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Type VII collagen is an extracellular matrix protein, which is important for

skin stability; however, detailed information at the molecular level is

scarce. The second vWFA (von Willebrand factor type A) domain of type

VII collagen mediates important interactions, and immunization of mice

induces skin blistering in certain strains. To understand vWFA2 function

and the pathophysiological mechanisms leading to skin blistering, we struc-

turally characterized this domain by X-ray crystallography and NMR spec-

troscopy. Cell adhesion assays identified two new interactions: one with b1
integrin via its RGD motif and one with laminin-332. The latter interaction

was confirmed by surface plasmon resonance with a KD of about 1 mM.

These data show that vWFA2 has additional functions in the extracellular

matrix besides interacting with type I collagen.

Anchoring fibrils contain type VII collagen as major

component and bind skin proteins belonging to the

basal lamina and the underlying connective tissue.

Anchoring fibrils are important in linking these skin

layers together [1,2]. The central collagenous domain

of type VII collagen has an N-terminal cysteine knot

[3] and shows several interruptions (Fig. 1). The long-

est interruption has been termed a hinge region [4] and

is structurally disordered [5]. The collagen triple helix

is flanked by a large N-terminal (NC1) and a small

C-terminal (NC2) noncollagenous domain [6]. The

NC1 domain consists of eleven subdomains and inter-

acts with other extracellular proteins like laminin-332,

type I and IV collagen [7–9]. The interaction with type

I collagen is mediated by a subdomain termed vWFA2

that has homology to the von Willebrand factor A

domain 3 [10,11].

The importance of type VII collagen and its interac-

tions with other skin proteins is highlighted by the

skin blistering disease epidermolysis bullosa (EB)
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existing as a hereditary and an acquired form. Heredi-

tary EB is characterized by mutations within type VII

collagen leading – in most cases – to premature termi-

nation of the peptide chain or disturbance of the triple

helical structure [12]. The acquired form, epidermolysis

bullosa acquisita (EBA), is characterized by a loss of

tolerance against type VII collagen and serves as a

model system for autoimmune skin blistering diseases

[1,13–15]. Several pathogenic epitopes on type VII col-

lagen have been identified in EBA and mouse models

have been established featuring certain aspects of the

human disease [16]. These mouse models are very well

characterized in terms of genetic factors leading to

skin blistering [17], and also, data on metabolic

changes due to the disease have been published [18].

Autoantibodies against the vWFA2 domain are patho-

genic in an immunization induced mouse model, and

approximately 30% of sera from EBA patients recog-

nize the vWFA2 domain [19]. Despite the importance

of type VII collagen and the multitude of clinical data

on type VII collagen related diseases, there is a basic

knowledge gap on structural information. Here, we

provide first high-resolution structural and dynamical

data for the vWFA2 domain by combining X-ray crys-

tallography and NMR spectroscopy. Since the struc-

tural data showed that the RGD motif is accessible on

the protein surface, the interaction of vWFA2 with cel-

lular receptors was investigated in cell adhesion assays.

Binding to cells was still observable after mutating the

RGD motif; therefore, additional amino acids were

mutated based on the protein structure. This finally

led to the identification of two interactions that have

so far not been attributed to the vWFA2 domain: inte-

grin binding via the RGD motif and binding to lami-

nin-332. It seems that the vWFA2 domain has

additional important functions besides the well-estab-

lished collagen binding.

Materials and methods

Expression and purification of wild-type and

mutant vWFA2

Unlabelled and 15N-labelled samples of the vWFA2 subdo-

main (amino acids 1048–1238) of murine type VII collagen

have been expressed and purified as described previously

[20]. In brief, vWFA2 was expressed as fusion protein with

an N-terminal chitin binding tag and a self-cleaving intein.

After cell lysis, the cleared cell lysate was loaded onto a

chitin column and self-cleavage of the intein was induced

by a temperature and pH change. After incubation over-

night, vWFA2 was eluted. Fractions containing protein

were pooled, and buffer was exchanged by ultrafiltration

(Amicon Centrifugal filters, Merck Millipore, Carrigtwohill,

Ireland; 10 kD MWCO). Mutants of vWFA2 for investi-

gating cell adhesion have been obtained by site-directed

mutagenesis as described in Ref. [11] and purified as wild-

type vWFA2. Initially, the RGD motif of vWFA2 was

inversed (R1171D D1173R). Since this mutant (termed

DGR mutant) was still positive in the cell attachment

assay, additional mutations were introduced: D1209R,

D1218R, D1229R, R1120Q K1121R, R1079E R1120Q

K1121R, R1120Q K1121R R1225D, R1120Q K1121R

D1218R. These amino acids have been selected according

to the crystal structure, that is surface accessibility and

charges (which are inverted in mutant proteins). Further

mutations with an intact RGD motif that has been investi-

gated are as follows: R1120Q K1121R, D1218R and

R1225D.

