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Abstract

Two-dimensional high-throughput data have become increasingly common in
functional genomics studies, which raises new challenges in data analysis. Here, we
introduce a new statistic called Zeta, initially developed to identify global splicing
regulators from a two-dimensional RNAi screen, a high-throughput screen coupled
with high-throughput functional readouts, and ZetaSuite, a software package to facili-
tate general application of the Zeta statistics. We compare our approach with existing
methods using multiple benchmarked datasets and then demonstrate the broad utility
of ZetaSuite in processing public data from large-scale cancer dependency screens
and single-cell transcriptomics studies to elucidate novel biological insights.

Keywords: Zeta statistics, two-dimensional RNAI screening, Single-cell RNA-seq,
Cancer dependency, Cancer checkpoint

Background

Genome-wide screen by RNA interference (with siRNA or shRNA) [1-3] or CRISPR/Cas
(with sgRNA) [4—6] has become a powerful tool for functional genomics studies. Most
studies monitor a single functional readout in one-dimensional high-throughput screens
or a few functional consequences in so-called high-content screens [1, 7]. By leverag-
ing the power of deep sequencing, it has become feasible to simultaneously quantify the
expression of a gene signature consisting of hundreds or even thousands of genes in two-
dimensional high-throughput screens [8, 9]. sSaARNA or sgRNA libraries have also been used
to treat hundreds of cell lines to deduce genes whose depletion compromise cancer cell
growth, referred to as cancer dependencies [10—13], which presents a type of two-dimen-
sional screens. Single-cell transcriptomics and multi-omics studies are also examples of
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two-dimensional and even multi-dimensional high-throughput data for integrated analysis
of regulated gene expression in individual cells [14].

The increasing power of next-generation sequencing has thus made it feasible and cost-
effective to generate multi-dimensional high-throughput data to gain deeper understand-
ing of regulatory biology. The advance in high-throughput technologies is also frequently
accompanied by the demand for developing new analytical tools to process data of increas-
ing complexity. For one-dimensional high-throughput screens, ¢-test, Z-statistics or Robust
Z-statistics, or strictly standardized mean difference (SSMD) or Robust SSMD [15] have
been typically employed to identify screen hits, depending on the availability of replicates
and built-in positive and/or negative controls [16]. However, as demonstrated in this study,
these simple statistical approaches are no longer suitable for analyzing two-dimensional
high-throughput data.

Single-cell transcriptomics has become a powerful tool to study regulated gene expres-
sion in individual cells [17, 18]. Due to highly stochastic sampling in single cells during
library construction, it is critical to identify high-quality cells for subsequent clustering and
trajectory analyses [19]. Three methods implemented in Seurat, CellRanger, and Empty-
Drops have been commonly used for quality control (QC) purpose: Seurat [20] allows users
to choose arbitrary thresholds to remove low-quality cells based on nFeature (the number
of expressed genes detected), nCount (total reads), or %mt (percentage of mitochondrial
transcripts). Based on nCount alone CellRanger sets the inflection point as the threshold
in a knee-plot, which tends to miss smaller cells with relatively lower nCount values. Emp-
tyDrops [21] is designed to “rescue” some of those missed cell populations by simulating
the level of ambient RNA (those from lysed cells, not from a specifically barcoded cell),
but at the expense of contamination with other low-quality cells. Notably, each of these
approaches still relies on a single parameter, rather than integrates multiple parameters, for
making a cutoff in analyzing single-cell transcriptomics data.

In this study, we recognize the challenges in treating two-dimensional high-throughput
data with existing methods, which has motivated us to develop a new statistics called Zeta
by taking two critical QC metrics into consideration. We also establish a corresponding
software package ZetaSuite to facilitate its application (https://github.com/YajingHao/
ZetaSuite). Using our own RNAI screen data, we use ZetaSuite to minimize noise accu-
mulation in comparison with multiple existing methods, aid in hit selection based on the
newly proposed Screen Strength, and pinpoint likely off-targets. We also illustrate the
robustness of ZetaSuite in processing two sets of large-scale cancer dependency datasets,
revealing new cancer dependencies and uncovering novel cancer checkpoints. Finally, we
demonstrate the advantage of ZetaSuite in identifying high quality single cells while exclud-
ing empty and broken droplets in single cell transcriptomics analysis. Collectively, these
applications showcase the broad utility of ZetaSuite in processing diverse two-dimensional
high-throughput data to reveal novel biological insights.

Results

Overview of the ZetaSuite workflow

ZetaSuite is a computational framework initially developed to process the data from a
siRNA screen for global splicing regulators. In this screen, we interrogated ~400 endog-
enous alternative splicing (AS) events by using an oligo ligation-based strategy and
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quantified their responses to 18,480 pools of siRNAs against annotated protein-cod-
ing genes in the human genome (Additional file 1: Fig. S1a). We next performed deep
sequencing on pools of bar-coded samples from individually treated wells in 384-well
plates to generate digital information on individual mRNA isoforms. By comparing with
internal non-specific siRNA-treated samples, we quantified induced exon inclusion or
skipping for each AS event (similar to up- and down-regulated genes from RNA-seq
experiments). The resultant data matrix resembled those produced by high-content
screens, parallel genome-wide screens, or any screens that monitor multiple func-
tional outcomes (Fig. 1a), emphasizing the broad applicability of ZetaSuite (outlined in
Additional file 1: Fig. S1b) for processing two-dimensional high-throughput data, even
though we presently focus on using our own RNAi screen data to develop the Zeta sta-
tistics underlying ZetaSuite (see below).

After a series of standard data pre-processing and QC steps, ZetaSuite generates
a Z-score for each AS event against each targeting RNA in the data matrix (Fig. 1b)
and then computes the number of hits at each Z-score cutoff from low to high and in
both directions to separately quantify induced exon skipping (Fig. 1c, left) or inclusion
(Fig. 1c, right) events. This enables classification of functional data in both directions to

identify and characterize global splicing activators (if mostly causing exon skipping upon
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Fig. 1 Overview of the ZetaSuite workflow. a Two-dimensional screens include high-throughput screen by
high through sequencing (HTS?), high-content screen, parallel genome-wide screens, etc. ZetaSuite uses

the raw matrix as input to calculate { score. b—g Key steps in the ZetaSuite method from generating initial {
scores (b) to deducing hits by using negative and positive controls to derive a support vector machine (SVYM)
learning curve (c) to calculating weighted ( scores (d) to determining the Screen Strength (e) to filtering

out off-targets (f). The resulting data are used to construct regulatory gene networks based on functional
similarities (g)
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knockdown) or repressors (if mostly inducing exon inclusion events upon knockdown)
or both. The same strategy can be used to characterize positive and negative regulators
in other biological contexts.

In applications where internal positive controls are well separated from negative con-
trols, as showcased with our RNAI screen dataset, ZetaSuite calculates an SVM learning
curve to maximally separate positives from negatives. Any siRNA that generates a line (a
string of data points in the plot) above the SVM line would be considered a potential hit
and the area between the two lines could be used to quantify the strength of the hit, thus
enabling rank-order individual hits (Fig. 1d). We name this statistics as Z-based estimate
of targets or Zeta ({). Even without positive controls in certain applications, it is still pos-
sible to calculate the area between each data line and the x-axis to generate a { score for
a given hit.

As with all screens, a threshold needs to set for hit calling. To this end, we utilize a
large set of non-expressed genes in a given cell type (HeLa cells in our screen) as internal
negative controls and determines the number of hits above a given { score to plot against
the number of non-expressed genes mistakenly identified as hits (which may result from
non-specific perturbations or off-target effects). We call this a Screen Strength (SS) plot
and select a balance point as the threshold where a further increase in { score no longer
significantly improves the value of the SS (Fig. le). Last, but not least, ZetaSuite also
takes full advantage of two-dimensional high-throughput data to calculate similarities
in global responses through pairwise comparisons, which could be leveraged to deduce
off-target effects based on the results from the secondary screen (Fig. 1f), and, more
importantly, to construct gene networks for functional analysis of screen hits (Fig. 1g).
ZetaSuite thus provides a comprehensive package for analyzing two-dimensional high-
throughput data. Below, we describe how the Zeta statistics is progressively developed in
addressing challenges in processing two-dimensional high-throughput data in compari-
son with multiple existing methods and demonstrate the utility of ZetaSuite in analyzing
representative two-dimensional high-throughput data to reveal novel biological insights.

