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Background
Genome-wide screen by RNA interference (with siRNA or shRNA) [1–3] or CRISPR/Cas 
(with sgRNA) [4–6] has become a powerful tool for functional genomics studies. Most 
studies monitor a single functional readout in one-dimensional high-throughput screens 
or a few functional consequences in so-called high-content screens [1, 7]. By leverag-
ing the power of deep sequencing, it has become feasible to simultaneously quantify the 
expression of a gene signature consisting of hundreds or even thousands of genes in two-
dimensional high-throughput screens [8, 9]. shRNA or sgRNA libraries have also been used 
to treat hundreds of cell lines to deduce genes whose depletion compromise cancer cell 
growth, referred to as cancer dependencies [10–13], which presents a type of two-dimen-
sional screens. Single-cell transcriptomics and multi-omics studies are also examples of 
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two-dimensional and even multi-dimensional high-throughput data for integrated analysis 
of regulated gene expression in individual cells [14].

The increasing power of next-generation sequencing has thus made it feasible and cost-
effective to generate multi-dimensional high-throughput data to gain deeper understand-
ing of regulatory biology. The advance in high-throughput technologies is also frequently 
accompanied by the demand for developing new analytical tools to process data of increas-
ing complexity. For one-dimensional high-throughput screens, t-test, Z-statistics or Robust 
Z-statistics, or strictly standardized mean difference (SSMD) or Robust SSMD [15] have 
been typically employed to identify screen hits, depending on the availability of replicates 
and built-in positive and/or negative controls [16]. However, as demonstrated in this study, 
these simple statistical approaches are no longer suitable for analyzing two-dimensional 
high-throughput data.

Single-cell transcriptomics has become a powerful tool to study regulated gene expres-
sion in individual cells [17, 18]. Due to highly stochastic sampling in single cells during 
library construction, it is critical to identify high-quality cells for subsequent clustering and 
trajectory analyses [19]. Three methods implemented in Seurat, CellRanger, and Empty-
Drops have been commonly used for quality control (QC) purpose: Seurat [20] allows users 
to choose arbitrary thresholds to remove low-quality cells based on nFeature (the number 
of expressed genes detected), nCount (total reads), or %mt (percentage of mitochondrial 
transcripts). Based on nCount alone CellRanger sets the inflection point as the threshold 
in a knee-plot, which tends to miss smaller cells with relatively lower nCount values. Emp-
tyDrops [21] is designed to “rescue” some of those missed cell populations by simulating 
the level of ambient RNA (those from lysed cells, not from a specifically barcoded cell), 
but at the expense of contamination with other low-quality cells. Notably, each of these 
approaches still relies on a single parameter, rather than integrates multiple parameters, for 
making a cutoff in analyzing single-cell transcriptomics data.

In this study, we recognize the challenges in treating two-dimensional high-throughput 
data with existing methods, which has motivated us to develop a new statistics called Zeta 
by taking two critical QC metrics into consideration. We also establish a corresponding 
software package ZetaSuite to facilitate its application (https:// github. com/ Yajin gHao/ 
ZetaS uite). Using our own RNAi screen data, we use ZetaSuite to minimize noise accu-
mulation in comparison with multiple existing methods, aid in hit selection based on the 
newly proposed Screen Strength, and pinpoint likely off-targets. We also illustrate the 
robustness of ZetaSuite in processing two sets of large-scale cancer dependency datasets, 
revealing new cancer dependencies and uncovering novel cancer checkpoints. Finally, we 
demonstrate the advantage of ZetaSuite in identifying high quality single cells while exclud-
ing empty and broken droplets in single cell transcriptomics analysis. Collectively, these 
applications showcase the broad utility of ZetaSuite in processing diverse two-dimensional 
high-throughput data to reveal novel biological insights.

Results
Overview of the ZetaSuite workflow

ZetaSuite is a computational framework initially developed to process the data from a 
siRNA screen for global splicing regulators. In this screen, we interrogated ~400 endog-
enous alternative splicing (AS) events by using an oligo ligation-based strategy and 

https://github.com/YajingHao/ZetaSuite
https://github.com/YajingHao/ZetaSuite
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quantified their responses to 18,480 pools of siRNAs against annotated protein-cod-
ing genes in the human genome (Additional file 1: Fig. S1a). We next performed deep 
sequencing on pools of bar-coded samples from individually treated wells in 384-well 
plates to generate digital information on individual mRNA isoforms. By comparing with 
internal non-specific siRNA-treated samples, we quantified induced exon inclusion or 
skipping for each AS event (similar to up- and down-regulated genes from RNA-seq 
experiments). The resultant data matrix resembled those produced by high-content 
screens, parallel genome-wide screens, or any screens that monitor multiple func-
tional outcomes (Fig. 1a), emphasizing the broad applicability of ZetaSuite (outlined in 
Additional file 1: Fig. S1b) for processing two-dimensional high-throughput data, even 
though we presently focus on using our own RNAi screen data to develop the Zeta sta-
tistics underlying ZetaSuite (see below).

After a series of standard data pre-processing and QC steps, ZetaSuite generates 
a Z-score for each AS event against each targeting RNA in the data matrix (Fig.  1b) 
and then computes the number of hits at each Z-score cutoff from low to high and in 
both directions to separately quantify induced exon skipping (Fig. 1c, left) or inclusion 
(Fig. 1c, right) events. This enables classification of functional data in both directions to 
identify and characterize global splicing activators (if mostly causing exon skipping upon 

Fig. 1 Overview of the ZetaSuite workflow. a Two‑dimensional screens include high‑throughput screen by 
high through sequencing  (HTS2), high‑content screen, parallel genome‑wide screens, etc. ZetaSuite uses 
the raw matrix as input to calculate ζ score. b–g Key steps in the ZetaSuite method from generating initial ζ 
scores (b) to deducing hits by using negative and positive controls to derive a support vector machine (SVM) 
learning curve (c) to calculating weighted ζ scores (d) to determining the Screen Strength (e) to filtering 
out off‑targets (f). The resulting data are used to construct regulatory gene networks based on functional 
similarities (g)
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knockdown) or repressors (if mostly inducing exon inclusion events upon knockdown) 
or both. The same strategy can be used to characterize positive and negative regulators 
in other biological contexts.

In applications where internal positive controls are well separated from negative con-
trols, as showcased with our RNAi screen dataset, ZetaSuite calculates an SVM learning 
curve to maximally separate positives from negatives. Any siRNA that generates a line (a 
string of data points in the plot) above the SVM line would be considered a potential hit 
and the area between the two lines could be used to quantify the strength of the hit, thus 
enabling rank-order individual hits (Fig. 1d). We name this statistics as Z-based estimate 
of targets or Zeta (ζ). Even without positive controls in certain applications, it is still pos-
sible to calculate the area between each data line and the x-axis to generate a ζ score for 
a given hit.

As with all screens, a threshold needs to set for hit calling. To this end, we utilize a 
large set of non-expressed genes in a given cell type (HeLa cells in our screen) as internal 
negative controls and determines the number of hits above a given ζ score to plot against 
the number of non-expressed genes mistakenly identified as hits (which may result from 
non-specific perturbations or off-target effects). We call this a Screen Strength (SS) plot 
and select a balance point as the threshold where a further increase in ζ score no longer 
significantly improves the value of the SS (Fig.  1e). Last, but not least, ZetaSuite also 
takes full advantage of two-dimensional high-throughput data to calculate similarities 
in global responses through pairwise comparisons, which could be leveraged to deduce 
off-target effects based on the results from the secondary screen (Fig.  1f ), and, more 
importantly, to construct gene networks for functional analysis of screen hits (Fig. 1g). 
ZetaSuite thus provides a comprehensive package for analyzing two-dimensional high-
throughput data. Below, we describe how the Zeta statistics is progressively developed in 
addressing challenges in processing two-dimensional high-throughput data in compari-
son with multiple existing methods and demonstrate the utility of ZetaSuite in analyzing 
representative two-dimensional high-throughput data to reveal novel biological insights.

Increasing readout number leads to diminishing screen specificity with traditional 

methods

Z-statistics or SSMD has been typically used to identify hits from one-dimensional high-
throughput screen data. SSMD has advantages if a screen includes multiple replicates 
for each targeting RNA [16]. When the number of screen readouts increases, however, 
various random outliers become accumulated, which has the potential to severely com-
promise the screen specificity. For instance, we scored ~400 AS events against each 
siRNA with 368 events passing data QC requirements (see Methods). If any of these 
readouts meets a chosen cutoff, the probability of experimental noise and/or off-target 
effects would be aggregated in proportion to the number of readouts scored. To dem-
onstrate this, we chose a stringent cutoff of Z-score>=3 [22] to identify hits from our 
splicing screen data and used siRNAs that target non-expressed genes as true negatives 
to estimate the screen specificity. Randomly selecting 50 siRNAs against non-expressed 
genes based on 5 randomly selected AS events, we identified 1 hit out of 50 true negative 
siRNAs (Fig. 2a). When all 368 AS events scored on our screen were taken into consid-
eration, the majority of those true negative siRNAs became hits (Fig. 2b).
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This alarming high false-positive rate became further evident when all RNA-seq iden-
tified non-expressed genes were included in the analysis (Additional file 1: Fig. S2a-b). 
By selecting an increasing number of AS events as readouts to determine the screen 
specificity, we found that the screen specificity was progressively decreased (Fig. 2c), and 
we obtained the same result by performing a similar analysis based on SSMD (Fig. 2d). 
These data illustrate that the most popular statistical approaches for analyzing one-
dimensional screen data are no longer suitable for processing two-dimensional high-
throughput data. Even after using the multiple testing correction methods (such as FDR 
and Bonferroni correction, as well as coupling with the Gumbel distribution, see Meth-
ods), the error rate is still very high.