Characterization of vWFA2 laminin-332 interaction was

also carried out with a vWFA2 lacking any tag residues

(untagged vWFA2). This protein construct was isolated

from cell lysate by a different strategy as described previ-

ously [3]: after an ammonium sulphate precipitation, a

cation exchange chromatography was performed followed

by a size exclusion chromatography.

CD spectroscopy

CD spectra were recorded at 25 °C and 37 °C on a Jasco

J-715 CD photometer (Jasco Corporation, Tokyo, Japan).

After subtraction of the blank, molar ellipticities were cal-

culated. For investigating thermal stability of vWFA2, the

ellipticity at 220 nm was followed between 25 °C and

90 °C for wild-type vWFA2 and 5–90 °C for vWFA2
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Fig. 1. Domain architecture of type VII collagen. Type VII collagen

forms homotrimers that later assemble to anchoring fibrils. Type

VII collagen has a central collagenous domain (blue) with an N-

terminal cysteine knot (yellow). N- and C-terminal are two

noncollagenous domains NC1 and NC2 (A). NC1 subdomains have

homology to adhesion domains and mediate important interactions

of type VII collagen. The vWFA2 subdomain is N-terminal of the

triple-helical region of type VII collagen (B). The amino acid

sequence of the investigated protein is given in Fig. S1.
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D1218R with a heating rate of 1 K�min�1. Protein concen-

trations were about 10–30 µM in 10 mM sodium phosphate

buffer pH 7.4. Melting curves were smoothed by using the

Savitzky-Golay algorithm of the photometer’s software.

Crystallization and structure solution of vWFA2

The vWFA2 subdomain was crystallized at 10 mg�mL�1 in

10 mM sodium phosphate buffer pH 7.4 with sitting drop

vapour diffusion method in 1.8 M magnesium sulphate,

0.1 M sodium acetate pH 4.6. The crystals were cryopro-

tected by adding 20% (v/v) glycerol (final) to the crystal-

lization solution. Diffraction of a small crystal

(20 9 80 µm) was collected at the ID29 at the ESRF,

France [21]. Data were integrated using the program XDS

[22] and further processed using POINTLESS/AIMLESS/CTRUN-

CATE [23–25]. The phases were solved by molecular replace-

ment with edited PDB entry 4IGI [26] as a search model

using PHASER [27]. The initial structure was rebuilt with

ARP/WARP [28,29] and further refined using iterative cycles

of COOT [30] and PHENIX.REFINE [31]. Secondary structures

were assigned using DSSP [32,33]. Figures were generated

with PYMOL (v.1.7 Schr€odinger, LLC, New York, NY,

USA). Coordinates of vWFA2 have been deposited in the

PDB database under the accession number 6S4C.

Determination of backbone dynamics and

residue dipolar coupling measurements

NMR experiments were performed on a Bruker Avance

500 NMR spectrometer (Bruker, Rheinstetten, Germany)

at 298 K (25 °C). The spectrometer was equipped with a

CPTCI probe head. NMR samples of vWFA2 contained

10 mM sodium phosphate buffer pH 7.4, 10% (v/v) D2O

and TSP-d4 as internal standard for referencing. The pro-

cessing of the spectra was done with Topspin 3.1 (Bruker).

Dynamical behaviour of the protein backbone of

vWFA2 was investigated by measuring heteronuclear

NOEs, R1 (longitudinal) and R2 (transversal) relaxation

rates. This provides information on the pico- to nanosec-

ond timescale [34]. Determination of 1H-15N heteronuclear

NOEs, R1 and R2 relaxation rates was done using standard

pulse sequences from Bruker. The recovery delay for mea-

surement of R1 was set to: 10 ms, 50 ms, 70 ms, 0.1 s,

0.2 s, 0.3s, 0.5s, 0.7 s, 1 s, 1.5 s, 3 s and 5 s. For determi-

nation of 15N-T2 relaxation times, the following delay times

have been used: 17.0, 33.9, 67.8, 84.8, 101.8, 118.7, 135.7,

152.6, 169.6, 203.5 and 237.4 ms. For measuring 1H-15N

heteronuclear NOEs, a proton saturation time of 3.7 s was

used. Evaluation of the data was done with CCPN [35] by

using the published backbone assignment of vWFA2

(BMRB accession number: 17549) [20].