Increasing readout number leads to diminishing screen specificity with traditional
methods

Z-statistics or SSMD has been typically used to identify hits from one-dimensional high-
throughput screen data. SSMD has advantages if a screen includes multiple replicates
for each targeting RNA [16]. When the number of screen readouts increases, however,
various random outliers become accumulated, which has the potential to severely com-
promise the screen specificity. For instance, we scored ~400 AS events against each
siRNA with 368 events passing data QC requirements (see Methods). If any of these
readouts meets a chosen cutoff, the probability of experimental noise and/or off-target
effects would be aggregated in proportion to the number of readouts scored. To dem-
onstrate this, we chose a stringent cutoff of Z-score>=3 [22] to identify hits from our
splicing screen data and used siRNAs that target non-expressed genes as true negatives
to estimate the screen specificity. Randomly selecting 50 siRNAs against non-expressed
genes based on 5 randomly selected AS events, we identified 1 hit out of 50 true negative
siRNAs (Fig. 2a). When all 368 AS events scored on our screen were taken into consid-
eration, the majority of those true negative siRNAs became hits (Fig. 2b).
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Fig. 2 Increasing readout number leads to diminishing screen specificity with common statistical
approaches. a, b The distribution of Z-scores based on 5 randomly selected alternative splicing (AS) events
monitored in our screen (a) or all AS events measured (b) in response to siRNAs against 50 randomly selected
non-expressed genes. The AS event was marked as red if the Z-score is >=3. ¢, d The Specificity based on
common cutoffs (¢, Z-score>=3) or SSMD value (d, SSMD value>=2) when different numbers of AS events
were monitored. The specificity (defined by 1 minus the number of non-expressors scored as hits over the
total number of non-expressors) is the mean value of 50 replicates under each condition. e lllustration of

the principal theory to determine hits based on RSA, MAGeCK, and RIGER. Induced changes in AS are first
ranked and the effects of knocking down a given gene on individual AS events are displayed as red bars. A
hit would show enriched AS events in one direction (top) while a non-hit would display a relatively random
distribution (bottom). f, g The distribution of induced AS events (based on Z-scores of induced exon skipping
from left to right at top or induced exon inclusion from right to left at bottom) in response to knockdown
SF3B1 (f) or SRSF2 (g). h The false discovery rate (FDR=FP/(FP+TP)) at different cutoffs with different methods.
The FDRs at x-axis were calculated by different software (RSA, RIGER, MAGeCK, and CB?).The FDRs at y-axis
were deduced based on the non-expressors and built-in positive controls (siPTBP1). False positive (FP):
non-expressors; true positive (TP): siPTBP1-treated samples

This alarming high false-positive rate became further evident when all RNA-seq iden-
tified non-expressed genes were included in the analysis (Additional file 1: Fig. S2a-b).
By selecting an increasing number of AS events as readouts to determine the screen
specificity, we found that the screen specificity was progressively decreased (Fig. 2c), and
we obtained the same result by performing a similar analysis based on SSMD (Fig. 2d).
These data illustrate that the most popular statistical approaches for analyzing one-
dimensional screen data are no longer suitable for processing two-dimensional high-
throughput data. Even after using the multiple testing correction methods (such as FDR
and Bonferroni correction, as well as coupling with the Gumbel distribution, see Meth-
ods), the error rate is still very high.

Next, we wondered whether we might adapt the concept from some more sophisti-
cated methods to analyze two-dimensional high-throughput data. For example, RSA
[23], RIGER [24], MAGeCK [25], and CB? [26] were each designed to determine the
impact of a given gene on a functional readout (e.g., cell proliferation) by testing multi-
ple targeting RNAs against each gene and then aggregating the data to reflect the over-
all contribution of such gene to the functional consequence. A typical data aggregation
strategy is analogous to Gene Set Enrichment Analysis (GSEA) [27], which is to first rank
order all targeting RNAs against all targeted genes tested based on the functional impact

Page 5 of 31
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measured in the screen (e.g., the impact on cell proliferation from high on left to low on
right) and then score hits if multiple targeting RNAs are relatively enriched toward left
(Fig. 2e, top raw) whereas a non-hit lacks any enrichment (Fig. 2e, bottom raw).

Here, by replacing individual targeting RNAs with individual AS events, we took a
similar strategy to evaluate the overall contribution of a given gene to global splicing
control. Using two well-known splicing regulators as benchmarks and separately rank
ordering their impact on exon skipping (left to right) or inclusion (right to left), we found
that knockdown of the core spliceosome component SF3B1 mainly caused exon skipping
(Fig. 2f and Additional file 1: Fig. S2c), whereas depletion of a representative SR protein
SRSF2 induced both exon inclusion and skipping in about equal frequency (Fig. 2g and
Additional file 1: Fig. S2d). These data are well in line with the existing literature [28,
29]. Extending this analysis genome-wide, we identified thousands of genes as putative
splicing regulators by using different aggregation strategies associated with RSA, RIGER,
MAGeCK, or CB? (Additional file 1: Fig. S2e). We next took advantage of 5006 siRNAs
against non-expressed genes as internal negative controls and 299 technical repeats with
an siRNA against a well-known splicing regulator PTBP1 [30] as internal positive con-
trols in our screen and estimated the false discovery rate (FDR=false positives divided
by false positives + true positives). We observed an alarmingly high error rate with each
of these methods even at the most stringent FDR cutoff (Fig. 2h). Collectively, these
analyses present a compelling paradigm for the need to develop new statistics to fully
explore the power of two-dimensional high-throughput data.

Zeta: Z-based estimation of global splicing regulators

It becomes quite evident from the above analyses that the accumulation of random
experimental noise and off-target effects is a major problem in analyzing two-dimen-
sional high-throughput data because the screen specificity is progressively diminished
as the number of readouts increases. To begin to develop a new statistical strategy to
address this problem, we first used non-expressed genes to characterize the distribu-
tion of random splicing responses from all AS events quantified on our screen. For each
siRNA against a given non-expressed gene, we calculated Z-scores for the entire collec-
tion of the AS events scored and then displayed the number of “hits” at each Z-score
cutoff from low to high for induced exon skipping (toward the right) or exon inclusion
(toward the left). This shows the progressive decline in the number of hits in both direc-
tions as the Z-score value increases, and after analyzing 10 randomly selected non-
expressed genes this way, we noted that all exhibit a similar distribution (Fig. 3a, grey
color). In comparison, among 10 representative splicing regulators (Additional file 1: Fig.
S3a), all scored a much higher number of hits at any Z-score cutoff (Fig. 3a, individually
colored).

Interestingly, such distinct profiles between non-expressors and known splicing reg-
ulators were similarly observed with a large number of built-in negative controls (NS-
mix, a pool of non-specific siRNAs) and positive controls (siPTBP1, a specific siRNA
pool against PTBPI). This enabled us to develop an SVM curve to maximally separate
positives from negatives (Fig. 3b). We define the area between a putative hit above the
SVM line as a Z-based estimate of targets or Zeta ({). In order to favor the differences at

higher Z-score cutoffs, we recommend the use of a weighted { score, which is calculated
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as follows: we first divide the full Z-score range into 100 bins, multiply the averaged
Z-score value by the area at each bin, and finally aggregate values from all 100 bins
(Fig. 3¢, see Methods for further details). This generates a weighted-( score to define the
overall impact of a putative splicing regulator.

To characterize a given splicing regulator in splicing activation and repression, we
separately calculated { scores for aggregated exon inclusion or skipping events. After
processing our splicing screen data with this analysis pipeline (ZetaSuite, see Additional
file 1: Fig. S1b), we rank-ordered the hits according to their overall impact on AS (high to
low from left to right), thus enabling quantification of each splicing regulators based on
its global contribution to regulated splicing in a given cell type. Interestingly, we noted
that most high-ranking hits correspond to annotated core spliceosome components
(Fig. 3d). This suggests that components of the core splicing machinery also function as
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Fig. 3 The {and comparison with several key existing statistical approaches. a At each Z-score bin over a full
Z-score range, the level of hits (expressed as the percentage of induced AS events over the total number of
AS events monitored) is plotted with 10 representative splicing regulators (individually colored) compared

to 10 non-expressors (grey). Left and right separately plot induced exon inclusion and skipping events. b At
each Z-score bin over a full Z-score range, the level of hits in response to siPTBP1 (purple) or negative controls
(NS-mix, green). An optimal SVM curve (black) is derived to maximally distinguish between true positives
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the most prevalent class of AS regulators in mammalian cells. In general, these genes are
highly expressed in mammalian cells and their inactivation predominantly induces exon
skipping (Additional file 1: Fig. S3b-c).

To compare the performance of the newly developed ( statistics with other ranking
approaches, such as that used in RSA, RIGER, MAGeCK, or CB?, we again took advan-
tage of a large number of built-in positive and internal negative controls in our screen,
which allowed us to precisely determine the numbers of true and false positives and
negatives to construct receiver operating characteristic (ROC) (Fig. 3e) and precision-
recall curves (PRC) (Fig. 3f). Additionally, as the { statistics is designed to deal with
random error accumulation due to increasing readout numbers, we generated a set of
simulated datasets based on our two-dimensional splicing screen datasets by randomly
selecting readouts from our raw datasets (see Methods). The ( statistics again outper-
formed all aforementioned methods, as shown by the calculated values of areas under
PRCs or AUPRCs (Fig. S3d). Together, these comparisons demonstrate that the newly
developed ( statistics significantly outperformed all other ranking methods in analyzing
two-dimensional high-throughput splicing screen data (Fig. 3g).