Next, we wondered whether we might adapt the concept from some more sophisti-
cated methods to analyze two-dimensional high-throughput data. For example, RSA 
[23], RIGER [24], MAGeCK [25], and  CB2 [26] were each designed to determine the 
impact of a given gene on a functional readout (e.g., cell proliferation) by testing multi-
ple targeting RNAs against each gene and then aggregating the data to reflect the over-
all contribution of such gene to the functional consequence. A typical data aggregation 
strategy is analogous to Gene Set Enrichment Analysis (GSEA) [27], which is to first rank 
order all targeting RNAs against all targeted genes tested based on the functional impact 

Fig. 2 Increasing readout number leads to diminishing screen specificity with common statistical 
approaches. a, b The distribution of Z‑scores based on 5 randomly selected alternative splicing (AS) events 
monitored in our screen (a) or all AS events measured (b) in response to siRNAs against 50 randomly selected 
non‑expressed genes. The AS event was marked as red if the Z‑score is >=3. c, d The Specificity based on 
common cutoffs (c, Z‑score>=3) or SSMD value (d, SSMD value>=2) when different numbers of AS events 
were monitored. The specificity (defined by 1 minus the number of non‑expressors scored as hits over the 
total number of non‑expressors) is the mean value of 50 replicates under each condition. e Illustration of 
the principal theory to determine hits based on RSA, MAGeCK, and RIGER. Induced changes in AS are first 
ranked and the effects of knocking down a given gene on individual AS events are displayed as red bars. A 
hit would show enriched AS events in one direction (top) while a non‑hit would display a relatively random 
distribution (bottom). f, g The distribution of induced AS events (based on Z‑scores of induced exon skipping 
from left to right at top or induced exon inclusion from right to left at bottom) in response to knockdown 
SF3B1 (f) or SRSF2 (g). h The false discovery rate (FDR=FP/(FP+TP)) at different cutoffs with different methods. 
The FDRs at x‑axis were calculated by different software (RSA, RIGER, MAGeCK, and  CB2). The FDRs at y‑axis 
were deduced based on the non‑expressors and built‑in positive controls (siPTBP1). False positive (FP): 
non‑expressors; true positive (TP): siPTBP1‑treated samples
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measured in the screen (e.g., the impact on cell proliferation from high on left to low on 
right) and then score hits if multiple targeting RNAs are relatively enriched toward left 
(Fig. 2e, top raw) whereas a non-hit lacks any enrichment (Fig. 2e, bottom raw).

Here, by replacing individual targeting RNAs with individual AS events, we took a 
similar strategy to evaluate the overall contribution of a given gene to global splicing 
control. Using two well-known splicing regulators as benchmarks and separately rank 
ordering their impact on exon skipping (left to right) or inclusion (right to left), we found 
that knockdown of the core spliceosome component SF3B1 mainly caused exon skipping 
(Fig. 2f and Additional file 1: Fig. S2c), whereas depletion of a representative SR protein 
SRSF2 induced both exon inclusion and skipping in about equal frequency (Fig. 2g and 
Additional file  1: Fig. S2d). These data are well in line with the existing literature [28, 
29]. Extending this analysis genome-wide, we identified thousands of genes as putative 
splicing regulators by using different aggregation strategies associated with RSA, RIGER, 
MAGeCK, or  CB2 (Additional file 1: Fig. S2e). We next took advantage of 5006 siRNAs 
against non-expressed genes as internal negative controls and 299 technical repeats with 
an siRNA against a well-known splicing regulator PTBP1 [30] as internal positive con-
trols in our screen and estimated the false discovery rate (FDR=false positives divided 
by false positives + true positives). We observed an alarmingly high error rate with each 
of these methods even at the most stringent FDR cutoff (Fig.  2h). Collectively, these 
analyses present a compelling paradigm for the need to develop new statistics to fully 
explore the power of two-dimensional high-throughput data.

Zeta: Z‑based estimation of global splicing regulators

It becomes quite evident from the above analyses that the accumulation of random 
experimental noise and off-target effects is a major problem in analyzing two-dimen-
sional high-throughput data because the screen specificity is progressively diminished 
as the number of readouts increases. To begin to develop a new statistical strategy to 
address this problem, we first used non-expressed genes to characterize the distribu-
tion of random splicing responses from all AS events quantified on our screen. For each 
siRNA against a given non-expressed gene, we calculated Z-scores for the entire collec-
tion of the AS events scored and then displayed the number of “hits” at each Z-score 
cutoff from low to high for induced exon skipping (toward the right) or exon inclusion 
(toward the left). This shows the progressive decline in the number of hits in both direc-
tions as the Z-score value increases, and after analyzing 10 randomly selected non-
expressed genes this way, we noted that all exhibit a similar distribution (Fig. 3a, grey 
color). In comparison, among 10 representative splicing regulators (Additional file 1: Fig. 
S3a), all scored a much higher number of hits at any Z-score cutoff (Fig. 3a, individually 
colored).

Interestingly, such distinct profiles between non-expressors and known splicing reg-
ulators were similarly observed with a large number of built-in negative controls (NS-
mix, a pool of non-specific siRNAs) and positive controls (siPTBP1, a specific siRNA 
pool against PTBP1). This enabled us to develop an SVM curve to maximally separate 
positives from negatives (Fig. 3b). We define the area between a putative hit above the 
SVM line as a Z-based estimate of targets or Zeta (ζ). In order to favor the differences at 
higher Z-score cutoffs, we recommend the use of a weighted ζ score, which is calculated 
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as follows: we first divide the full Z-score range into 100 bins, multiply the averaged 
Z-score value by the area at each bin, and finally aggregate values from all 100 bins 
(Fig. 3c, see Methods for further details). This generates a weighted-ζ score to define the 
overall impact of a putative splicing regulator.

To characterize a given splicing regulator in splicing activation and repression, we 
separately calculated ζ scores for aggregated exon inclusion or skipping events. After 
processing our splicing screen data with this analysis pipeline (ZetaSuite, see Additional 
file 1: Fig. S1b), we rank-ordered the hits according to their overall impact on AS (high to 
low from left to right), thus enabling quantification of each splicing regulators based on 
its global contribution to regulated splicing in a given cell type. Interestingly, we noted 
that most high-ranking hits correspond to annotated core spliceosome components 
(Fig. 3d). This suggests that components of the core splicing machinery also function as 

Fig. 3 The ζ and comparison with several key existing statistical approaches. a At each Z‑score bin over a full 
Z‑score range, the level of hits (expressed as the percentage of induced AS events over the total number of 
AS events monitored) is plotted with 10 representative splicing regulators (individually colored) compared 
to 10 non‑expressors (grey). Left and right separately plot induced exon inclusion and skipping events. b At 
each Z‑score bin over a full Z‑score range, the level of hits in response to siPTBP1 (purple) or negative controls 
(NS‑mix, green). An optimal SVM curve (black) is derived to maximally distinguish between true positives 
(siPTBP1) and true‑negatives (NS‑mix). c Calculation of a weighted ζ‑score based on the area between the 
specific Z‑score line of a gene (black) and the SVM curve (red). At each Z‑score bin, the area is calculated by 
multiplying the Z‑score, thus giving increasingly weights (purple) to hits at higher Z‑scores. d The distribution 
of weighted ζ‑score for annotated core spliceosome components among top 350 high‑ranking genes. The 
top 10 high‑ranking genes are enlarged (top). Only DEFB131A doesn’t belong to core spliceosome, which was 
later determined to result from off‑targeting to SF3B1 (see Additional file 1: Fig. S4d). e, f The ROC (e) and PRC 
(f) curves are deduced using different software. Weighted ζ‑score in two directions calculated by ZetaSuite 
are combined in this analysis to reflect the overall functional consequence. This is not applicable to other 
software, and we thus display the data separately. g The summary of the areas under all deduced ROC and 
PRC curves using different software
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the most prevalent class of AS regulators in mammalian cells. In general, these genes are 
highly expressed in mammalian cells and their inactivation predominantly induces exon 
skipping (Additional file 1: Fig. S3b-c).

To compare the performance of the newly developed ζ statistics with other ranking 
approaches, such as that used in RSA, RIGER, MAGeCK, or  CB2, we again took advan-
tage of a large number of built-in positive and internal negative controls in our screen, 
which allowed us to precisely determine the numbers of true and false positives and 
negatives to construct receiver operating characteristic (ROC) (Fig. 3e) and precision-
recall curves (PRC) (Fig.  3f ). Additionally, as the ζ statistics is designed to deal with 
random error accumulation due to increasing readout numbers, we generated a set of 
simulated datasets based on our two-dimensional splicing screen datasets by randomly 
selecting readouts from our raw datasets (see Methods). The ζ statistics again outper-
formed all aforementioned methods, as shown by the calculated values of areas under 
PRCs or AUPRCs (Fig. S3d). Together, these comparisons demonstrate that the newly 
developed ζ statistics significantly outperformed all other ranking methods in analyzing 
two-dimensional high-throughput splicing screen data (Fig. 3g).

Selecting hits based on the reflection point in Screen Strength plot

Any screen requires a cutoff to maximize positives and minimize negatives. In most one-
dimensional high-throughput screens, hits are first ranked based on Z-score or SSMD 
values followed by the selection of a threshold by estimating the false positive level (FPL) 
and the false negative level (FNL) [31]. As Z-score or SSMD value increases, FPL gradu-
ally decreases while FNL progressively increase [32]. This approach can be similarly 
applied to ζ-based scoring, as illustrated with our splicing screen data using siPTBP1 
in technical repeats as true positives and siRNAs against non-expressed genes as true 
negatives (Additional file 1: Fig. S4a). Using the balanced error level approach as recom-
mended earlier [31], we obtained 10% for both FPL and FNL with a calculated FDR of 
15.4%. However, many siRNA screens may not be able to build in sizable true positive 
controls and the balanced error level may be influenced by the ability to efficiently differ-
entiate between positive and negative controls. To address this problem, RNAiCut was 
developed to identify an appropriate cutoff for hit selection by coupling the orthogonal 
PPI network information [33]. We noted that RNAiCut heavily depends on the accu-
racy of the established PPI networks, which is challenging in mammalian cells. Addi-
tionally, we further noted that the recommended minimum p-value selection as cutoff 
is not always true, especially for some specific functions that need the incorporation of 
multiple pathways.