NH-residual dipolar couplings were measured using the fol-

lowing alignment media: PEG–hexanol [final concentration

4.2% (w/v) PEG] and PEG–hexanol with the positive charged

detergent CTAB (1 : 30 CTAB : PEG–hexanol) [36]. The pH

of the alignment media was adjusted to 7.3–7.4. Alignment was

confirmed by measuring the splitting of the deuterium signal of

HDO. Coupling constants have been determined with the

IPAP-HSQC experiment [37] using the Bruker pulse sequence

(hsqcf3gpiaphsiwg). Assignment of the resonances in the IPAP-

HSQC spectra was done with CCPN [35] based on the pub-

lished backbone assignment of vWFA2 (BMRB accession num-

ber: 17549) [20]. Determination of the alignment tensor and

correlation of experimentally determined residue dipolar cou-

plings (RDCs) with back-calculated RDC values derived from

the crystal structure of vWFA2 was done with PALES [38,39]

using singular value decomposition. RDC and dynamical data

have been submitted to the BMRB under the entry 50020

(http://www.bmrb.wisc.edu/data_library/summary/index.php?

bmrbId=50020).

Cell adhesion assays

Due to the high conservation of the amino acids in human

and murine vWFA2 surrounding the RGD motif, we felt

safe using murine vWFA2 in combination with human cell

lines. Attachment of human cells to vWFA2-coated sur-

faces has been performed using the keratinocyte-like

HaCaT cell line [40] (DKFZ Heidelberg) and unmodified

human skin fibroblasts (Coriell Institute for Medical

Research, GM21808). The proliferating fibroblasts were at

a cumulative population doubling level between 20 and 30.

A growth curve of this cell line can be found in Ref. [41].

HaCaT cells were grown in CnT-07 medium (CellNTEC)

and the fibroblasts in a 1 : 1 mixture of Ham’s F12 Med-

ium/DMEM supplemented with 2 mM L-glutamine and

15% fetal bovine serum (not heat inactivated) (Gibco, Life

Technologies Corporation, Grand Island, NY, USA). The

cell adhesion assay has been performed as described in Ref.

[42]. In brief, after coating 96-well cell culture plates (Sarst-

edt AG & Co. KG, N€urnbrecht, Germany) with protein

(three wells per concentration), blocking with BSA and

washing with PBS 3–5 9 105 cells have been added in

DMEM medium (without FBS). After incubation (37 °C,
atmosphere with 5 v/v % CO2), nonattached cells were

removed by washing with PBS. Adherent cells were fixated

with a solution of glutaraldehyde, stained with acridine

orange and washed. After lysis, absorption was measured

at 490 nm and the mean value and error was calculated. In

each cell adhesion assay, fibronectin was included as posi-

tive control. When investigating mutations, divalent metal

ions or antibodies, also a dilution series of wild-type

vWFA2 was included. Cell adhesion assays have been per-

formed at least in triplicate. The effect of divalent metal

ions was investigated in the presence of 2 mM EDTA,

5 mM MgSO4 and 5 mM MnSO4, respectively. The impact

of antibodies on cell adhesion was investigated at

5 µg�mL�1 for polyclonal anti-laminin-332 antibody
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(Abcam plc, Cambridge, UK), anti-b1 integrin (P5D2

abcam, AIIB2 Merck Millipore, Merck KGaA, Darmstadt,

Germany) and anti-aV antibody (272-17E6; abcam) at least

in duplicate measurements.

SPR measurements

The determination of binding affinities has been done

with a BIAcore 3000 (Biacore, Uppsala, Sweden) at

25 °C. Recombinant human laminin-332 (BioLamina AB,

Stockholm, Sweden) was immobilized on a CM5 chip

(GE Healthcare Bio-Sciences AB, Uppsala, Sweden)

according to the manufacturer’s protocol to yield a final

change of approx. 5000 resonance units (RU) relating to

maximal 150 RU assuming a monovalent interaction of

vWFA2 and laminin-332. Running buffer was 10 mM

sodium phosphate pH 7.4 150 mM NaCl. For the investi-

gation of the effect of divalent metal ion, MgCl2 was

added to a final concentration of 2.5 mM to the buffer.

About 11 and 14 concentrations (ranging between 2.5 and

420 µM), respectively, of vWFA2 protein were used for

the determination of binding isotherms. Data analysis

was done with BIAevaluation 4.1 (Biacore).

Results

As major component of anchoring fibrils, type VII col-

lagen is essential for skin stability by establishing inter-

actions with proteins of the extracellular matrix. The

skin blistering autoimmune disease EBA is a model

system for investigating triggers leading to the break-

down of immunotolerance against type VII collagen.

Although much information on clinical and immuno-

logical data is available for autoimmunity against type

VII collagen, high-resolution structural data and infor-

mation on interactions with other proteins that would

improve our understanding of EBA pathogenesis are

still missing. Here, we present the first structural and

dynamical data at an atomic level for type VII colla-

gen, which finally lead to the identification of two

binding sites at vWFA2 domain. These interactions

have not been reported so far for the vWFA2 domain.

