptomics connectivity hubs popped-up
in our literature mining results. The most highly connected
Transcriptomics node, Tmem72 (Transmembrane Protein 72),
has only been studied in the kidney so far (Habuka et al., 2014)
and not much information is available on it. But in the merged
network this node has 27 links to other data-types (can be
visualized in Data Sheet 1), mostly to metabolites from both
the metabolomics datasets. Based on this, we hypothesize that
Tmem72 is not specific to the kidney and that it has some sort
of communication function in intestinal mucosa as well. The fact
that Tmem72 is a transmembrane protein is supportive for this.
Given its observed links with different microbiota, metabolites,
and cytokines, it might be involved in diverse interactions with
other internal phenotypes. Based on such an hypothesis, targeted
experimental designs may be developed in order to investigate
the hypothesized “communication” function of Tmem72 in
intestinal mucosal tissue.

The most highly linked node of the merged network is the
bacterial family classification, S24-7, suggesting an important
role for this species in gut functionality. In some of the inferred
individual association networks we already found it to be linked
to a high number of nodes. Unfortunately, this node is not
represented in literature abstracts together with the here observed
neighbors. However, there is compelling literature that shows
this microbial classification to be a significant part of the gut
microbial community structure (Harris et al., 2014; Jakobsson
et al., 2015). This family classification does not have a good
functional definition, yet several studies show that it could be an
important player in the functionality of the gut (Evans et al., 2014;
Harris et al., 2014; Rooks et al., 2014). The latter claims are in line
with the high number of neighbors that S24-7 has in our merged
network. The current technical inability to cultivate S24-7 is most
certainly due to the absence of knowledge on S24-7 interactions.
However, a recent in-silico study (Ormerod et al., 2016) shows
that S24-7 species have the ability to survive on different types of
carbohydrate sources, similar to the genus Bifidobacteria. In the
merged network, the connectivity hubs S24-7 and Bifidobacteria,
share the highest number of neighbors (directly linked nodes).
Among them are 16 genes, and neither S24-7 nor Bifidobacteria
have literature results with any of these genes. An enrichment
analysis on these shared network gene neighbors shows that
they are involved in functions related to linoleic and linolenic
acid metabolism (data not shown). It is known that these fatty
acids are produced by Bifidobacteria (Teran et al., 2015) and that
they are involved in the maintenance of the epidermal barrier
function (Muñoz-Garcia et al., 2014). The observation that in our
network these genes are shared between S24-7 and Bifidobacteria
underscores the here hypothesized importance of S24-7 and
indicates that these two bacterial groups are indeed closely related
in function as hypothesized before (Ormerod et al., 2016).

From the results described in this paper, we conclude that
we successfully developed methodologies to identify components
in internal phenotypic layers that are connected to components
in other internal phenotypic layers. By integrating multi-scale
quantitative (-omics) data using a regression approach, we were
able to provide provisional insight into potential ways internal
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phenotypic layers are connected to each other, including those
between local and systemic layers. By a technical and functional
validations, we underscored the relevance of our findings.
Based on data generated by this type of integrated approaches,
hypothesis driven and targeted research may be developed to
identify causal relationships between various biological scales
in order to diminish our knowledge gap between genotype
and external phenotype. In addition, by expanding comparable
approaches by incorporating data on genetic diversity and/or
variation in external phenotypes, this knowledge gapmay be even
further closed down. The analysis pipeline that we developed is
very general. Here we demonstrated this pipeline with datasets
that address only one of the multiple environmental factors that
might affect the internal phenotypes, namely the diet. However,
the approach is very general and can be adapted to any type or
number of data sets describing the impact of other perturbations.
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