Given these challenges, we introduce the concept of apparent FDR (aFDR), which is 
defined as the number of non-expressors identified as false positive hits among all hits 
scored at a given cutoff. Before the screening, we had a baseline FDR (bFDR), which 
corresponded to the number of non-expressors among the total number of genes tar-
geted in the screen. By definition, bFDR represents the chance from a random draw. We 
next define the Screen Strength: SS=1-aFDR/bFDR, which can be used to evaluate the 
effectiveness a screen has achieved relative to a random draw. We applied this approach 
to generate the SS plot based on the splicing screen data against increasing ζ scores 
(Fig. 4a). This allowed us to calculate a balance point (BP) for hit selection where the SS 
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remains almost little change as the stringency increases. We actually identified two such 
BPs with our splicing screen data, thereby defining candidate hits after BP1 and high 
confidence hits after BP2, the latter of which maximally eliminate true false positives 
derived from non-expressors (Fig. 4b).

To demonstrate the broad utility of SS, we utilized 5 public RNAi screen datasets 
[34–38] to select appropriate cutoffs (Fig. S4b). Interestingly, each of these high-quality 
screen results exhibited two apparent balance points. This is anticipated if the ranking 
values had the ability to differentiate between positives and negatives. To demonstrate 
this, we permutated the ranking values of a representative genome-wide screen (from 
the last dataset in Fig. S4b) five times and found that we were no longer be able to detect 
any balance point from the SS plot generated with the permutated dataset. We thus sug-
gest that the SS plot is generally applicable to selecting a cutoff(s) and the presence of at 
least one balance point is indicative of a successful screening dataset.

Strategy to remove off‑target effects from two‑dimensional high‑throughput RNAi screens

Off-target effects have been a major problem in genome-wide screens. Recent strate-
gies to filter out off-targeting RNAs are to increase the number of targeting RNAs 
against each gene and eliminate those that show divergent effects from the consensus 
generated by multiple targeting RNAs [39]. These approaches assume that an activ-
ity defined by the majority of targeting RNAs reflects on-target effects, which may 
not always be the case. In addition, these approaches require a large number (usu-
ally 15 to 20) of targeting RNAs per gene, thus inapplicable to traditional siRNA or 
shRNA libraries that typically contain 4 to 6 targeting RNAs in each pool. In fact, 
the increased sequence complexity with a larger pool of targeting RNAs may induce 
additional off-target effects. We thus sought to utilize the data from primary and sec-
ondary screens with traditional arrayed siRNAs to filter out off-targets, again taking 
advantage of multiple functional readouts at each treatment condition.

As illustrated in Fig.  4c, we first identified siRNA pools that showed similar 
responses in pairwise comparison by requiring R>=0.6 (ref [40]). Because two genes 
may have related functions in a common biological pathway, more than one siRNA in 
their pools are expected to show similar responses to both of their pools in the sec-
ondary screen, as illustrated with SNRPA1 and SF3B1, both being subunits of the U2 
ribonucleoprotein particle (snRNP) (Fig. 4d, e). We further illustrated this with mul-
tiple core spliceosome components (Additional file  1: Fig. S4c). On the other hand, 
if a similar response resulted from certain off-targeting effects, one specific siRNA 
in a given siRNA pool would show sequence complementarity of consecutive 11nt 
or longer to the transcript targeted by the other siRNA pool (see Fig. 4f ), as shown 
earlier when examining cross-reacting siRNAs [41]. Moreover, it would be the same 
siRNA that also induced the similar response in secondary screen, as exemplified with 
FCHO1 and SNRPB (Fig. 4g). Here, SNRPB is a known core spliceosome component, 
whereas FCHO1 is a gene functioning in early step of clathrin-mediated endocytosis 
[42], but without any documented role in regulated splicing, suggesting that the high 
ζ value generated by siFCHO1 resulted from its off-target effect on SNRPB. Based on 
these results, we propose a general strategy to eliminate potential off-target effects 
if a single siRNA in a given pool is responsible for (i) generating a similar functional 
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response and (ii) showing a significant sequence complementarity to the transcript 
targeted by another siRNA pool. Using this strategy, we identified multiple siRNA 
pools that likely caused off-targets due to specific cross-reactions with well-estab-
lished splicing regulators (Additional file 1: Fig. S4d).

We extended this analysis to all non-expressors on our screen and showed that fil-
tering out those with identifiable off-targeting activities significantly improved the 
Screen Strength (Fig. 4a, from blue to red line). Furthermore, ζ scores may differ when 
different positive controls are used to generate the SMV. To evaluate this impact, we 
focused on high confidence hits after BP2 based on using repetitive siPTBP1 treat-
ments as positive controls and found that > 90% of hits were identifiable with a differ-
ent set of internal positive controls (see Additional file 1: Fig. S3a) to deduce a slightly 
different SVM line (Additional file  1: Fig. S4e-g), suggesting that slightly distinct 
positive controls only affect low-ranking candidates. Because of the ability to rank 
the hits, we were able to detect > 90% of the hits using siPTBP1-derived SVM based 
on the balance point alone without using any SVM (Additional file  1: Fig. S4f-g), 

Fig. 4 Hit selection based on Screen Strength and strategy to filter out off‑target effects. a The comparison 
of the Screen Strength before (blue) and after (red) filtering out off‑targets. BP: balance point. Note that the 
Screen Strength based on the threshold defined by the commonly used balanced error level (BRL) approach 
is also indicated (see Additional file 1: Fig. S4a). Empirical FPL lines (0.05 and 0.01) are also indicated. Those 
between BP1 and BP2 are candidate hits and those after BP2 are high confidence hits. b Weighed ζ‑scores 
of expressed and non‑expressed genes. A specific region is enlarged on the right for comparative purpose. 
bFDR: baseline FDR. BP1 and BP2 are according to those defined in a. c Strategy to filter out off‑target effects 
based on similarity in response and sequence complementarity. d Comparison of AS events responsive 
to knockdown of SNRPA1 and SF3B1 or SNRPB and FCHO1 in primary screen. Pearson correlation score is 
indicated in each case. e Comparison of AS events responsive to knockdown of the siRNA pool vs individual 
siRNAs against SNRPA1 or SF3B1 in the secondary screen. The third row shows the comparison between the 
siRNA pool against SF3B1 and individual siRNAs against SNRPA1. f The sequence of a single siRNA targeting 
FCHO1 is aligned with its potential off‑target on the SNRPB transcript. g Comparison of AS events responsive 
to knockdown of the siRNA pool vs individual siRNAs against FCHO1 or SNRPB in the secondary screen. 
The third row shows the comparison between the siRNA pool against SNRPB and individual siRNAs against 
FCHO1. Purple highlights the predicted off‑targeting siRNA
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although the ability to generate an SVM curve helps minimize the inclusion of low 
confidence hits.

Finally, we evaluated the performance of ZetaSuite on different numbers of functional 
readouts. Using true positives (siPTBP1) and high confidence hits based on using all AS 
readouts as the reference sets, we tested the ability of the ζ statistics to detect these “ref-
erence” genes using fewer readouts and found that the ζ statistics was indeed able to 
identify over 80% of these “reference” genes when the readout size reaches 200 or greater 
(Additional file 1: Fig. S4h). This information offers a general guide to designing future 
two-dimensional genome-wide screens.

Application of ZetaSuite to understand core fitness genes in cancer cells

Having established the general framework of the ζ statistics with our in-house splicing 
screen data, we next sought to demonstrate its general applicability to other large-scale 
two-dimensional data. DRIVE [10] and DepMap [11] are representative of such data, 
designed to determine cancer dependencies. In these studies, pooled shRNAs were 
transduced into a large panel of cancer cell lines followed by deep sequencing to identify 
depleted shRNAs to identify genes critical for cancer cell survival. DRIVE tested more 
cell lines than DepMap (overlap=113, Additional file 1: Fig. S5a), whereas DepMap cov-
ered more genes than DRIVE (overlap=7,081, Additional file 1: Fig. S5b). Thus, as with 
our splicing screen dataset, the first dimension consists of individual shRNA treatments 
and the second corresponds to multiple functional readouts (different AS events vs dif-
ferent cell lines). Similar to our experimental design, DepMap selected a set of known 
essential genes (n=210, 43] as positive controls and used non-expressed genes (n=855) 
as negative controls, both serving as the benchmarks for validating the performance of 
ZetaSuite. We found that these controls are well separated based on t-distributed sto-
chastic neighbor embedding (tSNE) [43] (Additional file 1: Fig. S5c).

For data analysis, DRIVE utilized RSA to rank-order hits and ATARiS to eliminate 
off-targeting shRNAs. A gene was considered essential if RSA>= − 3 in > 50% of the 
cell lines tested. In contrast, DepMap removed off-target effects with DEMETER and 
selected top hits showing 6 standard deviations (SD or σ) or greater in any cell line tested 
for further pathway analysis. As we demonstrated in treating our two-dimensional splic-
ing screen data, an arbitrary cutoff would present a trade-off between sensitivity and 
specificity, and even with the most extreme cutoff like 6σ, experimental noise would still 
become accumulated with the increasing number of readouts from a screen. We thus 
tested the Screen Strength (SS) strategy in ZetaSuite to compare different screen results.

We first processed the data from DepMap and DRIVE according to the ZetaSuite 
pipeline (see Additional file 1: Fig. S1b). Although DRIVE and DepMap mainly deter-
mined cancer dependencies by scoring depleted shRNAs, we took advantage of ZetaS-
uite to identify both depleted and enriched shRNAs. We utilized the processed data with 
potential off-target effects already removed and then plotted the data in both directions 
in the full range of cutoffs. As expected, positive controls and non-expressors were well 
separated in both datasets in the direction of cancer dependency (Fig. 5a), thus allowing 
us to calculate a weighted ζ-score for each tested gene, display the data in the SS plot, 
and detect two balance points (BP1 and BP2) in both datasets (Fig. 5b). Interestingly, we 
also detected enriched shRNAs, indicating that depletion of their target genes enhanced 
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tumor cell growth, which we referred to as cancer checkpoints (see below). In the SS 
plot, we were unable to derive any balance point with the dataset of DepMap, likely due 
to scattered data from a relatively smaller number of cell lines surveyed (Fig. 5b), and 
with the dataset of DRIVE, we only used the most stringent cutoff at BP2 to select hits 
(Fig. 5c).