Crystallization and measurement of RDC of

murine vWFA2

We have determined the crystal structure of the

vWFA2 subdomain of murine type VII collagen at a

resolution of 2.0 �A (Fig. 2A–C). The model was

refined to satisfactory statistical values of Rwork/Rfree

of 0.18/ 0.21 (Table 1). The asymmetric unit contained

one molecule spanning from G1052 to A1238. The first

nine residues of the vWFA2 construct used in this

study, that is five residues belonging to the multiple

cloning site and the four N-terminal residues of

vWFA2, are not defined in the crystal structure. Inter-

estingly, this includes the N-terminal cysteine; conse-

quently, the existing disulphide bridge [20] (see also

Fig. S1) is not visible in the electron density map. The

overall structure is well defined, with an exception of a

small loop stretching from R1203 to I1211. Here, den-

sity could be seen, but no satisfactory fit could be

achieved (Fig. 2B). Curiously, the crystal contacts are

often formed indirectly and not via protein–protein
interactions. One crystal contact is formed by a metal-

complexed EDTA molecule. The metal is located on a

twofold axis, and the carboxyl groups of EDTA form

salt bridges to R1120 of two symmetry mates. Another

crystal contact is formed by an inorganic ion (either

sulphate or phosphate) sitting on a threefold axis and

connecting R1123 of three symmetry-related molecules.

Interestingly, two side-chain conformations can be

observed for K1121. This residue has been shown pre-

viously to be crucial for binding type I collagen [11].

The a5 helix is not recognized as an a-helix by

DSSP although it has a-helical character (Fig. 2A,

green ‘loop’ region). The a-helical conformation for

amino acids in this region is supported by NMR

chemical shift data that have been determined in an

earlier study [20]. The a1 helix is directly preceded by

a helical turn and a short 310 helix formed by residues

18–22 (Fig. 2A, red helix).

Residue dipolar coupling measurements have been

performed to relate the crystal structure with the situa-

tion in solution. Alignment of vWFA2 in different

alignment media varies as seen by different values

measured in a CTAB:PEG–hexanol aligned sample

and a PEG–hexanol aligned sample. The measured

RDCs are in accordance with the crystal structure.

RDCs of backbone amides (NH-RDC) measured in

solution fit well to the crystal structure with sufficient

high R2 values (Fig. 2D, Fig. S3). The R2 of the PEG–
hexanol aligned sample is 0.919 (RMSD 1.96 Hz, 139

RDC values used), and for the CTAB:PEG–hexanol
aligned sample R2 is 0.938 (RMSD: 3.11 Hz, 145

RDC values used) with quality factors (Q-factor [43])

of 0.347 (CTAB:PEG–hexanol aligned sample) and

0.392 (PEG–hexanol aligned sample). Residues that

show the largest deviation of the back-calculated

RDCs from the measured RDCs are D1114, S1131,

V1166, E1199, L1204, A1205 and A1233 for the PEG–
hexanol aligned sample and L1087, N1133, G1185,

E1199 and L1204 for the CTAB:PEG–hexanol aligned
sample. In case of the latter alignment medium, all

these residues are within loops, whereas for the PEG–
hexanol alignment medium all residues except V1166

and A1233 are within loops. Excluding these residues
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Fig. 2. Crystal structure of vWFA2 of type VII collagen. (A) Cartoon diagram of the vWFA2 subdomain of type VII collagen. b strands and a

helices of the vWFA fold are labelled b1–b6 and a1–a6. a5 is not detected as an a-helix by DSSP and is shown as a green ribbon. a1 starts

with a short helical turn and a 310 helix indicated in red. Amino acid residues P1206 and G1207 are not visible and are indicated by a dashed

line. (B) Electron density around the undefined amino acids P1206 and G1207 contoured at 1r. (C) Comparison of different loop structures

and their adjacent a5 helix (vWF-A2 domain (light blue; 3ZQK), the I domain of integrin a2 (purple; 4BJ3) and the type VI collagen a3 N5

domain (dark blue; 4IGI). (D) 145 RDCs measured from a PEG–hexanol:CTAB aligned sample correlate well with the theoretical values back-

calculated from the crystal structure (R2 = 0.938; Q = 0.347, RMSD = 3.11 Hz). Rhombicities (R) of the alignment tensor and the

magnitudes (Da) of the alignment tensors are given as inserts. Orange and red values deviate more than 2*RMSD and 3*RMSD from the

back-calculated values, respectively. The following residues are labelled in orange: G1185, L1087 and E1199; and in red: L1204 and N1133.

