
Sequence analysis

Informed kmer selection for de novo

transcriptome assembly

Dilip A. Durai1,2 and Marcel H. Schulz1,2,*

1Cluster of Excellence on Multimodal Computing and Interaction, Saarland University, Saarbrücken, 66123,

Germany and 2Department for Computational Biology and Applied Algorithmics, Max Planck Institute for

Informatics, Saarbrücken, 66123, Germany

*To whom correspondence should be addressed.

Associate Editor: Gunar Ratsch

Received on April 7, 2015; revised on December 31, 2015; accepted on April 17, 2016

Abstract

Motivation: De novo transcriptome assembly is an integral part for many RNA-seq workflows.

Common applications include sequencing of non-model organisms, cancer or meta transcrip-

tomes. Most de novo transcriptome assemblers use the de Bruijn graph (DBG) as the underlying

data structure. The quality of the assemblies produced by such assemblers is highly influenced by

the exact word length k. As such no single kmer value leads to optimal results. Instead, DBGs over

different kmer values are built and the assemblies are merged to improve sensitivity. However, no

studies have investigated thoroughly the problem of automatically learning at which kmer value to

stop the assembly. Instead a suboptimal selection of kmer values is often used in practice.

Results: Here we investigate the contribution of a single kmer value in a multi-kmer based assem-

bly approach. We find that a comparative clustering of related assemblies can be used to estimate

the importance of an additional kmer assembly. Using a model fit based algorithm we predict the

kmer value at which no further assemblies are necessary. Our approach is tested with different de

novo assemblers for datasets with different coverage values and read lengths. Further, we suggest

a simple post processing step that significantly improves the quality of multi-kmer assemblies.

Conclusion: We provide an automatic method for limiting the number of kmer values without a sig-

nificant loss in assembly quality but with savings in assembly time. This is a step forward to mak-

ing multi-kmer methods more reliable and easier to use.

Availability and Implementation:A general implementation of our approach can be found under:

https://github.com/SchulzLab/KREATION.

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: mschulz@mmci.uni-saarland.de

1 Introduction

With the massive amounts of RNA-seq data (Sultan et al., 2008)

produced for many non-model organisms, the interest for de novo

analyses of RNA-seq data has increased over the last few years.

These analyses include the de novo assembly of full length tran-

scripts, expression level computation of novel transcripts, detecting

differentially expressed transcripts and detection of related genes in

close species or polymorphism detection (Davidson and Oshlack,

2014; Haznedaroglu et al., 2012; Le et al., 2013; Sloan et al., 2012).

Due to the large number of applications, several methods have

been proposed for the de novo transcriptome assembly. Most of

these methods are based on building a de Bruijn graph (DBG) from

the RNA-seq reads. The nodes of the DBG are substring of length k

(also know as kmers) obtained from the reads and two nodes are

connected if they have k-1 overlap. After obtaining the DBG, vari-

ous heuristic algorithms are used to predict alternative transcripts

from each DBG component. These algorithms either use a single

kmer value (Chang et al., 2015; Grabherr et al., 2011; Xie et al.,

VC The Author 2016. Published by Oxford University Press. 1670
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 32(11), 2016, 1670–1677

doi: 10.1093/bioinformatics/btw217

Advance Access Publication Date: 28 April 2016

Original Paper

https://github.com/SchulzLab/KREATION
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw217/-/DC1
Deleted Text: Le <italic>et<?A3B2 show $146#?>al.</italic>, 2013;
Deleted Text:
Deleted Text: ; <xref ref-type=
http://www.oxfordjournals.org/

2014) or merge transcripts generated from multiple kmer values to

obtain a final non-redundant assembly (Peng et al., 2013; Robertson

et al., 2010; Schulz et al., 2012; Surget-Groba and Montoya-Burgos,

2010). A multi-kmer based approach outperforms a single-kmer

based approach as one kmer size rarely fits all genes (Chang et al.,

2015; Peng et al., 2013; Schulz et al., 2012). Large kmer values

resolve repeats and regions with many errors, whereas small kmer

values are necessary to connect lowly expressed transcripts that have

low-coverage regions. Hence even for most single kmer methods it is

beneficial to run the assembler for different kmer values and merge

the final results.

But the question about the core set of kmer sizes that are needed

to achieve a good quality assembly has received little attention for

multi-kmer methods. Currently, approaches (i) use the default kmer

series of the assembler which is tuned on a limited number of data-

sets, (ii) select an arbitrary subset of kmer sizes or (iii) use all pos-

sible kmer sizes for the assembly. In practice that means that most

often the resulting assembly is suboptimal. Either important kmer

sizes are missed (cases 1–2) and therefore the sensitivity is reduced

or the complete assembly contains more misassemblies than neces-

sary and has wasted computational resources (case 3).