Based on the selected BP1 and BP2, the majority of positive controls were included in 
both datasets, suggesting that ZetaSuite-suggested cutoffs were able to encompass the 
majority of cancer dependencies, even at BP2 (Fig. 5d). This is in sharp contrast to alarm-
ingly high error rates even at the stringent FDR cutoff with RSA, RIGER, MAGeCK, or 
 CB2 (Fig. S5d). Since DepMap only focused on specific cancer dependencies by requir-
ing 6σ, which is too stringent, we focused on comparison between ZetaSuite-identified 
hits and DRIVE-defined hits against the set of previously annotated essential genes [44]. 
Even at the cutoff based on BP2, ZetaSuite identified more hits than DRIVE hits (Fig. 5f ), 
and moreover, none of the 10 DRIVE hits missed by ZetaSuite belong to the annotated 
essential genes (Fig. 5f, blue). Despite the significantly enlarged hit size, enriched Gene 
Ontology (GO) terms, KEGG pathways, and complexes annotated in the CORUM data-
base [45] associated with newly identified hits were similar to those deduced earlier 
based on much more stringent cutoffs, with top-ranked terms linked to key housekeep-
ing activities, such as DNA replication, splicing, cell cycle, RNA transport, and ribosome 
biogenesis (Additional file  1: Fig. S5e-g). In addition, those newly identified hits were 
largely anti-correlated with AGO2 expression and copy number variation (CNV) (Addi-
tional file 1: Fig. S5h), as reported earlier with the DRIVE dataset [10]. In contrast, 8 out 
of 10 hits identified by DRIVE but missed with ZetaSuite lacked such anti-correlation 
with either AGO2 expression (Additional file  1: Fig. S5g, top) or AGO2 CNV (Addi-
tional file 1: Fig. S5g, bottom). Together, these data demonstrated the effectiveness and 
objectiveness of ZetaSuite in identifying cancer dependencies from previous large-scale 
screen data.

Biological insights into cancer dependency

The expanded list of cancer dependencies provided further insights into critical cancer 
development pathways compared to those already recognized from a previous analysis 
with the limited set of genes. For example, we deduced 7 clusters by t-SNE plotting and 
draw the global network based on regulation similarity based on similarities among dif-
ferent DRIVE cancer cells that passed the BP1 threshold (Fig.  6a). One of these gene 
networks was enriched with components of the transcription mediator complex and Pol 
II, all connected to the well-known oncogene MYC (Fig. 6b), consistent with the known 
function of MYC in transcriptional control [46]. Interestingly, MYC inhibition showed 
the most dramatic impact on rhabdoid cancer cells (Additional file 1: Fig. S6a), in agree-
ment with a recent observation that MYC inhibition effectively restricted rhabdoid 
tumor growth in vivo [47]. In this MYC dependency plot, significant MYC dependency 
was noted in multiple myeloma (MM) cancer cells, in line with frequent 8q24 transloca-
tion that leads to MYC overexpression in MM cancers [48].

To further demonstrate the utility of ZetaSuite in analyzing the DRIVE and Dep-
Map datasets to mine important cancer pathways, we analyzed two separate clusters 
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connected by ATR , a key regulator of genotoxic stress. One cluster includes various 
genes involved in G1/S transition and modulation of DNA topology and the other 
encompasses genes critical for DNA replication/repair (Fig. 6c). This is consistent with 
the existing literature on the function of ATR in connecting genotoxic stress to cell cycle 
control [49]. Notably, several splicing regulators (i.e., SRSF1 and SRSF2) are present in 
these clusters, both being implicated in inducing aberrant R loops that led to ATR acti-
vation [50]. This has been suggested as a key mechanism underlying Myelodysplastic 
Syndromes (MDS), a pre-leukemia that has the propensity to rapidly progress to acute 
myeloid leukemia (AML), thus explaining greater ATR dependency in leukemia than 
most other cancer types (Additional file 1: Fig. S6b).

Fig. 5 Application of ZetaSuite to mine core fitness genes in cancer cells. a At each gene dependency 
bin over a full range of gene dependency scores, the percentage of cell lines responsive to knockdown 
of individual annotated essential genes (orange dots) or non‑expressed genes (blue dots) based on 
the DepMap (top) and DRIVE (bottom) datasets. b, c Screen Strength plot at different cutoffs for cancer 
dependency (left) or cancer checkpoint (right) deduced from the DepMap (b) or DRIVE (c) dataset. Because 
of scattered data, balance point could not be determined in the DepMap dataset. The two balance points 
(BP1 and BP2) in the DRIVE dataset are marked (c). Empirical FPL lines (0.05 and 0.01) are also indicated. d 
Hits for cancer dependency above the threshold defined by BP1 or BP2 based on the data from DepMap 
(left) or DRIVE (right). e Comparison of cancer dependencies deduced in the DRIVE project with those newly 
determined with ZetaSuite and previously annotated essential genes
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Genes involved in cancer checkpoint

One of the most significant advances in further mining the DRIVE dataset with ZetaS-
uite is the discovery of genes whose depletion appears to promote tumor growth. Strik-
ingly, GO term analysis revealed that the vast majority of these genes were involved in 
DNA checkpoint control (Fig.  6d). Previously, genes involved in cancer dependencies 
were cross analyzed with copy number variation (CNV), gene expression, or mutation 
frequencies, revealing their association with low CNV and low expression, which has 
been referred to as CYCLOPS genes [51]. We further confirmed this with ZetaSuite-
identified cancer dependencies (Additional file 1: Fig. S6c). We next extended the analy-
sis to cancer checkpoint genes and identified 9 major clusters (Fig. 6e). Contrary to core 
fitness genes, however, much fewer cancer checkpoint genes were associated with CNV, 
altered expression, or mutation in DRIVE cell lines.

Several typical tumor suppressors were identified as strong cancer checkpoints in this 
feature association analysis, including TP53 (encoding for p53) [52] and its transcription 
target CDKN2A (encoding for the cell cycle inhibitor p16) [53] and CDKN1A (encod-
ing for the cell cycle inhibitor p21) [54]. MDM2, an E3 ligase for p53, was also identi-
fied as a cancer checkpoint gene (Fig. 6e) and the similarity network clearly reflects the 
antagonizing function between TP53 and MDM2 (Fig. 6f ). In fact, while wildtype TP53 
always gave rise to a positive dependency score, reflecting its tumor suppressor function, 
mutant TP53 produced a negative cancer dependency score, indicating its oncogenic 
role in those tumor cells (Fig. 6g, h), in agreement with the established roles of wildtype 
and mutant p53 in tumorigenesis [55]. Most interestingly, as exemplified with MDM2, 
multiple cancer checkpoint genes were also linked to either low CNV or low expression 
(see Fig.  6e), suggesting that the CYCLOPS phenomenon applies to some key cancer 
checkpoints as well. MDM2 was also connected to a cluster of genes functioning in cell 
differentiation, endocytosis, cell death, and response to oxidative stress, consistent with 
the role of MDM2 in regulating the transition from proliferation to differentiation [56] 
and in the cellular response to oxidative stress [57].

Fig. 6 Biological insights from identified cancer dependencies. a Cluster (left) and global network (right) for 
cancer dependencies determined by ZetaSuite from the DRIVE dataset. b, cMYC‑associated sub‑network, 
highlighting its connectivity to mediators and Pol II components (b) and ATR  connectivity to sub‑networks 
associated with genes involved in DNA conformation or DNA replication/repair (c). Colors correspond to 
different clusters defined in a. d Functionally enriched GO term biology pathways for cancer checkpoint hits 
based on the DRIVE dataset. Shown are top 15 GO terms with smallest adjust p‑values. e The association of 
ZetaSuite‑identified cancer dependencies with gene expression, copy number, and mutation features. For 
each gene, cancer cell lines were firstly ranked based on the levels of CNV or gene expression, and the cancer 
dependency scores were then compared between cell lines in top 25% versus bottom 25%. The p‑value 
(y‑axis) for each gene in this comparison was determined by Wilcox‑test. In addition, for association analysis 
with mutations, cancer cell lines were divided in two groups with or without mutation for each gene. The 
cancer dependency scores were then compared between these two groups and the p‑value (y‑axis) in this 
comparison was determined by Wilcox‑test. Some representative genes are highlighted in each feature 
group. Genes above the black dashed line have p‑values < 0.05. fTP53‑associated sub‑network. g Averaged 
dependency scores for TP53 and MDM2 (top) and TP53 non‑mutation frequency (bottom) in different cancer 
tissues. Tissues are ranked based on averaged TP53 dependency scores. h The TP53 gene dependencies in 
normal or mutated TP53 cell lines. *** p<0.001 based on Wilcox‑test. iCACNA1I gene expression in normal 
brain tissues (based on the GTEx database) and brain tumors (based on the TCGA database). *** p<0.001 
based on Wilcox‑test. j Kaplan‑Meier survival curves of brain tumor patients associated with high or low 
CACNA1I expression. The dashed lines indicate the 95% confidence intervals

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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In the elucidated p53 subnetwork, TP53BP1 and ATM activate TP53, which in turn 
activates CDNK1A (Fig. 6f ). Besides these known functional connections, we also identi-
fied various genes without prior connection to the p53 pathway, such as PCOLCE and 
CACNA1I. As an extracellular matrix protein and a major regulator of fibrillar collagen 
biosynthesis, disruption of PCOLCE had been reported to induce cell growth in cul-
tured fibroblasts, suggesting a role in cell proliferation control [58]. CACNA1I, a gene 
involving controlling voltage-gated calcium channels, was significantly down-regulated 
in brain tumors compared to surrounding normal tissues (Fig. 6i), and patients with low 
CACNA1I expression were associated with poor prognosis based on the TCGA database 
(Fig. 6j). The newly discovered connection of this and other critical genes with the p53 
pathway would fuel future studies on tumorigenesis.