Selecting hits based on the reflection point in Screen Strength plot

Any screen requires a cutoff to maximize positives and minimize negatives. In most one-
dimensional high-throughput screens, hits are first ranked based on Z-score or SSMD
values followed by the selection of a threshold by estimating the false positive level (FPL)
and the false negative level (FNL) [31]. As Z-score or SSMD value increases, FPL gradu-
ally decreases while FNL progressively increase [32]. This approach can be similarly
applied to (-based scoring, as illustrated with our splicing screen data using siPTBP1
in technical repeats as true positives and siRNAs against non-expressed genes as true
negatives (Additional file 1: Fig. S4a). Using the balanced error level approach as recom-
mended earlier [31], we obtained 10% for both FPL and FNL with a calculated FDR of
15.4%. However, many siRNA screens may not be able to build in sizable true positive
controls and the balanced error level may be influenced by the ability to efficiently differ-
entiate between positive and negative controls. To address this problem, RNAiCut was
developed to identify an appropriate cutoff for hit selection by coupling the orthogonal
PPI network information [33]. We noted that RNAiCut heavily depends on the accu-
racy of the established PPI networks, which is challenging in mammalian cells. Addi-
tionally, we further noted that the recommended minimum p-value selection as cutoff
is not always true, especially for some specific functions that need the incorporation of
multiple pathways.

Given these challenges, we introduce the concept of apparent FDR (aFDR), which is
defined as the number of non-expressors identified as false positive hits among all hits
scored at a given cutoff. Before the screening, we had a baseline FDR (bFDR), which
corresponded to the number of non-expressors among the total number of genes tar-
geted in the screen. By definition, bFDR represents the chance from a random draw. We
next define the Screen Strength: SS=1-aFDR/bFDR, which can be used to evaluate the
effectiveness a screen has achieved relative to a random draw. We applied this approach
to generate the SS plot based on the splicing screen data against increasing { scores
(Fig. 4a). This allowed us to calculate a balance point (BP) for hit selection where the SS
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remains almost little change as the stringency increases. We actually identified two such
BPs with our splicing screen data, thereby defining candidate hits after BP1 and high
confidence hits after BP2, the latter of which maximally eliminate true false positives
derived from non-expressors (Fig. 4b).

To demonstrate the broad utility of SS, we utilized 5 public RNAi screen datasets
[34-38] to select appropriate cutoffs (Fig. S4b). Interestingly, each of these high-quality
screen results exhibited two apparent balance points. This is anticipated if the ranking
values had the ability to differentiate between positives and negatives. To demonstrate
this, we permutated the ranking values of a representative genome-wide screen (from
the last dataset in Fig. S4b) five times and found that we were no longer be able to detect
any balance point from the SS plot generated with the permutated dataset. We thus sug-
gest that the SS plot is generally applicable to selecting a cutoff(s) and the presence of at
least one balance point is indicative of a successful screening dataset.

Strategy to remove off-target effects from two-dimensional high-throughput RNAi screens
Off-target effects have been a major problem in genome-wide screens. Recent strate-
gies to filter out off-targeting RNAs are to increase the number of targeting RNAs
against each gene and eliminate those that show divergent effects from the consensus
generated by multiple targeting RNAs [39]. These approaches assume that an activ-
ity defined by the majority of targeting RNAs reflects on-target effects, which may
not always be the case. In addition, these approaches require a large number (usu-
ally 15 to 20) of targeting RNAs per gene, thus inapplicable to traditional siRNA or
shRNA libraries that typically contain 4 to 6 targeting RNAs in each pool. In fact,
the increased sequence complexity with a larger pool of targeting RNAs may induce
additional off-target effects. We thus sought to utilize the data from primary and sec-
ondary screens with traditional arrayed siRNAs to filter out off-targets, again taking
advantage of multiple functional readouts at each treatment condition.

As illustrated in Fig. 4c, we first identified siRNA pools that showed similar
responses in pairwise comparison by requiring R>=0.6 (ref [40]). Because two genes
may have related functions in a common biological pathway, more than one siRNA in
their pools are expected to show similar responses to both of their pools in the sec-
ondary screen, as illustrated with SNRPA1 and SF3B1, both being subunits of the U2
ribonucleoprotein particle (snRNP) (Fig. 4d, e). We further illustrated this with mul-
tiple core spliceosome components (Additional file 1: Fig. S4c). On the other hand,
if a similar response resulted from certain off-targeting effects, one specific siRNA
in a given siRNA pool would show sequence complementarity of consecutive 11nt
or longer to the transcript targeted by the other siRNA pool (see Fig. 4f), as shown
earlier when examining cross-reacting siRNAs [41]. Moreover, it would be the same
siRNA that also induced the similar response in secondary screen, as exemplified with
FCHOI and SNRPB (Fig. 4g). Here, SNRPB is a known core spliceosome component,
whereas FCHOLI is a gene functioning in early step of clathrin-mediated endocytosis
[42], but without any documented role in regulated splicing, suggesting that the high
( value generated by siFCHOI resulted from its off-target effect on SNRPB. Based on
these results, we propose a general strategy to eliminate potential off-target effects
if a single siRNA in a given pool is responsible for (i) generating a similar functional
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indicated in each case. @ Comparison of AS events responsive to knockdown of the siRNA pool vs individual
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response and (ii) showing a significant sequence complementarity to the transcript
targeted by another siRNA pool. Using this strategy, we identified multiple siRNA
pools that likely caused off-targets due to specific cross-reactions with well-estab-
lished splicing regulators (Additional file 1: Fig. S4d).

We extended this analysis to all non-expressors on our screen and showed that fil-
tering out those with identifiable off-targeting activities significantly improved the
Screen Strength (Fig. 4a, from blue to red line). Furthermore, { scores may differ when
different positive controls are used to generate the SMV. To evaluate this impact, we
focused on high confidence hits after BP2 based on using repetitive siPTBP1 treat-
ments as positive controls and found that > 90% of hits were identifiable with a differ-
ent set of internal positive controls (see Additional file 1: Fig. S3a) to deduce a slightly
different SVM line (Additional file 1: Fig. S4e-g), suggesting that slightly distinct
positive controls only affect low-ranking candidates. Because of the ability to rank
the hits, we were able to detect > 90% of the hits using siPTBP1-derived SVM based
on the balance point alone without using any SVM (Additional file 1: Fig. S4f-g),
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although the ability to generate an SVM curve helps minimize the inclusion of low
confidence hits.

Finally, we evaluated the performance of ZetaSuite on different numbers of functional
readouts. Using true positives (siPTBP1) and high confidence hits based on using all AS
readouts as the reference sets, we tested the ability of the ( statistics to detect these “ref-
erence” genes using fewer readouts and found that the ( statistics was indeed able to
identify over 80% of these “reference” genes when the readout size reaches 200 or greater
(Additional file 1: Fig. S4h). This information offers a general guide to designing future
two-dimensional genome-wide screens.

Application of ZetaSuite to understand core fitness genes in cancer cells

Having established the general framework of the { statistics with our in-house splicing
screen data, we next sought to demonstrate its general applicability to other large-scale
two-dimensional data. DRIVE [10] and DepMap [11] are representative of such data,
designed to determine cancer dependencies. In these studies, pooled shRNAs were
transduced into a large panel of cancer cell lines followed by deep sequencing to identify
depleted shRNAs to identify genes critical for cancer cell survival. DRIVE tested more
cell lines than DepMap (overlap=113, Additional file 1: Fig. S5a), whereas DepMap cov-
ered more genes than DRIVE (overlap=7,081, Additional file 1: Fig. S5b). Thus, as with
our splicing screen dataset, the first dimension consists of individual sShRNA treatments
and the second corresponds to multiple functional readouts (different AS events vs dif-
ferent cell lines). Similar to our experimental design, DepMap selected a set of known
essential genes (n=210, 43] as positive controls and used non-expressed genes (n==855)
as negative controls, both serving as the benchmarks for validating the performance of
ZetaSuite. We found that these controls are well separated based on t-distributed sto-
chastic neighbor embedding (tSNE) [43] (Additional file 1: Fig. S5c).

For data analysis, DRIVE utilized RSA to rank-order hits and ATARIS to eliminate
off-targeting shRNAs. A gene was considered essential if RSA>= — 3 in > 50% of the
cell lines tested. In contrast, DepMap removed off-target effects with DEMETER and
selected top hits showing 6 standard deviations (SD or o) or greater in any cell line tested
for further pathway analysis. As we demonstrated in treating our two-dimensional splic-
ing screen data, an arbitrary cutoff would present a trade-off between sensitivity and
specificity, and even with the most extreme cutoff like 60, experimental noise would still
become accumulated with the increasing number of readouts from a screen. We thus
tested the Screen Strength (SS) strategy in ZetaSuite to compare different screen results.