Selecting a suitable kmer size for de novo assembly has been pre-

viously explored in the context of genomic sequencing. For example

(Chikhi and Medvedev, 2014) devised a method to select the best

kmer size for de novo genome assembly. Simpson devised a method

to estimate a number of interesting characteristics like paths with

variations or repeats in the DBG for different kmer sizes from a FM-

index over the reads (Simpson, 2014). Further, computing an opti-

mal kmer range for de novo read error correction was also proposed

(Ilie et al., 2011, Schulz et al., 2014). However, all these methods as-

sume a uniform coverage distribution and are not applicable to non-

uniform RNA-seq data.

Here we investigate in detail how the number of kmer assemblies

can be minimized to save computational resources, without a large

loss in sensitivity and without using a reference annotation for as-

sembly quality assessment. We introduce the KREATION (Kmer

Range EstimATION) algorithm that is based on two novel contribu-

tions: (i) a comparative clustering of single kmer assemblies to define

extended clusters which gives a notion of the assembly quality and

(ii) a heuristic model assessment that allows to predict the optimal

stopping point for a multi-kmer assembly method. We show that

our new de novo strategy automates the choice of kmer sizes to ex-

plore, while achieving close to optimal performance.

2 Methods

2.1 Evaluation of assemblies
We use standard metrics for the evaluation of our assembled tran-

scripts. We align transcripts against the reference genome using Blat

(Kent, 2002,version 36) and compare it with annotated Ensembl

transcripts (Cunningham et al., 2014,version 65). Then we compute

the number of Ensembl transcripts that are overlapped to at least 80

or 100% by an assembled transcript, and term them as 80 and

100%-hits, respectively. We defined 80%-hit improvement rate as

the ratio of the 80%-hits obtained from the multi-kmer assembly

compared to a single-kmer based assembly. Further, we compute

misassemblies by counting the number of aligned transcripts whose

aligned region is � 95% of the total transcript length. All transcripts

that are not misassemblies are considered to be correct. We also

compute nucleotide sensitivity and specificity as explained by

(Schulz et al., 2012).

2.2 Transcriptome assembly
We used the de novo transcriptome assemblers Oases (Schulz et al.,

2012, version 0.2.08), SOAPdenovo-Trans (Xie et al., 2014, version

1.03) and Trans-ABySS (Robertson et al., 2010 version 1.5.3) for

our analyses. All assemblers were run with default parameters ex-

cept the kmer parameter for the DBG and insert length for the

paired-end sequencing data sets. Transcripts shorter than 100bps

were removed from the final assembly.

SOAPdenovo-Trans doesn’t have its own merge script and the

merge script of Oases and TransABySS provides little informa-

tion about the clusters obtained. Further, it was shown that the

oases_merge script has suboptimal performance compared to CD-

HIT-EST clustering (Haznedaroglu et al., 2012). Hence we used

CD-HIT-EST (Fu et al., 2012, version 4.6.1-2012-08-07) for cluster-

ing individual kmer assemblies, as detailed in Section 2.3.

In order to analyze how selecting arbitrary kmer values influences

assembly performance we created three sets of random kmers. All the

sets contained kmers spread across the read length, see Table 1.

We denote as best-k the assembly where the highest number

80%-hits was achieved for a dataset. For the analyzed datasets these

were assemblies obtained from k¼25 for brain, k¼23 for human

Embryonic Stem Cell (hESC), k¼27 for T-cell and HeLa.

2.3 Clustering assembled transcripts
We use the CD-HIT-EST software, for clustering transcripts

assembled by individual kmer sizes and merging sets of transcripts

from distinct kmers. CD-HIT-EST is a fast clustering technique that

reports final clusters with all sequences contained in the cluster. It

uses a greedy algorithm to iteratively grow clusters and multicore

parallelization for fast clustering. We run CD-HIT-EST with 10

threads.