Last, but not least, further analysis of the newly identified cancer checkpoints 
revealed several major regulatory gene networks based on their similarities among 
different DRIVE cell lines (Additional file 1: Fig. S6e). Besides those critical points of 
cell aging, such as TP53, CDKN2A, BGLAP, and CDKN1A, as described above, we 
also noted gene networks for phosphorylation regulation (e.g., MAP3K9, TAOK1, 
ROCK1/2), GTPase activities (e.g., EPHA5, TBC1D3D, RND3), and DNA packag-
ing (e.g., HIST1H2BN, HIST1H2BL/H/C). These findings not only support the docu-
mented roles of specific MAPK and Rho GTPase pathways in tumorigenesis [59, 60], 
but also raise a new paradigm regarding how DNA packaging proteins may promote 
tumor growth. Collectively, this functional connectivity map provides critical insights 
into the involvement of an elaborated gene network in checkpoint control, which may 
be critical for long-term cell survival, even among cancer cells.

Using ZetaSuite to QC single‑cell sequencing data

Single-cell transcriptomics analysis has become a powerful tool to characterize cel-
lular heterogeneity in specific biological contexts. A challenge in these studies is how 
to differentiate high-quality cells from damaged ones, which has the potential to 
severely compromise specific conclusions reached. Three independent quality control 
(QC) metrics, nCount, nFeature, and %mt (percentage of mitochondrial transcripts) 
have been introduced to evaluate the quality of individual cells [61, 62], but the popu-
lar approaches with a defined threshold, such as CellRanger and EmptyDrops [21], 
still mainly rely on one of these metrics (nCount) to QC sequenced cells. Therefore, 
it would be desirable to use more than one independent metric. ZetaSuite is ideally 
suited for this purpose by plotting the number of genes (y-axis, reflecting nFeature) 
counted at each expression bin (x-axis, reflecting nCount) in the ζ plot, thus provid-
ing a ζ score for each sequenced cell.

To demonstrate this approach, we utilized a benchmark dataset in which individual 
sequenced cells were visually inspected by microscopy to segregate them into high-
quality or low-quality class [63]. We divided transcript counts into 10 expression bins 
and quantified the number of distinct genes covered within each bin, thus generating 
a ζ plot for all sequenced cells (Fig.  7a). By color-labeling each cell pre-determined 
as high-quality (yellow) or low-quality (cyan) in this ζ plot, we found that all high-
quality cells are well separated from low-quality ones (Fig. 7a). We also color-labeled 
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each cell in the same ζ plot according to different ranges of %mt, observing that those 
with exceptionally high %mt, which likely result from broken cells, are all distributed 
at bottom (low nFeature values across all nCount bins), thus giving rise to small ζ 
values (Fig. 7b). Additionally, receiver operating characteristic (ROC) curves showed 
that the ζ statistics-based approach significantly outperformed nCount-, nFeature-, 
and %mt-based QC strategies (Fig. 7c).

To further test the ζ statistics-based QC strategy, we also generated the ζ plot based 
on another benchmark dataset, which additionally annotated low-quality cells into 
broken cells or empty droplets by microscopy [64]. Despite limited cells in this data-
set, which gives rise to a significantly scatted plot, it is still evident that both broken 
cells and empty droplets are effectively segregated from high-quality cells (Additional 
file 1: Fig. S7a). This is further evidenced by comparing individual cells scored with 
different metrics. While all metrics except %mt showed a similar ability to segregate 
high-quality cells from empty droplets, the ζ metric demonstrated much improved 
efficiency in differentiating high-quality cells from broken cells, especially in compari-
son with nFeature (Additional file 1: Fig. S7b), which is further supported by compar-
ing ROC curves generated by ζ or nFeature metric (Additional file 1: Fig. S7c).

Application of ZetaSuite to maximize the power of single‑cell transcriptomics

To demonstrate the power of ZetaSuite in analyzing single-cell transcriptomics, we uti-
lized a scRNA-seq dataset generated from placenta [65] that has been analyzed with 
CellRanger and later used to develop EmptyDrops. As demonstrated earlier, Empty-
Drops was able to “rescue” two critical cell populations (T cells and monocytes) missed 
by CellRanger (Fig. 7d, e and Additional file 1: Fig. S7d-e). However, this gain is at the 
expense of including other cells with abnormal %mt (Fig. 7f, red for broken cells indi-
cated by arrows; dark blue for stripped nuclei pointed by arrowheads) and low ribosomal 
RNA (Fig.  7g, purple). For comparison, we calculated ζ scores for all sequenced cells, 
including those below the cutoff by CellRanger and EmptyDrops (Fig. 7h, neither), res-
cued by EmptyDrops (Fig. 7h, EmptyDrops only), and identified by both CellRanger and 
EmptyDrops (Fig. 7h, both). Interestingly, the plot of %mt vs ζ score revealed that cells 
with high ζ scores include those commonly identified with CellRanger and EmptyDrops 
as well as about half of EmptyDrops-rescued ones while the remaining cells were most 
associated with abnormal %mt values (Fig. 7i). The density plot of ζ-scored cells clearly 
showed two cell populations, which allowed us to make a standardized cutoff based on 
the reflection point of the second population to minimize the contamination of the first 
population (Fig. 7j).

We next returned to the UMAP plot to locate EmptyDrops-rescued cells with (red) 
or without (dark blue) support by ZetaSuite (Fig.  7k). We were able to retain ~3/4 of 
EmptyDrops-rescued T cells and monocytes (Fig.  7l) yet eliminate the vast majority 
of broken cells and stripped nuclei (Fig.  7m). Finally, by displaying the distribution of 
cells quantified by each of the 4 metrics (Fig. 7n), it is clear that cells satisfying all three 
methods (methods implemented in CellRanger, EmptyDrops, and ZetaSuite) showed the 
highest range in nCount, nFeature, and ribosome RNA expression as well as balanced 
%mt (Fig.  7n, light blue). In comparison, among EmptyDrops-rescued cells, ZetaSuite 
retained cells with biological meanings (Fig. 7n, red) while eliminated broken cells and 
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Fig. 7 Application of ZetaSuite to single‑cell transcriptomics. aζ‑plot at each gene count bin over a 
full range of gene counts. Raw counts of each gene are plotted against the number of different genes 
detected. High‑quality (orange dots) or low‑quality (blue dots) cells are based on the benchmark dataset 
(E‑GEOD‑48968). b Same ζ‑plot with cells colored based on %mt. c ROC curves deduced using different 
metrics. The p‑values are calculated by plot.roc in pROC R package with default parameters. d UMAP of 
cells based on the CellRanger cutoff. e–g UMAP of cells based on the cutoff by CellRanger or EmptyDrops 
software. Colors were labeled by detection software (e), expression of mitochondrial transcripts (f), or levels 
of ribosomal RNA (g). h Cells’ number detected by both CellRanger and EmptyDrops (red, both), missed by 
both software (purple, neither), or rescued by EmptyDrops (blue). i Plotting ζ‑scores of individual cells against 
their %mt. Colors label cells as in h. j Same as (i) except plotting the cell density in y‑axis. k UMAP of cells that 
meet the cutoffs of CellRanger, EmptyDrops, and ZetaSuite (light blue) in comparison with those that meet 
the cutoffs of EmptyDrops and ZetaSuite (red) or the cutoff of only EmptyDrops (dark blue). Colors were 
labeled by detection software. i Percentage of T cells or monocytes identified by EmptyDrops and ZetaSuite 
(red) or only EmptyDrops (blue). m Percentages of stripped nuclei (left, characterized by both low %mt and 
ribosome expression) or broken cells (right, associated with high %mt but low ribosome expression due to 
selective leakage of cytoplasmic mRNAs from broken membrane) identified by EmptyDrops but discarded 
by ZetaSuite. n Ridgeline plot showing the distribution of nCount, nFeature, %mt, and ribosome expression 
for cells detected only by EmptyDrops, by both EmptyDrops and ZetaSuite, or by all three software, showing 
the ability of ZetaSuite to rescue high‑quality cells missed by CellRanger while filter out damaged cells also 
rescued by EmptyDrops
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stripped nuclei (Fig. 7n, dark blue). Together, these data demonstrate the power of the ζ 
statistics in combining the benefits of both CellRanger and EmptyDrops without com-
promising the data quality in single-cell transcriptomics analysis.

Discussion
The increasing power and decreasing cost of deep sequencing technologies have enabled 
multi-dimensional analyses of gene expression. By coupling high-throughput screening 
with high-throughput sequencing  (HTS2), it is possible to utilize a specific set of genes 
as a surrogate for defined cellular activities in chemical and genomic screens [8, 9]. 
Through monitoring hundreds or even thousands of functional readouts, such “ultra-
high-content” screens offer numerous advantages over traditional one-dimensional 
screens, including the ability to deduce gene networks and the feasibility to perform a 
drug screen without relying on a pre-defined druggable target. More recently, we have 
extended the  HTS2 approach to a genome-wide screen to identify global splicing regula-
tors by scoring hundreds of alternative splicing events, illustrating the ability to adapt 
two-dimensional screens to study different paradigms in regulated gene expression.

This added dimension also requires a concerted effort in developing suitable statis-
tics for data analysis. In the current work, we introduce a newly developed ζ statistics, 
and by using our in-house  HTS2 data designed to identify global splicing regulators, we 
demonstrate that ζ statistics outperforms the existing strategies based on hit ranking 
and  aggregation, such as RSA [23], RIGER [24], MAGeCK [25], and  CB2 [26]. Addition-
ally, we note that these existing methods rely on a null hypothesis that most screened 
genes are non-hits, thus not suitable for analyzing data from secondary screens or using 
pre-selected candidates. In contrast, the ζ statistics can be broadly used to process two-
dimensional data, which requires a significant number of negative controls. As demon-
strated in our current work, non-expressed genes provide a large set of internal negative 
controls. In ZetaSuite, we also introduce the Screen Strength to measure the success of a 
given screen and to compare between screens.