We first processed the data from DepMap and DRIVE according to the ZetaSuite
pipeline (see Additional file 1: Fig. S1b). Although DRIVE and DepMap mainly deter-
mined cancer dependencies by scoring depleted shRNAs, we took advantage of ZetaS-
uite to identify both depleted and enriched shRNAs. We utilized the processed data with
potential off-target effects already removed and then plotted the data in both directions
in the full range of cutoffs. As expected, positive controls and non-expressors were well
separated in both datasets in the direction of cancer dependency (Fig. 5a), thus allowing
us to calculate a weighted (-score for each tested gene, display the data in the SS plot,
and detect two balance points (BP1 and BP2) in both datasets (Fig. 5b). Interestingly, we
also detected enriched shRNAs, indicating that depletion of their target genes enhanced
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tumor cell growth, which we referred to as cancer checkpoints (see below). In the SS
plot, we were unable to derive any balance point with the dataset of DepMap, likely due
to scattered data from a relatively smaller number of cell lines surveyed (Fig. 5b), and
with the dataset of DRIVE, we only used the most stringent cutoff at BP2 to select hits
(Fig. 5¢).

Based on the selected BP1 and BP2, the majority of positive controls were included in
both datasets, suggesting that ZetaSuite-suggested cutoffs were able to encompass the
majority of cancer dependencies, even at BP2 (Fig. 5d). This is in sharp contrast to alarm-
ingly high error rates even at the stringent FDR cutoft with RSA, RIGER, MAGeCK, or
CB? (Fig. S5d). Since DepMap only focused on specific cancer dependencies by requir-
ing 60, which is too stringent, we focused on comparison between ZetaSuite-identified
hits and DRIVE-defined hits against the set of previously annotated essential genes [44].
Even at the cutoff based on BP2, ZetaSuite identified more hits than DRIVE hits (Fig. 5f),
and moreover, none of the 10 DRIVE hits missed by ZetaSuite belong to the annotated
essential genes (Fig. 5f, blue). Despite the significantly enlarged hit size, enriched Gene
Ontology (GO) terms, KEGG pathways, and complexes annotated in the CORUM data-
base [45] associated with newly identified hits were similar to those deduced earlier
based on much more stringent cutoffs, with top-ranked terms linked to key housekeep-
ing activities, such as DNA replication, splicing, cell cycle, RNA transport, and ribosome
biogenesis (Additional file 1: Fig. S5e-g). In addition, those newly identified hits were
largely anti-correlated with AGO2 expression and copy number variation (CNV) (Addi-
tional file 1: Fig. S5h), as reported earlier with the DRIVE dataset [10]. In contrast, 8 out
of 10 hits identified by DRIVE but missed with ZetaSuite lacked such anti-correlation
with either AGO2 expression (Additional file 1: Fig. S5g, top) or AGO2 CNV (Addi-
tional file 1: Fig. S5g, bottom). Together, these data demonstrated the effectiveness and
objectiveness of ZetaSuite in identifying cancer dependencies from previous large-scale
screen data.

Biological insights into cancer dependency
The expanded list of cancer dependencies provided further insights into critical cancer
development pathways compared to those already recognized from a previous analysis
with the limited set of genes. For example, we deduced 7 clusters by t-SNE plotting and
draw the global network based on regulation similarity based on similarities among dif-
ferent DRIVE cancer cells that passed the BP1 threshold (Fig. 6a). One of these gene
networks was enriched with components of the transcription mediator complex and Pol
I1, all connected to the well-known oncogene MYC (Fig. 6b), consistent with the known
function of MYC in transcriptional control [46]. Interestingly, MYC inhibition showed
the most dramatic impact on rhabdoid cancer cells (Additional file 1: Fig. S6a), in agree-
ment with a recent observation that MYC inhibition effectively restricted rhabdoid
tumor growth in vivo [47]. In this MYC dependency plot, significant MYC dependency
was noted in multiple myeloma (MM) cancer cells, in line with frequent 8q24 transloca-
tion that leads to MYC overexpression in MM cancers [48].

To further demonstrate the utility of ZetaSuite in analyzing the DRIVE and Dep-
Map datasets to mine important cancer pathways, we analyzed two separate clusters
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Fig.5 Application of ZetaSuite to mine core fitness genes in cancer cells. a At each gene dependency
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the DepMap (top) and DRIVE (bottom) datasets. b, ¢ Screen Strength plot at different cutoffs for cancer
dependency (left) or cancer checkpoint (right) deduced from the DepMap (b) or DRIVE (c) dataset. Because
of scattered data, balance point could not be determined in the DepMap dataset. The two balance points
(BP1 and BP2) in the DRIVE dataset are marked (c). Empirical FPL lines (0.05 and 0.01) are also indicated. d
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connected by ATR, a key regulator of genotoxic stress. One cluster includes various
genes involved in G1/S transition and modulation of DNA topology and the other
encompasses genes critical for DNA replication/repair (Fig. 6¢). This is consistent with
the existing literature on the function of ATR in connecting genotoxic stress to cell cycle
control [49]. Notably, several splicing regulators (i.e., SRSFI and SRSF2) are present in
these clusters, both being implicated in inducing aberrant R loops that led to ATR acti-
vation [50]. This has been suggested as a key mechanism underlying Myelodysplastic
Syndromes (MDS), a pre-leukemia that has the propensity to rapidly progress to acute
myeloid leukemia (AML), thus explaining greater ATR dependency in leukemia than
most other cancer types (Additional file 1: Fig. S6b).

Page 13 of 31
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Genes involved in cancer checkpoint

One of the most significant advances in further mining the DRIVE dataset with ZetaS-
uite is the discovery of genes whose depletion appears to promote tumor growth. Strik-
ingly, GO term analysis revealed that the vast majority of these genes were involved in
DNA checkpoint control (Fig. 6d). Previously, genes involved in cancer dependencies
were cross analyzed with copy number variation (CNV), gene expression, or mutation
frequencies, revealing their association with low CNV and low expression, which has
been referred to as CYCLOPS genes [51]. We further confirmed this with ZetaSuite-
identified cancer dependencies (Additional file 1: Fig. S6¢). We next extended the analy-
sis to cancer checkpoint genes and identified 9 major clusters (Fig. 6e). Contrary to core
fitness genes, however, much fewer cancer checkpoint genes were associated with CNV,
altered expression, or mutation in DRIVE cell lines.

Several typical tumor suppressors were identified as strong cancer checkpoints in this
feature association analysis, including TP53 (encoding for p53) [52] and its transcription
target CDKN2A (encoding for the cell cycle inhibitor p16) [53] and CDKNIA (encod-
ing for the cell cycle inhibitor p21) [54]. MDM2, an E3 ligase for p53, was also identi-
fied as a cancer checkpoint gene (Fig. 6e) and the similarity network clearly reflects the
antagonizing function between TP53 and MDM?2 (Fig. 6f). In fact, while wildtype TP53
always gave rise to a positive dependency score, reflecting its tumor suppressor function,
mutant TP53 produced a negative cancer dependency score, indicating its oncogenic
role in those tumor cells (Fig. 6g, h), in agreement with the established roles of wildtype
and mutant p53 in tumorigenesis [55]. Most interestingly, as exemplified with MDM?2,
multiple cancer checkpoint genes were also linked to either low CNV or low expression
(see Fig. 6e), suggesting that the CYCLOPS phenomenon applies to some key cancer
checkpoints as well. MDM2 was also connected to a cluster of genes functioning in cell
differentiation, endocytosis, cell death, and response to oxidative stress, consistent with
the role of MDM2 in regulating the transition from proliferation to differentiation [56]
and in the cellular response to oxidative stress [57].

(See figure on next page.)