(E) Analysis of thermal stability with CD spectroscopy shows that thermal unfolding of wild-type vWFA2 starts at 55 °C. The sigmoid

melting curve has an inflection point of about 64 °C for wild-type vWFA2 and 50 °C for the vWFA2 D1218R mutant. (F) Determination of

heteronuclear 1H-15N NOEs points towards increased flexibility for N1133 and residues around T1208. Residues marked in orange are

overlapping in the spectra, which can lead to unreasonable or unreliable values.
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from the analysis improves the fits substantially, indi-

cating a different conformation in the loop structures

(as well as reflecting flexibility) in solution state than

in the crystal state for these residues. In case of

PEG–hexanol, R2 increases to 0.958 (132 values

used, Q = 0.288, RMSD = 1.46 Hz), and for the

CTAB:PEG–hexanol aligned sample, R2 increases to

0.957 (140 values used, Q = 0.290, RMSD = 2.63 Hz)

with satisfactory Q-factors [44–46]. As measured

RDCs of amino acids within secondary structure ele-

ments are in very good accordance with the crystal

structure, we conclude that the crystal structure repre-

sents the situation in solution at ambient temperature

as well.

Dynamic behaviour of murine vWFA2

Dynamic properties of the protein backbone can be

investigated by measuring R1 and R2 relaxation rates.

Also, heteronuclear NOEs are very sensitive to

backbone flexibility. Analysis of the R1 and R2 relax-

ation rates as well as heteronuclear NOEs shows two

regions within vWFA2 that are characterized by

increased flexibility as compared to the bulk residues

(Fig. 2F, Fig. S4). Besides the terminal residues,

N1133, N1219 and residues around A1205 show

reduced R2 relaxation rates. Heteronuclear NOEs are

markedly decreased for residues N1133 and T1208.

This is indicating local flexibility at the nanoseconds to

picoseconds time scale and can be explained by the

localization of these residues within loops. This is in

line with the crystallographic data where the loop

bridging helix a5 with b-strand b6 is not well defined.

Thermal stability of vWFA2

CD spectra of vWFA2 at 25 °C and 37 °C are virtu-

ally identical with a minimum at 220 nm (Fig. S5).

Analysis of the percentage of secondary structure ele-

ments using the K2D3 web service [47] resulted in

34% a-helical and 19% b-sheet-like structures, respec-

tively. These values are in very good agreement with

the content of a-helix (36%) and b-sheet (19%) deter-

mined from the crystal structure. The melting tempera-

ture of vWFA2 is about 64 °C (Fig. 2E), and thus,

vWFA2 is stable also at temperatures considerably

above body temperature; that is, at temperatures used

for the cell adhesion experiments, vWFA2 is stable

and adopts the structure determined by crystallogra-

phy. Of the mutants generated for identifying the bind-

ing sites for cellular receptors (vide infra), the vWFA2

R1120Q K1121R D1218R mutant could not be inves-

tigated due to low yield after purification. Analysing

thermal stability of vWFA2 D1218R shows that this

mutant is less stable with a melting temperature of

about 50 °C. This demonstrates that D1218 is stabiliz-

ing the vWFA2 subdomain and thereby preventing

mutations at this site.

Cell adhesion assays show binding of vWFA2 to

integrins and laminin-332

vWFA2 contains a potential RGD motif, which is an

interaction site for integrins. It was previously shown

that the NC1 domain of type VII collagen is interact-

ing with a2b1 integrin [48]. The interaction site was

located at N-terminal subdomains by analysing short-

ened NC1-fragments; thus, it was concluded that the

interaction is RGD independent [48]. As seen in the

crystal structure, the RGD motif is at the protein sur-

face and the RGD motif is also conserved between dif-

ferent species (see Fig. S7). Thus, it was tested whether

vWFA2 can interact with surface proteins of dermal

Table 1. Data collection and refinement statistics for the type VII

collagen subdomain vWFA2

vWFA2 domain of Col7

Data collection

Beamline ID29/ESRF

Wavelength (�A) 0.9763

Space group R32:h (No. 155)

Cell dimensions

a, b, c (�A) 123.0, 123.0, 63.7

a, b, c (°) 90.0, 90.0, 120.0

Resolution (�A) 35.5–2.0 (2.05–2.00)a

RSym 0.139 (0.709)

Rmeas 0.157 (0.802)

CC1/2 0.995 (0.477)

I/rI 6.9 (2.1)

Completeness (%) 99.8 (99.9)

Multiplicity 4.4 (4.6)

Refinement

Resolution (�A) 35.5–2.0

No. of reflections (test set) 12573 (626)