Off-target effects represent a major problem in genome-wide screens with siR-
NAs, shRNAs, or sgRNAs. To reduce the impact of off-target effects, one strategy is to 
increase the number of targeting RNAs (up to 50 per gene) against each gene [66]. Mul-
tiple algorithms have been developed to remove potential off-target effects. For example, 
ATARiS was developed based on the assumption that multiple on-targeting RNAs would 
give rise to similar results while off-targeting RNAs would each cause a distinct non-
specific effect [39]. This assumption had the potential to retain off-targeting hits when 
multiple targeting RNAs caused similar non-specific effects, for instance, due to induced 
cellular stress. In comparison, DEMETER [11] or its recently refined version DEME-
TER2 (ref [67]) filtered out off-targeting effects based on the assumption that off-targets 
likely result from the sequences in the “seed” region to cause microRNA-like effects on 
other genes. Common seed analysis is another strategy to identify off-targeting siRNAs 
according to the same assumption as DEMETER based on the assumption that the seed 
sequences would be statistically overrepresented in active siRNAs in off-target effects 
as compared to inactive siRNAs [68]. This assumption might not be reliable because 
of numerous exceptions to the “seed rule” and various miRNA-like effects induced by 
sequences outside the seed region [69]. In contrast to the existing approaches, ZetaSuite 



Page 20 of 31Hao et al. Genome Biology          (2022) 23:162 

eliminates off-targets based on two criteria, one on the functional similarity and the 
other on the sequence complementarity between a targeting RNA and a potential off-
targeted transcript. Furthermore, by leveraging the results from the secondary screen, 
we found that a single siRNA in a pool is often responsible for the off-targeting effect of 
that pool and the same siRNA also shows the complementary sequence to the predicted 
off-target. Therefore, besides removing off-targeting effects, ZetaSuite may also help 
identify genes that tend to be off-targeted, thereby aiding in siRNA library design similar 
to GESS [70, 71]. We further note that ZetaSuite could be coupled with SIGNAL [72], an 
algorithm for prioritizing selected hits according to the information on functional net-
works and pathways.

We further demonstrate the utility of ZetaSuite by processing the large-scale data 
from public DRIVE and DepMap cancer dependency projects. Prior efforts in analyz-
ing these datasets had been primarily focused on cancer dependencies, revealing vari-
ous gene networks critical for cancer cell survival. DRIVE defined cancer dependency 
by requiring RSA>= − 3 on > 50% of cell lines surveyed while DepMap paid particu-
lar attention to hits with 6σ or greater. These definitions appeared to be arbitrary, and 
in the case of DepMap, the cutoff was unnecessarily too stringent without fully explor-
ing the information contained in such large-scale datasets. By revisiting these data with 
ZetaSuite, we elevated the number of clear cancer dependencies by several folds, leading 
to the elucidation of multiple new gene networks contributed by some well-established 
oncogenes and tumor suppressors, such as MYC, ATR , and TP53. These discoveries 
potentiate further dissection of fundamental oncogenic pathways. The most important 
discovery made by re-analyzing the DRIVE dataset is the identification of genes whose 
depletion appears to accelerate cancer cell proliferation, at least transiently during the 
treatment period. Strikingly, most hit functions in various DNA checkpoint pathways, 
which we refer to as cancer checkpoint. Such depletion-induced cell proliferation might 
allow cancer cells to temporally escape DNA checkpoint control, indicating that various 
cancer cells need to maintain a very active program to protect their unstable genomes 
from becoming further deteriorated. In this regard, the exposure to these new cancer 
vulnerabilities might aid in the development of new cancer therapies, as exemplified by 
using ATR inhibitors to treat MDS [73].

We also demonstrate the utility of ZetaSuite in addressing a pressing problem in ana-
lyzing single-cell transcriptomics, which is to maximally retain high-quality cells and 
remove damaged ones. This problem is also related to the problem associated with 
using simple statistics to make an arbitrary cutoff, as many real hits may escape detec-
tion with a stringent cutoff but many false positives would be retained with a loose cut-
off. In single-cell transcriptomics analysis, the state-of-art approach is to use nCount to 
differentiate high-quality cells from damaged ones, as with CellRanger, but the recently 
developed EmptyDrops clearly exposed the weakness of CellRanger by showing impor-
tant cell populations missed [21]. However, EmptyDrops appears to introduce other 
unwanted artifacts. We have now used ZetaSuite to address this trade-off by incorpo-
rating critical features of both nCount and nFeature. Using benchmarked datasets, we 
demonstrated that the newly developed ζ statistics can maximally segregate high-quality 
cells from damaged ones while minimize unwanted artifacts. These studies, coupled with 
mining DepMap and DRIVE datasets, showcase the power of ZetaSuite in processing 
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multi-dimensional high-throughput data to reveal critical biological meanings embedded 
in those large-scale datasets.

Conclusions
The increasing power of deep sequencing has enabled the generation of high throughput 
data under many different conditions, representing a second dimension of high-through-
put data. However, the existing bioinformatics tools are largely designed to process one-
dimensional high-throughput datasets, which we demonstrate to cause noise accumulation 
when the scale of the second dimension is significantly increased. We have thus developed 
a new statistics called Zeta and associated software package ZetaSuite for processing two-
dimensional high-throughput datasets and demonstrated that ZetaSuite outperforms cur-
rent benchmark statistical models, leading to novel biological insights and illustrating the 
broad applicability of ZetaSuite in diverse functional genomics studies.

Methods
ZetaSuite is designed to address challenges in analyzing two-dimensional high-through-
put data. Additional file 1: Fig. S1b provides an overview of the flow chart, as individu-
ally detailed below.

ZetaSuite part 1

Data preprocessing

Before running the main ZetaSuite procedure, raw data are first filtered to remove low-
quality samples (columns) and readouts (rows) in the data matrix to minimize false 
positives. The default threshold is set to remove a row or a column if the number of 
drop-outs (missing values; in our in-house dataset, the ratios are used as input and the 
ratio is missing if one of the mRNA isoforms is undetectable) is larger than the value of 
Q3+3*(Q3-Q1) where Q1 and Q3 are lower and upper quartile, respectively. The remain-
ing data are processed with the KNN-based method to estimate the missing values with 
the parameter k=10.

ZetaSuite part 2

QC evaluation

Quality control (QC) is a critical step in evaluating the experiment design. For all two-
dimension high-throughput data, t-SNE plot [43] is first used to evaluate whether fea-
tures are sufficient to separate positive and negative controls. The SSMD score [15] is 
further generated for each readout to evaluate the percentage of high-quality readouts. 
In our case, the data will be further processed if > 5% of reads are of the SSMD score > 2.

Conversion of input matrix to Z‑score matrix

After data pre-processing, the initial input matrix is arranged in N x M dimension, 
where each row contains individual functional readouts against a siRNA pool and each 
column corresponds to individually siRNA pools tested on a given functional readout. 
Readouts in each column may be thus considered as the data from a one-dimensional 
screen (many-to-one), and thus, the typical Z statistics can be used to evaluate the 
relative function of individual genes in such column. The conversion is repeated on all 
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columns, thereby converting the raw activity matrix into a Z-score matrix. Suppose Nij 
are the values in the original matrix i (1≤ i ≤ N siRNA pool) row and j (1≤ j ≤ M read-
out) column, then

where μj and σj are the mean and standard deviation of negative control samples in col-
umn j.

Generation of Zeta plot

The x-axis in the Zeta plot shows a series of Z-score cutoffs in two directions (in our 
case, induced exon skipping in the positive direction and inclusion in the negative direc-
tion), and the y-axis is the percentage of readouts survived at a given Z-score cutoff over 
the total scored readouts.

To generate this plot, the range of Z-scores is first determined by ranking the absolute 
value of total Zij (Z-score value in row i and column j) from the smallest to the larg-
est (|Z1|, |Z2|, …∣Zk − 1∣, ∣Zk∣, |Zk + 1∣, …,∣ZN × M∣,where ∣Zk − 1∣≤|Zk∣≤|Zk + 1∣ and k here is 
the rank number). To exclude insignificant changes that may result from experimental 
noise (choose |Z|=2 as cutoff. In standard normal distribution, using |Z|>2 as a rejec-
tion region, the corresponding p-value is < 0.05), Z-score cutoffs are selected in the 
range of [-∣Z⌊N × M × 0.999⌋∣, -2] in the negative direction and [2, ∣ Z⌊N × M × 0.999⌋∣,] in the posi-
tive direction. The Z-score range in both directions is next divided into 100 bins (B = 
(b1,b2, …, bi, …, b100), where bi = [Zmin + (Zmax − Zmin) × (i − 1)/100, Zmin + (Zmax − Zmin) × 
(i)/100]; Zmax is either -2 or ∣Z⌊N × M × 0.999⌋∣ and Zmin is either -∣Z⌊N × M × 0.999⌋∣ or 2. Next, 
for each siRNA pool, the percentage of readouts scored above the Z-score cutoff in each 
bin is determined.

Calculation of ζ score and weighted ζ score

When a screen includes a large number of both negative and positive controls, these 
controls are all displayed in a Zeta plot. Radial kernel SVM is next constructed to maxi-
mally separate positives from negatives in the prior defined Z-score range using e1071 
packages of R. To avoid overfitting, it is important to use an independent dataset, such 
as non-expressors as internal negative controls, to confirm the deduced SVM. To pro-
vide a value to represent the regulatory function of gene i that generates a curve above 
the SVM curve, the area between the two curves is calculated as the Zeta score (ζ score) 
for this gene. To calculate the total area, we first divide the Z-score range into 100 bins, 
and at each bin, we determine the number of readouts that show significant changes 
above the Z-score cutoff at the bin for each siRNA-targeted gene and then divide this 
number with the total number of measured readouts. After subtracting the background 
percentage (based on the SVM curve), we obtain the increased percentage of readouts 
that show significant changes. To highlight hits scored at higher Z-score bins, the area in 
each bin is multiplied by the value of the Z-score in such bin and all adjusted areas are 
summed to give rise to the final weighted ζ score for each gene:

Zij =
Nij − µj

σj
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where the Aream is the area in the specific binm:

where the Pm and Pm + 1 are the y-axis values of gene i in the Zeta plot whereas 
Sm and Sm + 1 are the y-axis values on the SVM curve, both at binm and binm + 1; step is the 
bin size which equals to (Zmax − Zmin)/100.