Fig. 6 Biological insights from identified cancer dependencies. a Cluster (left) and global network (right) for
cancer dependencies determined by ZetaSuite from the DRIVE dataset. b, cMYC-associated sub-network,
highlighting its connectivity to mediators and Pol Il components (b) and ATR connectivity to sub-networks
associated with genes involved in DNA conformation or DNA replication/repair (c). Colors correspond to
different clusters defined in a. d Functionally enriched GO term biology pathways for cancer checkpoint hits
based on the DRIVE dataset. Shown are top 15 GO terms with smallest adjust p-values. e The association of
ZetaSuite-identified cancer dependencies with gene expression, copy number, and mutation features. For
each gene, cancer cell lines were firstly ranked based on the levels of CNV or gene expression, and the cancer
dependency scores were then compared between cell lines in top 25% versus bottom 25%. The p-value
(y-axis) for each gene in this comparison was determined by Wilcox-test. In addition, for association analysis
with mutations, cancer cell lines were divided in two groups with or without mutation for each gene. The
cancer dependency scores were then compared between these two groups and the p-value (y-axis) in this
comparison was determined by Wilcox-test. Some representative genes are highlighted in each feature
group. Genes above the black dashed line have p-values < 0.05. fTP53-associated sub-network. g Averaged
dependency scores for TP53 and MDM2 (top) and TP53 non-mutation frequency (bottom) in different cancer
tissues. Tissues are ranked based on averaged TP53 dependency scores. h The TP53 gene dependencies in
normal or mutated TP53 cell lines. *** p<0.001 based on Wilcox-test. iCACNAT/ gene expression in normal
brain tissues (based on the GTEx database) and brain tumors (based on the TCGA database). *** p<0.001
based on Wilcox-test. j Kaplan-Meier survival curves of brain tumor patients associated with high or low
CACNATI expression. The dashed lines indicate the 95% confidence intervals
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In the elucidated p53 subnetwork, TP53BPI and ATM activate TP53, which in turn
activates CDNKIA (Fig. 6f). Besides these known functional connections, we also identi-
fied various genes without prior connection to the p53 pathway, such as PCOLCE and
CACNAII As an extracellular matrix protein and a major regulator of fibrillar collagen
biosynthesis, disruption of PCOLCE had been reported to induce cell growth in cul-
tured fibroblasts, suggesting a role in cell proliferation control [58]. CACNA1I a gene
involving controlling voltage-gated calcium channels, was significantly down-regulated
in brain tumors compared to surrounding normal tissues (Fig. 6i), and patients with low
CACNA I expression were associated with poor prognosis based on the TCGA database
(Fig. 6j). The newly discovered connection of this and other critical genes with the p53
pathway would fuel future studies on tumorigenesis.

Last, but not least, further analysis of the newly identified cancer checkpoints
revealed several major regulatory gene networks based on their similarities among
different DRIVE cell lines (Additional file 1: Fig. S6e). Besides those critical points of
cell aging, such as TP53, CDKN2A, BGLAP, and CDKNIA, as described above, we
also noted gene networks for phosphorylation regulation (e.g., MAP3K9, TAOKI,
ROCK1/2), GTPase activities (e.g., EPHAS5, TBCID3D, RND3), and DNA packag-
ing (e.g., HISTIH2BN, HIST1H2BL/H/C). These findings not only support the docu-
mented roles of specific MAPK and Rho GTPase pathways in tumorigenesis [59, 60],
but also raise a new paradigm regarding how DNA packaging proteins may promote
tumor growth. Collectively, this functional connectivity map provides critical insights
into the involvement of an elaborated gene network in checkpoint control, which may

be critical for long-term cell survival, even among cancer cells.

Using ZetaSuite to QC single-cell sequencing data

Single-cell transcriptomics analysis has become a powerful tool to characterize cel-
lular heterogeneity in specific biological contexts. A challenge in these studies is how
to differentiate high-quality cells from damaged ones, which has the potential to
severely compromise specific conclusions reached. Three independent quality control
(QC) metrics, nCount, nFeature, and %mt (percentage of mitochondrial transcripts)
have been introduced to evaluate the quality of individual cells [61, 62], but the popu-
lar approaches with a defined threshold, such as CellRanger and EmptyDrops [21],
still mainly rely on one of these metrics (nCount) to QC sequenced cells. Therefore,
it would be desirable to use more than one independent metric. ZetaSuite is ideally
suited for this purpose by plotting the number of genes (y-axis, reflecting nFeature)
counted at each expression bin (x-axis, reflecting nCount) in the { plot, thus provid-
ing a { score for each sequenced cell.

To demonstrate this approach, we utilized a benchmark dataset in which individual
sequenced cells were visually inspected by microscopy to segregate them into high-
quality or low-quality class [63]. We divided transcript counts into 10 expression bins
and quantified the number of distinct genes covered within each bin, thus generating
a ¢ plot for all sequenced cells (Fig. 7a). By color-labeling each cell pre-determined
as high-quality (yellow) or low-quality (cyan) in this { plot, we found that all high-
quality cells are well separated from low-quality ones (Fig. 7a). We also color-labeled
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each cell in the same { plot according to different ranges of %mt, observing that those
with exceptionally high %mt, which likely result from broken cells, are all distributed
at bottom (low nFeature values across all nCount bins), thus giving rise to small {
values (Fig. 7b). Additionally, receiver operating characteristic (ROC) curves showed
that the { statistics-based approach significantly outperformed nCount-, nFeature-,
and %mt-based QC strategies (Fig. 7c).

To further test the ( statistics-based QC strategy, we also generated the { plot based
on another benchmark dataset, which additionally annotated low-quality cells into
broken cells or empty droplets by microscopy [64]. Despite limited cells in this data-
set, which gives rise to a significantly scatted plot, it is still evident that both broken
cells and empty droplets are effectively segregated from high-quality cells (Additional
file 1: Fig. S7a). This is further evidenced by comparing individual cells scored with
different metrics. While all metrics except %mt showed a similar ability to segregate
high-quality cells from empty droplets, the { metric demonstrated much improved
efficiency in differentiating high-quality cells from broken cells, especially in compari-
son with nFeature (Additional file 1: Fig. S7b), which is further supported by compar-
ing ROC curves generated by { or nFeature metric (Additional file 1: Fig. S7c).

Application of ZetaSuite to maximize the power of single-cell transcriptomics

To demonstrate the power of ZetaSuite in analyzing single-cell transcriptomics, we uti-
lized a scRNA-seq dataset generated from placenta [65] that has been analyzed with
CellRanger and later used to develop EmptyDrops. As demonstrated earlier, Empty-
Drops was able to “rescue” two critical cell populations (T cells and monocytes) missed
by CellRanger (Fig. 7d, e and Additional file 1: Fig. S7d-e). However, this gain is at the
expense of including other cells with abnormal %mt (Fig. 7f, red for broken cells indi-
cated by arrows; dark blue for stripped nuclei pointed by arrowheads) and low ribosomal
RNA (Fig. 7g, purple). For comparison, we calculated { scores for all sequenced cells,
including those below the cutoff by CellRanger and EmptyDrops (Fig. 7h, neither), res-
cued by EmptyDrops (Fig. 7h, EmptyDrops only), and identified by both CellRanger and
EmptyDrops (Fig. 7h, both). Interestingly, the plot of %mt vs { score revealed that cells
with high ( scores include those commonly identified with CellRanger and EmptyDrops
as well as about half of EmptyDrops-rescued ones while the remaining cells were most
associated with abnormal %mt values (Fig. 7i). The density plot of {-scored cells clearly
showed two cell populations, which allowed us to make a standardized cutoff based on
the reflection point of the second population to minimize the contamination of the first
population (Fig. 7j).

We next returned to the UMAP plot to locate EmptyDrops-rescued cells with (red)
or without (dark blue) support by ZetaSuite (Fig. 7k). We were able to retain ~3/4 of
EmptyDrops-rescued T cells and monocytes (Fig. 71) yet eliminate the vast majority
of broken cells and stripped nuclei (Fig. 7m). Finally, by displaying the distribution of
cells quantified by each of the 4 metrics (Fig. 7n), it is clear that cells satisfying all three
methods (methods implemented in CellRanger, EmptyDrops, and ZetaSuite) showed the
highest range in nCount, nFeature, and ribosome RNA expression as well as balanced
%mt (Fig. 7n, light blue). In comparison, among EmptyDrops-rescued cells, ZetaSuite
retained cells with biological meanings (Fig. 7n, red) while eliminated broken cells and
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Fig. 7 Application of ZetaSuite to single-cell transcriptomics. al-plot at each gene count bin over a

full range of gene counts. Raw counts of each gene are plotted against the number of different genes
detected. High-quality (orange dots) or low-quality (blue dots) cells are based on the benchmark dataset
(E-GEOD-48968). b Same (-plot with cells colored based on %mt. ¢ ROC curves deduced using different
metrics. The p-values are calculated by plot.roc in pROC R package with default parameters. d UMAP of

cells based on the CellRanger cutoff. e-g UMAP of cells based on the cutoff by CellRanger or EmptyDrops
software. Colors were labeled by detection software (e), expression of mitochondrial transcripts (f), or levels
of ribosomal RNA (g). h Cells'number detected by both CellRanger and EmptyDrops (red, both), missed by
both software (purple, neither), or rescued by EmptyDrops (blue). i Plotting (-scores of individual cells against
their %mt. Colors label cells as in h. j Same as (i) except plotting the cell density in y-axis. k UMAP of cells that
meet the cutoffs of CellRanger, EmptyDrops, and ZetaSuite (light blue) in comparison with those that meet
the cutoffs of EmptyDrops and ZetaSuite (red) or the cutoff of only EmptyDrops (dark blue). Colors were
labeled by detection software. i Percentage of T cells or monocytes identified by EmptyDrops and ZetaSuite
(red) or only EmptyDrops (blue). m Percentages of stripped nuclei (left, characterized by both low %mt and
ribosome expression) or broken cells (right, associated with high %mt but low ribosome expression due to
selective leakage of cytoplasmic mRNAs from broken membrane) identified by EmptyDrops but discarded
by ZetaSuite. n Ridgeline plot showing the distribution of nCount, nFeature, %mt, and ribosome expression
for cells detected only by EmptyDrops, by both EmptyDrops and ZetaSuite, or by all three software, showing
the ability of ZetaSuite to rescue high-quality cells missed by CellRanger while filter out damaged cells also
rescued by EmptyDrops
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stripped nuclei (Fig. 7n, dark blue). Together, these data demonstrate the power of the {
statistics in combining the benefits of both CellRanger and EmptyDrops without com-
promising the data quality in single-cell transcriptomics analysis.