Rwork/Rfree (%) 17.6/20.6

No. atoms 1572

Protein 1415

Ligand/ion 17

Water 140

B-factors 26.8

Protein 26.2

Ligand/ion 28.2

Water 32.7

R.M.S deviations

Bond lengths (�A) 0.003

Bond angles (°) 0.76

a Highest resolution shell is shown in parentheses.
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cells. Both keratinocyte-like HaCaT cells and unmodi-

fied human fibroblasts show binding to vWFA2 in a

cell attachment assay (Fig. 3A). Mutating the RGD

motif to DGR (R1171D D1173R) seemed not to influ-

ence cell binding (Fig. 3B, Fig. S6). Since vWFA2 has

been shown to be involved in type I collagen, which is

produced by fibroblasts, that binding site was also

mutated (R1120Q K1121R) to preclude this interac-

tion [11]. Since cell attachment seemed not to be

affected (Fig. 3B), this led to the assumption that a

further interaction site exists. To substantiate this

hypothesis, a third mutation was introduced at

different positions. Based on the crystal structure,

amino acids located on the protein’s surface have been

changed. The vWFA2 R1120Q K1121R D1218R

mutant could not be tested in the cell attachment assay

due to low yield after purification. Therefore, residues

nearby this position have been mutated. Of these

mutations tested in the cell attachment assay only the

mutant containing the following mutations R1225D,

mutation of the RGD motif (R1171D, D1173R) and

the type I collagen binding site (R1120Q, K1121R)

showed reduced binding compared to wild-type

vWFA2. The R1225D mutation alone showed no
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Fig. 3. Identification of binding sites for vWFA2. Representative plots of cell adhesion assays are shown. (A) Human skin fibroblasts and the

keratinocyte-like HaCaT cell line show adhesion to vWFA2-coated surfaces comparable to fibronectin. Mutation of vWFA2 shows decreased

binding in case of the DGR R1120Q K1121R R1225D mutant, thereby pointing towards two interactions sites at vWFA2 (B). Data for

fibroblasts are shown in Fig. S6. (C) The presence of EDTA shows virtually no binding for the vWFA2 R1225D mutant and reduced binding
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reduced in the presence of an anti-integrin b1 antibody for D1218R mutant and anti-laminin-332 antibody for the vWFA2 DGR mutant (D). It
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reduced binding in the cell attachment assay, as the

RGD motif is intact.

After establishing the existence of two binding sites

on vWFA2 (RGD and R1225) for cell surface recep-

tors, the dependency on divalent metal ions was tested

(Fig. 3C) since integrin binding requires divalent metal

ions. Binding was not enhanced when Mg2+ or Mn2+

was added but reduced for each binding site in the

presence of EDTA, indicating that the interaction is

dependent on divalent metals.

Initial SPR (surface plasmon resonance) experiments

pointed towards an interaction of laminin-332 with

vWFA2; hence, a polyclonal anti-laminin-332 antibody

was tested and reduced binding in the cell adhesion

assay was observed for the DGR mutant (Fig. 3D).

Investigating different antibodies in their ability to

block the interaction of RGD motif with integrins

reduced binding was observed with anti-b1 antibodies

but not with anti-aV antibodies (Fig. 3D, Fig. S6).

Also for wild-type vWFA2, a reduction in cell adhe-

sion was observed in the presence of anti-b1 antibod-

ies, which is likely an indirect effect since laminin-332

can also interact with a3b1-integrin [49].

Quantification of the laminin-332 vWFA2

interaction by SPR measurements

In order to quantitate the interaction of vWFA2 with

laminin-332, SPR was used (Fig. 4A). Preliminary

SPR experiments indicated that the interaction is very

weak, and according to literature, the laminin-332

binding site is located at subdomains FNIII7-9 of

type VII collagen [8,50]. In order to make certain

that the observed interaction is not artificial, the KD

was determined in two independent experiments.

Therefore, two different laminin-332 charges and

two different vWFA2 constructs were used: vWFA2

(purified by intein cleavage) showed a KD of 0.81 mM

(Χ2 = 8.48, Fig. 4A) and untagged-vWFA2 purified by

cation exchange chromatography and size exclusion

chromatography showed a KD of 0.44 mM (Χ2 = 0.25).

Since it is a low-affinity interaction and, in the cell

attachment assays, residual binding of cells to mutant

proteins was still observed, SPR cannot be employed

for reliable quantification of the impact of mutations

on this interaction. The binding seems not to be

dependent on divalent metal ions, since the KD of
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this interaction is 1.1 mM in the presence of Mg2+

(Χ2 = 5.5).

Discussion

Autoantibodies against the vWFA2 subdomain of type

VII collagen are pathologically relevant in the autoim-

mune skin blistering disease EBA. This is demon-

strated in a mouse model for experimental EBA based

on immunization with vWFA2 [19]. In addition,

autoantibodies against vWFA2 are also detected in

patients. To improve the understanding of structural

consequences caused by autoantibody binding, we

structurally characterized the vWA2 domain. Based on

the high-resolution structural data, mutations were

introduced leading to the identification of two hitherto

unknown binding sites at the vWFA2 domain: lami-

nin-332 and a b1 integrin.