With certain screens without any positive controls, it will be impossible to generate an 
SVM curve to help eliminate experimental noise. In these applications, it is still possible 
to calculate a ζ score for each gene by determining the Aream under the gene-specific 
curve at binm:

where the Pm, Pm + 1 and step are the same as those with the area with an SVM curve.
Although ζ scores are separately generated in our application to quantify the contribu-

tion of a given gene to exon inclusion or skipping, the absolute values of these ζ scores 
may also be summed to reflect the global activity of such gene in regulated splicing. 
ZetaSuite generates this summed value as the default data output unless users select “-c 
no” to separately generate two ζ scores in opposition directions.

Screen Strength and determination of the threshold for hit selection

The ζ scores can be used to rank genes and the next important step is to define a suit-
able cutoff to define hits at different confidence levels. For this purpose, the concept of 
Screen Strength is first introduced:

where aFDR (apparent FDR) is the number of non-expressors identified at hits divided 
by the total number of hits and bFDR (baseline FDR) is the total number of non-expres-
sors divided by all screened genes.

Based the definition of SS, the SS values would be progressively elevated with increas-
ing cutoff stringency. A larger SS would indicate a lower false discovery rate but with a 
reduced number of hits. To address this trade-off, we suggest defining the balance point 
(BP) in the Screen Strength plot as follows: ζ scores are first divided into 100 even bins 
from the smallest to the largest and the SS value is determined at each bin. Connect-
ing individual SS values then generates a simulated SS curve, based on which to deduce 
individual BPs. In order to directly reflect the error rate of selected hits according to the 
BPs, several empirical false positive levels (0.05, 0.01) are also provided in our SS plot. 
Users may choose one or multiple BPs to identify hits at different SS intervals according 

ζi =

Zmax
∑

m=Zmin

Aream ×m

Aream =
((Pm+1+Pm)−(Sm+1+Sm))∗step

2
; if (Pm+1 + Pm) > (Sm+1 + Sm)

0; if (Pm+1 + Pm) ≤ (Sm+1 + Sm)

Aream =
(Pm+1+Pm)∗step

2

SS = 1−
aFDR

bFDR
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to their error tolerance. A successful screen is associated with a progressive increase in 
SS values compared to random draw.

ZetaSuite part 3

Removing off‑targeting hits

In the genome-wide screening, siRNAs are designed to specifically degrade mRNA 
transcripts of complementary sequences to reduce the expression of gene products. In 
practice, these reagents exhibit a variable degree of suppression of the targeted gene and 
may also suppress genes other than the intended target. The reagent’s phenotypic effects 
resulting from the suppression of unintended genes are called off-target effects. The rea-
son for off-targets is due to the part-sequence complementary such as the microRNA-
like off-targeting. And the consequence of off-targets is the phenotype or the effects 
on the readouts mainly due to off-targeting to a function gene. Multiple methods have 
developed to deal with the off-targeting problem based on the reason (refer DEMETER2, 
Common Seed Analysis) and consequence (refer ATARiS). Different from the many-to-
one traditional screening data, the  HTS2 can better evaluate the phenotype consistency 
by comparing the similarity effects on all the readouts. Based on these conditions, we 
define the off-targeting hits by combining the off-targeting reason and consequence 
together via comparing the hits with user-defined well-known genes or total-defined 
hits: (1) the off-targeting genes should have one of the targeting RNAs targeted to the 
well function genes (at least 11nt complementary sequence in the targeting RNA), and 
(2) they should show high similarity on the readouts’ effects with targeted well function 
genes (Pearson correlation score > 0.6).

Functional interpretation of identified hits

ZetaSuite combines Gene Ontology and CORUM databases [46] to infer functions. We 
use ClusterProfiler [74] to enrich hits on GO terms and present top 15 GO terms with 
lowest adjust p-values. To annotate hits to CORUM complexes, we present top 15 com-
plexes associated with the highest number of hits. If less than 15 complexes are enriched, 
we require at least 3 hits to retain a complex.

Network construction

The SC3 method [75] is modified to use the absolute values of Spearman and Pearson 
correlation scores to calculate the distance matrix, which is next used to perform clus-
tering. After SC3 analysis, each gene pair receives a consensus score, which measures 
the regulation strength. Edge weights reflect consensus scores and edge types indicate 
correlation or anti-correlation between gene-gene similarities. Nodes in the network 
represent the hits identified by the ZetaSuite pipeline and the size of each node is pro-
portional to the ζ score. Node colors correspond to the clusters calculated with SC3 and 
cluster number is according to the total within-cluster sum of the square “elbow” site. 
The resultant hit networks are visualized with Gephi by using a Yifan Hu Proportional 
layout [76]. Disconnected nodes are trimmed from the graph before generating the plots.



Page 25 of 31Hao et al. Genome Biology          (2022) 23:162  

Other experimental procedures

Testing the multiple testing correction methods on error rate reduction

The multiple testing correction methods, like FDR and Bonferroni correction, are fre-
quently used to reduce error accumulation in multiple hypothesis testing. However, it 
can only be used to deal with the data from one-dimensional screens but is not suit-
able for screens of two or multiple dimensions. To further test this, a common cutoff 
is Z-score>=3 or <= − 3, and thus, the estimated false positive level (p-value) is below 
0.01, meaning that for each readout, a given siRNA has a 1% chance to be identified 
as a false positive hit. For all conditions, ~15,000 tests for each readout are performed 
and using the most stringent Bonferroni correction, we obtain a corrected p-value of 
0.01/15000=6.67 ×  10−7 and a corresponding Z-score=4.97. Now using Z-score=4.97 
as the corrected cutoff to choose hits, we find that the false positive level is still as high 
as 24.9%. Instead of choosing an empirical Z-score as a threshold, we also use Gumbel 
distribution to estimate the p-value for each siRNA pool. In this procedure, the max-
imum absolute Z-score for each siRNA pool is firstly extracted. Then, R package evd 
is used to estimate the parameters of Gumbel distribution. Finally, the p-values for all 
screened siRNA pools in the Gumbel distribution are corrected by Bonferroni correc-
tion. We find that the threshold is Z-score=18.442 with a corresponding Bonferroni 
adjusted p-value=0.01. At this condition, all positive controls are filtered out, and the 
FDR value is as high as 100%. The FDR value is still as high as 94.9% even if we change 
Bonferroni correction to a more lenient correction, FDR correction. In these analyses, 
the dominance of random noises that are of high Z-score values likely results in the fail-
ure in selecting a threshold based on the Gumbel distribution. We conclude that such 
canonical multiple testing correction methods are not sufficient to reduce the accumula-
tion of errors with increasing readouts in two-dimensional high-throughput screens.

Evaluating the optional number of functional readouts in two‑dimensional screen

Positive controls and high-confidence hits, the latter of which are defined based on total 
readouts, are used as references in our evaluation. The number of readouts is progres-
sively down-samples to 50, 100, 150, 200, 250, and 300 using R Sample function without 
replacement and each specific number of down-sampled readouts is replicated 3 times. 
Down-sampled matrixes are processed using the same ZetaSuite pipeline. Hits from 
down-sampled matrixes are used to determine the percentage of the hits over the refer-
ence sets.

Analysis of the splicing screen data with RIGER

RIGER is originally developed to identify essential genes in genome-scale shRNA screens 
[24]. In RIGER, the signal-to-noise ratio is entered as input, which is now replaced with 
the Z-scores for individual alternative splicing readouts. The data are then processed 
with the latest version of RIGER (2.0.2) from the website as provided in the source table 
above. Default RIGER parameters are used in all steps, except that the number of per-
mutations is set to 100,000 to obtain a more precise p-value for each pool of siRNAs. 
The FDR is computed from the empirical permutation p-values using the Benjamini-
Hochberg procedure. This enables the ranking of siRNA pools by FDR.
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Analysis of splicing screen data with RSA

RSA is a probability-based method to identify hits, requiring data generated with multi-
ple targeting siRNAs against each gene [23]. In RSA, fold-changes of treated over control 
samples are entered as input. In our application, the inputs are fold-changes of the splic-
ing ratio of a given alternative splicing event in a siRNA pool-treated well divided by the 
averaged splicing ratio from NS-mix treated wells. The entered data are processed with 
the latest RSA software, as specified in the source table above. The following parameters 
-l 0.2 -u 0.8 and -l 1.2 -u 2.0 are used to select hits for induced exon inclusion and skip-
ping, respectively.

Analysis of splicing screen data with MAGeCK

MAGeCK is a statistical method designed to quantify the collective activity of multiple 
siRNAs against each gene by using the robust rank aggregation (RRA) algorithm [25]. 
In order to meet the MAGeCK input requirement, each Z-score in the ZetaSuite input 
matrix is first converted to p-value. The input data are processed with the modified RRA 
algorithm, as in MAGeCK, with default parameters.

Analysis of splicing screen data with  CB2

CB2 is a method using the Fisher’s combined probability test to combine the p-values 
of sgRNAs for a targeted gene after comparing the difference in functions of individual 
sgRNA using modified Student’s t-test [26]. In order to meet the  CB2 input requirement, 
each Z-score in the ZetaSuite input matrix is first converted to a p-value. The input data 
are processed with Fisher’s combined probability test, as in  CB2, with default parameters.

Processing DRIVE and DepMap cancer dependency datasets

The DRIVE and DepMap data already processed with DEMETER2 are downloaded 
from https:// depmap. org/ portal/ downl oad/. DepMap generated 3 independent datasets. 
In order to avoid experimental variations in different datasets, only the biggest Dep-
Map dataset is selected for current analysis, which includes 285 cancer cell lines across 
approximately 100k shRNAs. ZetaSuite is applied to this dataset to calculate weighted 
ζ-scores with the parameters -z no –svm no and -c no. The downloaded data are pro-
vided as input for RSA and RIGER analysis. To meet the input requirement of MAGeCK 
and  CB2, the processed data are transferred to percentile ranks and then processed by 
each software with default parameters.