Discussion

The increasing power and decreasing cost of deep sequencing technologies have enabled
multi-dimensional analyses of gene expression. By coupling high-throughput screening
with high-throughput sequencing (HTS?), it is possible to utilize a specific set of genes
as a surrogate for defined cellular activities in chemical and genomic screens [8, 9].
Through monitoring hundreds or even thousands of functional readouts, such “ultra-
high-content” screens offer numerous advantages over traditional one-dimensional
screens, including the ability to deduce gene networks and the feasibility to perform a
drug screen without relying on a pre-defined druggable target. More recently, we have
extended the HTS? approach to a genome-wide screen to identify global splicing regula-
tors by scoring hundreds of alternative splicing events, illustrating the ability to adapt
two-dimensional screens to study different paradigms in regulated gene expression.

This added dimension also requires a concerted effort in developing suitable statis-
tics for data analysis. In the current work, we introduce a newly developed ( statistics,
and by using our in-house HTS? data designed to identify global splicing regulators, we
demonstrate that ( statistics outperforms the existing strategies based on hit ranking
and aggregation such as RSA [23], RIGER [24], MAGeCK [25], and CB? [26]. Addition-
ally, we note that these existing methods rely on a null hypothesis that most screened
genes are non-hits, thus not suitable for analyzing data from secondary screens or using
pre-selected candidates. In contrast, the ( statistics can be broadly used to process two-
dimensional data, which requires a significant number of negative controls. As demon-
strated in our current work, non-expressed genes provide a large set of internal negative
controls. In ZetaSuite, we also introduce the Screen Strength to measure the success of a
given screen and to compare between screens.

Off-target effects represent a major problem in genome-wide screens with siR-
NAs, shRNAs, or sgRNAs. To reduce the impact of off-target effects, one strategy is to
increase the number of targeting RNAs (up to 50 per gene) against each gene [66]. Mul-
tiple algorithms have been developed to remove potential off-target effects. For example,
ATARIS was developed based on the assumption that multiple on-targeting RNAs would
give rise to similar results while off-targeting RNAs would each cause a distinct non-
specific effect [39]. This assumption had the potential to retain off-targeting hits when
multiple targeting RNAs caused similar non-specific effects, for instance, due to induced
cellular stress. In comparison, DEMETER [11] or its recently refined version DEME-
TER2 (ref [67]) filtered out off-targeting effects based on the assumption that off-targets
likely result from the sequences in the “seed” region to cause microRNA-like effects on
other genes. Common seed analysis is another strategy to identify off-targeting siRNAs
according to the same assumption as DEMETER based on the assumption that the seed
sequences would be statistically overrepresented in active siRNAs in off-target effects
as compared to inactive siRNAs [68]. This assumption might not be reliable because
of numerous exceptions to the “seed rule” and various miRNA-like effects induced by
sequences outside the seed region [69]. In contrast to the existing approaches, ZetaSuite
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eliminates off-targets based on two criteria, one on the functional similarity and the
other on the sequence complementarity between a targeting RNA and a potential off-
targeted transcript. Furthermore, by leveraging the results from the secondary screen,
we found that a single siRNA in a pool is often responsible for the off-targeting effect of
that pool and the same siRNA also shows the complementary sequence to the predicted
off-target. Therefore, besides removing off-targeting effects, ZetaSuite may also help
identify genes that tend to be oft-targeted, thereby aiding in siRNA library design similar
to GESS [70, 71]. We further note that ZetaSuite could be coupled with SIGNAL [72], an
algorithm for prioritizing selected hits according to the information on functional net-
works and pathways.

We further demonstrate the utility of ZetaSuite by processing the large-scale data
from public DRIVE and DepMap cancer dependency projects. Prior efforts in analyz-
ing these datasets had been primarily focused on cancer dependencies, revealing vari-
ous gene networks critical for cancer cell survival. DRIVE defined cancer dependency
by requiring RSA>= — 3 on > 50% of cell lines surveyed while DepMap paid particu-
lar attention to hits with 60 or greater. These definitions appeared to be arbitrary, and
in the case of DepMap, the cutoff was unnecessarily too stringent without fully explor-
ing the information contained in such large-scale datasets. By revisiting these data with
ZetaSuite, we elevated the number of clear cancer dependencies by several folds, leading
to the elucidation of multiple new gene networks contributed by some well-established
oncogenes and tumor suppressors, such as MYC, ATR, and TP53. These discoveries
potentiate further dissection of fundamental oncogenic pathways. The most important
discovery made by re-analyzing the DRIVE dataset is the identification of genes whose
depletion appears to accelerate cancer cell proliferation, at least transiently during the
treatment period. Strikingly, most hit functions in various DNA checkpoint pathways,
which we refer to as cancer checkpoint. Such depletion-induced cell proliferation might
allow cancer cells to temporally escape DNA checkpoint control, indicating that various
cancer cells need to maintain a very active program to protect their unstable genomes
from becoming further deteriorated. In this regard, the exposure to these new cancer
vulnerabilities might aid in the development of new cancer therapies, as exemplified by
using ATR inhibitors to treat MDS [73].

We also demonstrate the utility of ZetaSuite in addressing a pressing problem in ana-
lyzing single-cell transcriptomics, which is to maximally retain high-quality cells and
remove damaged ones. This problem is also related to the problem associated with
using simple statistics to make an arbitrary cutoff, as many real hits may escape detec-
tion with a stringent cutoff but many false positives would be retained with a loose cut-
off. In single-cell transcriptomics analysis, the state-of-art approach is to use nCount to
differentiate high-quality cells from damaged ones, as with CellRanger, but the recently
developed EmptyDrops clearly exposed the weakness of CellRanger by showing impor-
tant cell populations missed [21]. However, EmptyDrops appears to introduce other
unwanted artifacts. We have now used ZetaSuite to address this trade-off by incorpo-
rating critical features of both nCount and nFeature. Using benchmarked datasets, we
demonstrated that the newly developed ( statistics can maximally segregate high-quality
cells from damaged ones while minimize unwanted artifacts. These studies, coupled with
mining DepMap and DRIVE datasets, showcase the power of ZetaSuite in processing
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multi-dimensional high-throughput data to reveal critical biological meanings embedded
in those large-scale datasets.

Conclusions

The increasing power of deep sequencing has enabled the generation of high throughput
data under many different conditions, representing a second dimension of high-through-
put data. However, the existing bioinformatics tools are largely designed to process one-
dimensional high-throughput datasets, which we demonstrate to cause noise accumulation
when the scale of the second dimension is significantly increased. We have thus developed
a new statistics called Zeta and associated software package ZetaSuite for processing two-
dimensional high-throughput datasets and demonstrated that ZetaSuite outperforms cur-
rent benchmark statistical models, leading to novel biological insights and illustrating the
broad applicability of ZetaSuite in diverse functional genomics studies.

Methods

ZetaSuite is designed to address challenges in analyzing two-dimensional high-through-
put data. Additional file 1: Fig. S1b provides an overview of the flow chart, as individu-
ally detailed below.

ZetaSuite part 1

Data preprocessing

Before running the main ZetaSuite procedure, raw data are first filtered to remove low-
quality samples (columns) and readouts (rows) in the data matrix to minimize false
positives. The default threshold is set to remove a row or a column if the number of
drop-outs (missing values; in our in-house dataset, the ratios are used as input and the
ratio is missing if one of the mRNA isoforms is undetectable) is larger than the value of
Q;+3*(Q5-Q,) where Q; and Q; are lower and upper quartile, respectively. The remain-
ing data are processed with the KNN-based method to estimate the missing values with
the parameter k=10.