Structure of the murine type VII collagen

subdomain vWFA2

The structure resembles a typical von Willebrand fac-

tor A domain (vWA) fold consisting of a central b-
sheet (b1–b6) surrounded by a-helices (a1–a4, a6)
(Fig. 2A). RDC measurements with NMR spec-

troscopy prove that at ambient temperature this struc-

ture also exists in solution. A search for similar

structures using the DALI server [51] identified the

vWA domains of type VI collagen [26], aII integrin

[52], the von Willebrand factor A2 domain [53] and

PTMP-1 [54] as being the most similar structures. In

comparison with those structures, our newly solved

structure shows a more rigid and straightened a6 helix

(Fig. S2). In the crystal structure, it is also seen the

side chain of D1218 points towards the N terminus of

helix a6 — likely stabilizing the helix. This hypothesis

is supported by the fact that the D1218R mutants

could only be isolated in low yields and the thermal

stability of the D1218R mutant is lower compared to

wild-type vWFA2 (Fig. 2E). The loop connecting the

a5 helix and the b6 sheet is not well defined in the

structure, indicating a higher degree of flexibility

(Fig. 2B). This is in very good agreement with NMR

data pointing towards increased backbone flexibility at

the nanoseconds to picoseconds time scale in this

region (Fig. 2F, Fig. S4). However, the defined parts

of this loop differ significantly from loop structures of

other vWA domains (Fig. 2C).

The crystal structure shows electrostatic interactions

with EDTA and inorganic anions at the type I colla-

gen binding site. As we have previously shown that

the interaction of vWFA2 with type I collagen relies

on electrostatic interactions [11], it is curious to

observe contacts with negative charges in the crystal

structure at this position.

Interactions of the murine type VII collagen

subdomain vWFA2

vWFA2 domain has been described as binding site for

type I collagen [10,11]. The domain also harbours an

RGD motif for which literature claims that it is not

involved in integrin binding [48]. However, cell adhe-

sion assays with the keratinocyte-like HaCaT cell line

and human normal fibroblasts proved that vWFA2 is

binding to cells. Mutation analysis showed that there

are two binding sites that allow attachment of cells

(Fig. 4B). One binding event is mediated via the

RGD motif and is depending on divalent metal ions.

Information about the cellular receptor that is

involved in this binding was obtained by using differ-

ent anti-integrin antibodies – only antibodies against

the b1 chain show reduced cell attachment. The sec-

ond binding site is located at R1225 (see also

Fig. S6), and the interaction is inhibited in the pres-

ence of anti-laminin-332 antibodies. The interaction

with laminin-332 is surprising as earlier reports

located this binding site to the FNIII-like domains 7–
9 [8,50]. SPR analysis showed that the interaction is

of low affinity with a KD of about 0.8 mM. Assuming

another laminin-332 binding site in full-length type

VII collagen as described in the literature, this will

result in a more affine binding due to multivalency

effects. That can explain the difference in affinity of

monomeric vWFA2 domain compared to mini-type

VII collagen, which was determined to be 60 nM by

Brittingham et al. [7]. It should also be kept in mind

that the vWFA2 domain contains a potential glycosy-

lation, which is missing in the investigated construct

due to the expression in Escherichia coli. Finally, in

this study the interaction of murine vWFA2 and

recombinant human laminin-332 was investigated,

whereas the reported values have been determined

with purified rat laminin-332 and human type VII col-

lagen constructs [7]. Since native type VII collagen is

a homotrimer, that is it contains three vWFA2

domains, thereby increasing the local concentration in

the dermal–epidermal junction rendering this interac-

tion more relevant in vivo. Due to the high KD value,

it is not possible to determine the impact of mutations

investigated in the cell attachment assay as these

mutations showed still binding in the assays. Since

laminin-332 – a component of the basement mem-

brane can bind cellular surface proteins too, the

diminished binding in the presence of EDTA can also
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be an indirect effect, which is supported by SPR

showing no enhanced binding of vWFA2 to laminin-

332 in the presence of Mg2+.

It is somehow curious that vWFA2 has additional

interaction partners besides the well-established bind-

ing to type I collagen [10,11]. It is tentative to specu-

late that depending on the location of type VII

collagen it can exert different functions: when depos-

ited at the dermal–epidermal junction, it mediates sta-

bility by binding to type I collagen, but in case of

binding to other (cellular) targets, it could activate dif-

ferent signalling pathways, which might be related to

wound healing [55].