Feature association analysis on cancer dependencies and checkpoints

To analysis association with CNV or gene expression, cancer cell lines are ranked based 
on the levels of CNV in a given gene or expression of the gene. Cancer dependency 
scores are next compared between cell lines in top 25% versus bottom 25% and Wil-
cox-test is performed to determine the p-value for the gene. To analysis association with 
mutations, cancer cell lines are divided in two groups with or without mutation in each 
gene. The cancer dependency scores are next compared between these two groups and 
Wilcox-test is performed to generate the p-value for the gene.

https://depmap.org/portal/download/
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Processing single‑cell datasets

Single-cell RNA-seq (scRNA-seq) generates gene expression in one dimension across a 
set of single cells in the second dimension, thus suitable for processing with the ZetaS-
uite pipeline. To calculate the ζ score for each sequenced cell, the raw counts of indi-
vidual detected genes are divided into bins in x-axis, equivalent to individual Z-scores 
in our splicing screen. This reflects the feature of nCount. At each expression bin, the 
number of genes scored above such bin is plotted in y-axis, thus reflecting nFeature. If 
the data contain well-annotated negative controls, a SVM curve can be generated; oth-
erwise, the area under the connected line for each cell can be calculated, which can be 
used to rank-order individual sequenced cells. In scRNA-seq analysis, it is unnecessary 
to generate a weighted ζ score for each cell.

The raw sequencing reads from two benchmark datasets are respectively downloaded 
(E-GEOD-48968 and PRJEB4039) from ArrayExpress Archive [77] and European Nucle-
otide Archive [78]. To calculate the efficiency, raw sequencing reads of all broken/empty 
cells and randomly selected 90 high-quality cells for the second benchmark dataset are 
also downloaded. Sequence reads are mapped to the Mus musculus genome (Ensembl 
version 38.73) by using GSNAP [79] with default parameters. Reads for each gene are 
counted with htseq-count [80]. Finally, raw count matrices for each dataset are used as 
input in the ZetaSuite pipeline adapted for scRNA-seq analysis to calculate a ζ score for 
each cell with default parameters.

The placenta raw count matrix is downloaded from https:// jmlab- gitlab. cruk. cam. ac. 
uk/ publi catio ns/ Empty Drops 2017- DataF iles. The cell annotation based on CellRanger 
and EmptyDrops are downloaded from https:// github. com/ Mario niLab/ Empty Drops 
2017/ tree/ master/ analy sis/ place nta. Raw count matrices are used as input for ZetaS-
uite to calculate a ζ score for each cell, and the cutoff is selected based on the ζ score 
distribution and the reflection point for the second cell population (see Fig.  7j). Cells 
detected by CellRanger, EmptyDrops, and ZetaSuite are analyzed with Seurat [20]: the 
gene expression matric in each dataset is first normalized with the NormalizeData func-
tion and top 2000 features with high cell-to-cell variation are kept for further analysis. 
The ScaleData function is next used to generate the line-transformation scaled data and 
the RunPCA function is used to reduce the dimensionality of the dataset. Top 40 princi-
pal components are selected according to the ElbowPlot, DimHeatmap, and JackStraw-
Plot functions. Finally, the FindNeighbors and FindCluster functions are used to cluster 
cells and the RunUMAP function with default setting is used to perform the nonlinear 
dimensional reduction.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 022‑ 02729‑4.

Additional file 1: Supplementary Figure 1. Overview of in‑house data set and the ZetaSuite flowchart. a, In‑house 
data format. Two‑dimensional in‑house data are generated from a siRNA screen to identify global splicing regulators. 
In each siRNA‑treated well, 407 alternative splicing (AS) events are interrogated by RNA Annealing Selection Ligation 
sequencing (RASL‑seq). A total number of 18,480 siRNA pools against annotated protein‑coding genes in the human 
genome are arrayed in 57 384‑well plates. Each plate also contains 6 negative controls (NS‑mix), 5 positive controls 
(siPTBP1) and 5 killer controls (siNEK6). After screening, raw data are tabulated in a matrix as the  log2 isoform ratio 
(exon included isoform/exon skipped isoform). b, Flowchart of the ZetaSuite software in three parts (https:// github. 
com/ Yajin gHao/ ZetaS uite), as detailed in the text. Supplementary Figure 2. Data analysis using existing statistical 
approaches. a‑b, Z‑score distribution of all non‑expressors (n=5006) based on 5 randomly selected AS events (a) 
or all interrogated AS events (b). Red‑marked dots indicate hits with Z‑score>=3, showing the majority (~80%, see 

https://jmlab-gitlab.cruk.cam.ac.uk/publications/EmptyDrops2017-DataFiles
https://jmlab-gitlab.cruk.cam.ac.uk/publications/EmptyDrops2017-DataFiles
https://github.com/MarioniLab/EmptyDrops2017/tree/master/analysis/placenta
https://github.com/MarioniLab/EmptyDrops2017/tree/master/analysis/placenta
https://doi.org/10.1186/s13059-022-02729-4
https://github.com/YajingHao/ZetaSuit
https://github.com/YajingHao/ZetaSuit
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Fig. 2c) of non‑expressors scored as false‑positive hits when all measured AS events are included in the analysis 
with the traditional Z‑score‑based approach. c‑d, The Z‑score rank distribution (from induced exon skipping on 
left to exon inclusion on right) of SF3B1 (c) and SRSF2 (d) responsive AS events among total detected AS events in 
the screen, showing skewing of SF3B1‑induced splicing toward exon skipping and SRSF2‑induced splicing in both 
directions. e, Summary of hit numbers at common FDR cutoffs using 4 different existing methods. Supplementary 
Figure 3. Use of weighted ζ‑scores to characterize screen hits. a, List of 10 known splicing regulators displayed in the 
Zeta plot in main Fig. 3a. b, The density of gene expression levels for annotated core spliceosome genes compared 
to all other genes in HeLa cells. c, Weighted ζ‑scores of representative core spliceosome genes in induced exon 
skipping (blue) or inclusion (purple), emphasizing that knockdown of core spliceosome components predominately 
induce exon skipping. d, Comparison of AUPRC among different methods in simulated datasets. Weighted ζ‑score 
in two directions calculated by ZetaSuite are combined in this analysis to reflect the overall functional consequence. 
This is not applicable to other software, and we thus display the data separately. Supplementary Figure 4. Strategy to 
remove off‑target effects and optimal readouts for two‑dimensional genome‑wide screens. a, Setting the threshold 
by using the balanced error level (BRL) approach. Arrow indicates the chosen threshold and associated FDR. b, SS 
plots for five genome‑wide RNAi screens, showing the calculated balance points in each (top panel 1 to 5). One 
dataset (panel 5) was permutated 5 times to illustrate the lack of a balance point if the data quality is compromised 
(bottom panel). c‑d, Hits with related functions or due to off‑target effects. Results of our secondary screen with 4 
individual siRNAs in comparison with the pool of those siRNAs (left) or with the pools of other siRNAs against genes 
that show significant functional similarity (right, reflected by circle size). Hits are due to related functions when multi‑
ple single siRNAs produce similar results (c) or to off‑target effects when a single siRNA is responsible for the similar‑
ity to both siRNA pools (d). e, Deduced SVM curves using two different sets of positive controls. SVM1 is defined 
with siPTBP1 repeats and SVM2 with a set of known spliceosome components listed in Supplementary Fig. 3a. f, 
Diagram to illustrate the calculation of weighed ζ‑scores without using a SVM curve. g, Venn diagrams showing the 
overlaps of high confidence hits selected using different SVM curves (left) or with and without using a SVM curve 
(right). h, Impact of readout (AS event) size on the efficiency in recovering a set of reference hits. Each bar represents 
the percentage of recovered reference hits (purple for siPTBP1 replicates; green for high confidence hits based on 
total AS events) by ZetaSuite using different numbers of readouts. Error bars represent the standard deviation from 
three independent samplings. Supplementary Figure 5. Significantly increased number of fitness genes identified by 
ZetaSuite from the existing DepMap and DRIVE datasets. a, Comparison of cell lines surveyed by DepMap and DRIVE. 
Cell lines derived from different cancer types are color‑indicated. A common set of 113 cell lines has been analyzed 
by both projects. b, Comparison of genes interrogated by the two projects. c, Robust segregation of positive (purple: 
annotated essential genes) and negative (green: non‑expressors) controls in DepMap (left) and DRIVE (right). d, Com‑
parison of the performance of different methods in DRIVE and DepMap datasets. e, GO term enrichment for newly 
identified essential genes by ZetaSuite. f, Function enrichment on KEGG pathways for newly identified essential 
genes by ZetaSuite. g, Top 10 enriched complexes of newly identified essential genes by ZetaSuite. Complexes are 
from the CORUM database. h, Density plots of correlation between DEMETER cancer dependency score and AGO2 
expression (top) or copy number variation (bottom) for different gene sets according to the color key on right. The 
overlapped and non‑overlapped hits correspond to those displayed in main Fig. 5e. Ten genes uniquely detected by 
DRIVE are labeled, showing that 8 of 10 are distributed with non‑hits. Supplementary Figure 6. Functional analysis 
of identified hits by ZetaSuite. a‑b, Averaged dependency scores of MYC (a) and ATR  (b) in different cancer tissues. 
c, Association of ZetaSuite‑identified cancer dependencies with gene expression, copy number and mutation 
features as in main Fig. 6e. d, Clusters of hits detected by ZetaSuite that leads to improved tumor cell proliferation. 
e, Global network of tumor checkpoint hits. Highlighted sub‑networks include those involved in the regulation of 
GTPase activities, DNA packaging, and protein phosphorylation. Supplementary Figure 7. Application of ZetaSuite to 
single‑cell transcriptomics. a, ζ‑plot at each bin over a full range of gene expression. The number of expressed genes 
is based on the benchmark dataset (PRJEB4039). High‑quality cells (orange) or low‑quality cells (blue) are indicated 
with the upper panel to compare with annotated empty cells and with lower panel with annotated broken cells. b, 
Violin plots of the distribution of broken, empty and high‑quality cells according to different metrics. c, ROC curves 
are deduced using different metrics. The p‑values are calculated by plot.roc in pROC R package with default param‑
eters. d‑e, UMAP of cells identified by CellRanger, EmptyDrops or ζ cut‑off. Colors were labeled by T cell marker gene 
expression(d) or Monocyte marker gene expression (e).
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