ZetaSuite part 2

QCevaluation

Quality control (QC) is a critical step in evaluating the experiment design. For all two-
dimension high-throughput data, t-SNE plot [43] is first used to evaluate whether fea-
tures are sufficient to separate positive and negative controls. The SSMD score [15] is
further generated for each readout to evaluate the percentage of high-quality readouts.
In our case, the data will be further processed if > 5% of reads are of the SSMD score > 2.

Conversion of input matrix to Z-score matrix

After data pre-processing, the initial input matrix is arranged in N x M dimension,
where each row contains individual functional readouts against a siRNA pool and each
column corresponds to individually siRNA pools tested on a given functional readout.
Readouts in each column may be thus considered as the data from a one-dimensional
screen (many-to-one), and thus, the typical Z statistics can be used to evaluate the
relative function of individual genes in such column. The conversion is repeated on all
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columns, thereby converting the raw activity matrix into a Z-score matrix. Suppose Nj;
are the values in the original matrix i (1< i < N siRNA pool) row and j (1< j < M read-
out) column, then

Nij —

Zy=—"2—1
9j

where y; and o; are the mean and standard deviation of negative control samples in col-

umn j.

Generation of Zeta plot

The x-axis in the Zeta plot shows a series of Z-score cutoffs in two directions (in our
case, induced exon skipping in the positive direction and inclusion in the negative direc-
tion), and the y-axis is the percentage of readouts survived at a given Z-score cutoff over
the total scored readouts.

To generate this plot, the range of Z-scores is first determined by ranking the absolute
value of total Z; (Z-score value in row i and column j) from the smallest to the larg-
est (|Zy], |Zyls | Zg 11 1Z3ls | Zg by il Z o i Where | Z 1 |<|Z4]<|Z; | and k here is
the rank number). To exclude insignificant changes that may result from experimental
noise (choose |Z|=2 as cutoff. In standard normal distribution, using |Z|>2 as a rejec-
tion region, the corresponding p-value is < 0.05), Z-score cutoffs are selected in the
range of [-|Z n . arx 0.9901]» -2] in the negative direction and [2, | Z 5 41 x 0.999,],] int the posi-
tive direction. The Z-score range in both directions is next divided into 100 bins (B =
(by by ... by ..., byg), Where b=[Z,, +(Z,,..—Z,.) x (i—1)/100,Z,,, +(Z . — Z i) X
()/100]; Z,,,, is either -2 or |Z arx 09991l @a0d Z,,,;, is either -|Z . 11« 0.9901] OF 2. Next,
for each siRNA pool, the percentage of readouts scored above the Z-score cutoff in each
bin is determined.

Calculation of { score and weighted ( score

When a screen includes a large number of both negative and positive controls, these
controls are all displayed in a Zeta plot. Radial kernel SVM is next constructed to maxi-
mally separate positives from negatives in the prior defined Z-score range using e1071
packages of R. To avoid overfitting, it is important to use an independent dataset, such
as non-expressors as internal negative controls, to confirm the deduced SVM. To pro-
vide a value to represent the regulatory function of gene i that generates a curve above
the SVM curve, the area between the two curves is calculated as the Zeta score ({ score)
for this gene. To calculate the total area, we first divide the Z-score range into 100 bins,
and at each bin, we determine the number of readouts that show significant changes
above the Z-score cutoff at the bin for each siRNA-targeted gene and then divide this
number with the total number of measured readouts. After subtracting the background
percentage (based on the SVM curve), we obtain the increased percentage of readouts
that show significant changes. To highlight hits scored at higher Z-score bins, the area in
each bin is multiplied by the value of the Z-score in such bin and all adjusted areas are
summed to give rise to the final weighted { score for each gene:
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Zmax

= Z Area,; X m

M=Zyin

where the Area,, is the area in the specific bin,,:

A { (st 2Pn) =Gt 3u)VSD i (1 + Pyy) > (Syrt + S)
rea,, — ’
" 0; lf Pmt1+Py) < (Sm+1 + Sm)

where the P,, and P, are the y-axis values of gene i in the Zeta plot whereas
Snand S, | are the y-axis values on the SVM curve, both at bin,, and bin,, _;; step is the
/100.
With certain screens without any positive controls, it will be impossible to generate an

bin size which equals to (Z,,,, — Z,,,;,,)
SVM curve to help eliminate experimental noise. In these applications, it is still possible
to calculate a { score for each gene by determining the Area,, under the gene-specific
curve at bin,,;:

(Pt 1+Pom ) *step
Area,, = 2

where the P,, P,, , ; and step are the same as those with the area with an SVM curve.

Although { scores are separately generated in our application to quantify the contribu-
tion of a given gene to exon inclusion or skipping, the absolute values of these { scores
may also be summed to reflect the global activity of such gene in regulated splicing.
ZetaSuite generates this summed value as the default data output unless users select “-c
no” to separately generate two { scores in opposition directions.

Screen Strength and determination of the threshold for hit selection

The C scores can be used to rank genes and the next important step is to define a suit-
able cutoff to define hits at different confidence levels. For this purpose, the concept of
Screen Strength is first introduced:

aFDR

S§=1———
bFDR

where aFDR (apparent FDR) is the number of non-expressors identified at hits divided
by the total number of hits and bFDR (baseline FDR) is the total number of non-expres-
sors divided by all screened genes.

Based the definition of SS, the SS values would be progressively elevated with increas-
ing cutoff stringency. A larger SS would indicate a lower false discovery rate but with a
reduced number of hits. To address this trade-off, we suggest defining the balance point
(BP) in the Screen Strength plot as follows: { scores are first divided into 100 even bins
from the smallest to the largest and the SS value is determined at each bin. Connect-
ing individual SS values then generates a simulated SS curve, based on which to deduce
individual BPs. In order to directly reflect the error rate of selected hits according to the
BPs, several empirical false positive levels (0.05, 0.01) are also provided in our SS plot.
Users may choose one or multiple BPs to identify hits at different SS intervals according
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to their error tolerance. A successful screen is associated with a progressive increase in
SS values compared to random draw.

ZetaSuite part 3

Removing off-targeting hits

In the genome-wide screening, siRNAs are designed to specifically degrade mRNA
transcripts of complementary sequences to reduce the expression of gene products. In
practice, these reagents exhibit a variable degree of suppression of the targeted gene and
may also suppress genes other than the intended target. The reagent’s phenotypic effects
resulting from the suppression of unintended genes are called off-target effects. The rea-
son for off-targets is due to the part-sequence complementary such as the microRNA-
like off-targeting. And the consequence of off-targets is the phenotype or the effects
on the readouts mainly due to off-targeting to a function gene. Multiple methods have
developed to deal with the off-targeting problem based on the reason (refer DEMETER2,
Common Seed Analysis) and consequence (refer ATARIS). Different from the many-to-
one traditional screening data, the HTS? can better evaluate the phenotype consistency
by comparing the similarity effects on all the readouts. Based on these conditions, we
define the off-targeting hits by combining the off-targeting reason and consequence
together via comparing the hits with user-defined well-known genes or total-defined
hits: (1) the off-targeting genes should have one of the targeting RNAs targeted to the
well function genes (at least 11nt complementary sequence in the targeting RNA), and
(2) they should show high similarity on the readouts’ effects with targeted well function
genes (Pearson correlation score > 0.6).

Functional interpretation of identified hits

ZetaSuite combines Gene Ontology and CORUM databases [46] to infer functions. We
use ClusterProfiler [74] to enrich hits on GO terms and present top 15 GO terms with
lowest adjust p-values. To annotate hits to CORUM complexes, we present top 15 com-
plexes associated with the highest number of hits. If less than 15 complexes are enriched,
we require at least 3 hits to retain a complex.

Network construction

The SC3 method [75] is modified to use the absolute values of Spearman and Pearson
correlation scores to calculate the distance matrix, which is next used to perform clus-
tering. After SC3 analysis, each gene pair receives a consensus score, which measures
the regulation strength. Edge weights reflect consensus scores and edge types indicate
correlation or anti-correlation between gene-gene similarities. Nodes in the network
represent the hits identified by the ZetaSuite pipeline and the size of each node is pro-
portional to the { score. Node colors correspond to the clusters calculated with SC3 and
cluster number is according to the total within-cluster sum of the square “elbow” site.
The resultant hit networks are visualized with Gephi by using a Yifan Hu Proportional
layout [76]. Disconnected nodes are trimmed from the graph before generating the plots.
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Other experimental procedures

Testing the multiple testing correction methods on error rate reduction

The multiple testing correction methods, like FDR and Bonferroni correction, are fre-
quently used to reduce error accumulation in multiple hypothesis testing. However, it
can only be used to deal with the data from one-dimensional screens but is not suit-
able for screens of two or multiple dimensions. To further test this, a common cutoff
is Z-score>=3 or <= — 3, and thus, the estimated false positive level (p-value) is below
0.01, meaning that for each readout, a given siRNA has a 1% chance to be identified
as a false positive hit. For all conditions, ~15,000 tests for each readout are performed
and using the most stringent Bonferroni correction, we obtain a corrected p-value of
0.01/15000=6.67 x 1077 and a corresponding Z-score=4.97. Now using Z-score=4.97
as the corrected cutoff to choose hits, we find that the false positive level is still as high
as 24.9%. Instead of choosing an empirical Z-score as a threshold, we also use Gumbel
distribution to estimate the p-value for each siRNA pool. In this procedure, the max-
imum absolute Z-score for each siRNA pool is firstly extracted. Then, R package evd
is used to estimate the parameters of Gumbel distribution. Finally, the p-values for all
screened siRNA pools in the Gumbel distribution are corrected by Bonferroni correc-
tion. We find that the threshold is Z-score=18.442 with a corresponding Bonferroni
adjusted p-value=0.01. At this condition, all positive controls are filtered out, and the
FDR value is as high as 100%. The FDR value is still as high as 94.9% even if we change
Bonferroni correction to a more lenient correction, FDR correction. In these analyses,
the dominance of random noises that are of high Z-score values likely results in the fail-
ure in selecting a threshold based on the Gumbel distribution. We conclude that such
canonical multiple testing correction methods are not sufficient to reduce the accumula-
tion of errors with increasing readouts in two-dimensional high-throughput screens.