Future studies should focus on the identification of

the integrin ligand. Knowing the integrin partner will

allow a more detailed analysis of the accessibility of

the vWFA2 binding sites in the skin and exploration

of the signalling pathways related to the vWA2 subdo-

main.

Concluding remarks

The cause for loss of tolerance against type VII colla-

gen in the development of EBA is unclear. It was cur-

rently shown that autoimmunity against vWFA2

causes skin blistering in experimental EBA. These data

are now complemented with the first high-resolution

biophysical characterization of the vWFA2 subdomain

of type VII collagen. In combination with functional

studies, that is identification of two binding sites that

have not been so far attributed to the vWFA2 domain,

this provides new detailed insights into the function of

type VII collagen. It lays the basis for investigating the

putative glycosylation site of vWFA2 for a better

understanding of type VII collagen function in the

extracellular matrix.
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Fig. S1. In a coomassie stained 15% SDS-PAGE anal-

ysis of murine vWFA2, it shows a different migration

behaviour under reducing and non-reducing condi-

tions, respectively; indicating that a disulphide bridge

formed by the two cysteines is present (a). In addition,

under non-reducing conditions also a band at a molec-

ular weight corresponding to a dimer is present. (b)

Amino acid sequence of the investigated construct.

Residues underlined and in italic font at the N-termi-

nus belong to the intein tag. The two cysteines forming

the disulphide bridge are labelled in orange (residues

1049 and 1235). N1110 is potentially glycosylated.

Fig. S2. Overlay of the Col7 vWFA2 domain (orange)

with the vWF-A2 domain (light blue; 3ZQK; RMS:

2.75 �A), the type VI collagen a3 N5 domain (dark

blue; 4IGI, RMS: 1.29 �A), the PTMP1-A1 domain

(green, 4CNB_A; RMS: 1.17 �A) and the I domain of

integrin a2 (purple; 4BJ3; RMS: 1.66 �A).

Fig. S3. (a) 139 RDCs measured from a PEG-hexanol

aligned sample correlate well with the theoretical val-

ues back-calculated from the crystal structure

(R2 = 0.919, Q = 0.392, RMSD = 1.96 Hz). Orange

and red values deviate more than 2*RMSD and
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3*RMSD from the back-calculated values, respectively

and are plotted on the crystal structure of vWFA2 (b).

(c) Secondary structure elements of vWFA2. (d, e)

Deviation of measured NH-RDCs for the individual

amino acids (black symbols) compared to the back-cal-

culated values (gray symbols) according to the crystal

structure.

Fig. S4. NMR relaxation data of the vWFA2 domain

determined by NMR spectroscopy. (a) secondary

structure elements of vWFA2. Determination of relax-

ation rates R1 (b), R2 (c), R2/R1 (d) and heteronuclear
1H-15N NOEs (e) points towards increased flexibility

for N1133 and residues around T1208. Residues

marked in orange are overlapping in the spectra which

can lead to unreasonable values (e.g. as seen for
1H-15N NOEs).

Fig. S5. CD spectroscopy of vWFA2. CD spectroscopy

shows that the overall fold at 25°C and 37°C is identi-

cal and the percentages of secondary structure elements

are in very good agreement with the crystal structure

with 34 % a-helix and 19 % b-sheet structures.
Fig. S6. Cell adhesion of fibroblasts to vWFA2. The

effect of cell adhesion of fibroblasts was investigated

by using different vWFA2 mutants. Mutations that

show in combination a diminished binding of vWFA2

to fibroblasts due to interference with protein-protein-

interactions are shown in (a). Mutations, that have

also been tested in cell adhesion assay but which do

not interfere in binding of vWFA2 since they are dis-

tant to the interaction site are shown in (b). (c) Resi-

dues within 10 �A of the N-/C-terminus, the RGD

motif and the type I collagen binding site are differ-

ently coloured to estimate the potential steric demands

of these interactions. This shows that the direct sur-

rounding of R1225 is not involved in any of these

interactions which could reflect the hitherto unknown

interaction site. (d) An antibody against b1-integrin
(P5D2) shows a reduction of binding whereas an aV
integrin (272-17E6) antibody does not interfere with

cell binding in the cell adhesion assay. Error bars for

cell adhesion plots represent the standard deviation of

a triplicate measurement.

Fig. S7. Differences in surface accessible amino acids

near the RGD motif of vWFA2. Surface representa-

tion of murine vWFA2 with the amino acids of the

RGD motif labelled in red. Residues labelled in gray

are identical between human and murine vWFA2

domain whereas amino acids labelled in yellow are dif-

ferent showing that the surrounding of the RGD motif

is quite conserved between the two species. Sequence

identity between the two molecules is 80%.
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