Evaluating the optional number of functional readouts in two-dimensional screen

Positive controls and high-confidence hits, the latter of which are defined based on total
readouts, are used as references in our evaluation. The number of readouts is progres-
sively down-samples to 50, 100, 150, 200, 250, and 300 using R Sample function without
replacement and each specific number of down-sampled readouts is replicated 3 times.
Down-sampled matrixes are processed using the same ZetaSuite pipeline. Hits from
down-sampled matrixes are used to determine the percentage of the hits over the refer-
ence sets.

Analysis of the splicing screen data with RIGER

RIGER is originally developed to identify essential genes in genome-scale ShRNA screens
[24]. In RIGER, the signal-to-noise ratio is entered as input, which is now replaced with
the Z-scores for individual alternative splicing readouts. The data are then processed
with the latest version of RIGER (2.0.2) from the website as provided in the source table
above. Default RIGER parameters are used in all steps, except that the number of per-
mutations is set to 100,000 to obtain a more precise p-value for each pool of siRNAs.
The FDR is computed from the empirical permutation p-values using the Benjamini-
Hochberg procedure. This enables the ranking of siRNA pools by FDR.



Hao et al. Genome Biology ~ (2022) 23:162 Page 26 of 31

Analysis of splicing screen data with RSA

RSA is a probability-based method to identify hits, requiring data generated with multi-
ple targeting siRNAs against each gene [23]. In RSA, fold-changes of treated over control
samples are entered as input. In our application, the inputs are fold-changes of the splic-
ing ratio of a given alternative splicing event in a siRNA pool-treated well divided by the
averaged splicing ratio from NS-mix treated wells. The entered data are processed with
the latest RSA software, as specified in the source table above. The following parameters
-10.2 -u 0.8 and -1 1.2 -u 2.0 are used to select hits for induced exon inclusion and skip-

ping, respectively.

Analysis of splicing screen data with MAGeCK

MAGeCK is a statistical method designed to quantify the collective activity of multiple
siRNAs against each gene by using the robust rank aggregation (RRA) algorithm [25].
In order to meet the MAGeCK input requirement, each Z-score in the ZetaSuite input
matrix is first converted to p-value. The input data are processed with the modified RRA
algorithm, as in MAGeCK, with default parameters.

Analysis of splicing screen data with CB?

CB? is a method using the Fisher’s combined probability test to combine the p-values
of sgRNAs for a targeted gene after comparing the difference in functions of individual
sgRNA using modified Student’s t-test [26]. In order to meet the CB* input requirement,
each Z-score in the ZetaSuite input matrix is first converted to a p-value. The input data

are processed with Fisher’s combined probability test, as in CB? with default parameters.

Processing DRIVE and DepMap cancer dependency datasets

The DRIVE and DepMap data already processed with DEMETER2 are downloaded
from https://depmap.org/portal/download/. DepMap generated 3 independent datasets.
In order to avoid experimental variations in different datasets, only the biggest Dep-
Map dataset is selected for current analysis, which includes 285 cancer cell lines across
approximately 100k shRNAs. ZetaSuite is applied to this dataset to calculate weighted
(-scores with the parameters -z no —svm no and -c no. The downloaded data are pro-
vided as input for RSA and RIGER analysis. To meet the input requirement of MAGeCK
and CB? the processed data are transferred to percentile ranks and then processed by

each software with default parameters.

Feature association analysis on cancer dependencies and checkpoints

To analysis association with CNV or gene expression, cancer cell lines are ranked based
on the levels of CNV in a given gene or expression of the gene. Cancer dependency
scores are next compared between cell lines in top 25% versus bottom 25% and Wil-
cox-test is performed to determine the p-value for the gene. To analysis association with
mutations, cancer cell lines are divided in two groups with or without mutation in each
gene. The cancer dependency scores are next compared between these two groups and
Wilcox-test is performed to generate the p-value for the gene.
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Processing single-cell datasets

Single-cell RNA-seq (scRNA-seq) generates gene expression in one dimension across a
set of single cells in the second dimension, thus suitable for processing with the ZetaS-
uite pipeline. To calculate the { score for each sequenced cell, the raw counts of indi-
vidual detected genes are divided into bins in x-axis, equivalent to individual Z-scores
in our splicing screen. This reflects the feature of nCount. At each expression bin, the
number of genes scored above such bin is plotted in y-axis, thus reflecting nFeature. If
the data contain well-annotated negative controls, a SVM curve can be generated; oth-
erwise, the area under the connected line for each cell can be calculated, which can be
used to rank-order individual sequenced cells. In scRNA-seq analysis, it is unnecessary
to generate a weighted ( score for each cell.

The raw sequencing reads from two benchmark datasets are respectively downloaded
(E-GEOD-48968 and PRJEB4039) from ArrayExpress Archive [77] and European Nucle-
otide Archive [78]. To calculate the efficiency, raw sequencing reads of all broken/empty
cells and randomly selected 90 high-quality cells for the second benchmark dataset are
also downloaded. Sequence reads are mapped to the Mus musculus genome (Ensembl
version 38.73) by using GSNAP [79] with default parameters. Reads for each gene are
counted with htseq-count [80]. Finally, raw count matrices for each dataset are used as
input in the ZetaSuite pipeline adapted for scRNA-seq analysis to calculate a { score for
each cell with default parameters.

The placenta raw count matrix is downloaded from https://jmlab-gitlab.cruk.cam.ac.
uk/publications/EmptyDrops2017-DataFiles. The cell annotation based on CellRanger
and EmptyDrops are downloaded from https://github.com/MarioniLab/EmptyDrops
2017/tree/master/analysis/placenta. Raw count matrices are used as input for ZetaS-
uite to calculate a { score for each cell, and the cutoff is selected based on the { score
distribution and the reflection point for the second cell population (see Fig. 7j). Cells
detected by CellRanger, EmptyDrops, and ZetaSuite are analyzed with Seurat [20]: the
gene expression matric in each dataset is first normalized with the NormalizeData func-
tion and top 2000 features with high cell-to-cell variation are kept for further analysis.
The ScaleData function is next used to generate the line-transformation scaled data and
the RunPCA function is used to reduce the dimensionality of the dataset. Top 40 princi-
pal components are selected according to the ElbowPlot, DimHeatmap, and JackStraw-
Plot functions. Finally, the FindNeighbors and FindCluster functions are used to cluster
cells and the RunUMAP function with default setting is used to perform the nonlinear
dimensional reduction.
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Additional file 1: Supplementary Figure 1. Overview of in-house data set and the ZetaSuite flowchart. a, In-house
data format. Two-dimensional in-house data are generated from a siRNA screen to identify global splicing regulators.
In each siRNA-treated well, 407 alternative splicing (AS) events are interrogated by RNA Annealing Selection Ligation
sequencing (RASL-seq). A total number of 18,480 siRNA pools against annotated protein-coding genes in the human
genome are arrayed in 57 384-well plates. Each plate also contains 6 negative controls (NS-mix), 5 positive controls
(siPTBP1) and 5 killer controls (siNEK6). After screening, raw data are tabulated in a matrix as the log, isoform ratio
(exon included isoform/exon skipped isoform). b, Flowchart of the ZetaSuite software in three parts (https://github.
com/YajingHao/ZetaSuite), as detailed in the text. Supplementary Figure 2. Data analysis using existing statistical
approaches. a-b, Z-score distribution of all non-expressors (n=5006) based on 5 randomly selected AS events (a)
orallinterrogated AS events (b). Red-marked dots indicate hits with Z-score>=3, showing the majority (~80%, see
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