Consider two sets of assembled transcripts, T 1 ¼ ft1
1 ; . . . ; t1

ng
and T 2 ¼ ft2

1 ; . . . ; t2
mg with n and m many sequences respectively,

each produced by running a de novo assembler for one or more

kmer values. Let C ¼ fc1; . . . ; clg be the set of l sequence clusters ob-

tained by applying a sequence clustering algorithm to T 1 and T 2,

denoted as ComputeClusters(T 1; T 2). We define the following no-

tions on clusters: a cluster c 2 C is called unique with respect to T 2 if

it holds that c � T 2, namely that all sequences in c are only from as-

sembly T 2. Further we call the longest sequence of a cluster c 2 C
the representative of c, denoted as rep(c). A cluster c 2 C is called ex-

tended by T 2 if repðcÞ 2 T 2 and c is not unique. We denote e ¼ ex-

tended(C;T2) as the number of extended clusters in C with respect to

T 2 (See Supplementary Figure S1). Collectively we denote all clus-

ters that are extended or unique with respect to T 2 as novel clusters

with respect to T 2. All remaining cluster are called old.

2.4 Predicting the assembly stopping point via

assessment of model fit
We analyzed assemblies generated by different de novo assemblers

and observed that with an increase in kmer size the number of

Table 1. Sets of random kmer values used to analyze the effect of

selecting arbitrary kmer values on the assembly. Rows represents

the sets and columns represent the dataset with read length men-

tioned in brackets

Brain (50) TCell (45) hESC (50) HeLa (76)

Set1 25,33,37,45 25,33,37,45 25,33,37,45 25,39,53,61

Set2 25,31,35,43 25,31,35,43 25,31,35,43 35,43,57,69

Set3 23,33,37,45 23,33,37,45 23,33,37,45 51,55,69,71

kmer selection for de novo transcriptome assembly 1671

Deleted Text: ; Chang <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: <xref ref-type=
Deleted Text: ; Peng <italic>et<?A3B2 show $146#?>al.</italic>, 2013
Deleted Text: ; Peng <italic>et<?A3B2 show $146#?>al.</italic>, 2013; Chang <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: 1
Deleted Text: 2
Deleted Text: ,
Deleted Text: 3
Deleted Text: -
Deleted Text: 1
Deleted Text: 2
Deleted Text: &hx0025;
Deleted Text: <italic>&hx0025;-hits</italic>
Deleted Text: &hx2019;
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw217/-/DC1

correct transcripts produced by the assembler follows approximately

an exponential distribution, see Results. We show that the number

of extended clusters in consecutive assemblies behave similarly

and can thus be used in a de novo setup. Our rationale was that

once this exponential trend does not hold anymore for increasing

kmer values, the number of extended clusters is not dominated by

correct transcripts, but rather by missassemblies or redundant

assemblies.

We summarize our approach for the above insight in

algorithm 1: Given a set of reads and a minimal kmer, denoted

kmin, the assembler explores an a priori fixed series of kmer values X ¼
ðk1; . . . ;knÞ where k1 ¼ kmin. This series is computed using a

function f. In our case we use the simple function: f ðkÞ ¼ kþ 2, as

Oases and SOAPdenovo-Trans can use odd kmer values only

and we wanted to use the same set of kmer values for all assem-

blers to maintain consistency. For each k an assembly is produced

(line 7). All new transcripts in T ki
are clustered with the previous

transcripts using the function ComputeClusters(T ;T ki
) to produce C

(line 8). The number of extended clusters ei with respect to T ki
is

computed (using extended(C; T ki
)) and its log count is stored in yi

(line 9).

We then assume the following linear model:

Y ¼ b0 þ b1 Xþ � ; (1)

where Y ¼ ðy1; y2; . . . ; ynÞ denotes the series, with yi ¼ log10ðeiÞ. b0

and b1 are the constants representing slope and intercept of the line

respectively. Gaussian noise is denoted by �.

We are interested in analyzing the linear model fit with an

increase in number of data points. More precisely, if we have a

linear model fit on n � 1 datapoints (where n > 3, since we re-

quire at least three datapoints to model a line to avoid prema-

ture stopping of the assembly), we want to assess the error in

predicting the nth datapoint using the line. We fit a line (lm) with

Y ¼ ðy1; y2; . . . ; yn�1Þ and X ¼ ðk1; k2; . . . ; kn�1Þ and estimate the

coefficients bbn�1 ¼ ðb0; b1Þ by minimizing the residual sum of

squares (line 10):

bbn�1 ¼ arg min
b

Xn�1

i¼1
ðyi � byiÞ

2 ; (2)

where byi ¼ b0 þ b1 ki is the predicted value of yi. Assuming that

this line would also explain yn, we use the estimated coefficients to

compute byn for kn (line 11). We compute the error between byn and

its actual value:

errðnÞ ¼ ðyn � bynÞ
2 : (3)

We increment n and repeat the above procedure until n reaches

the stopping point. For any given kmer series of length m, we define

the deviation score (d_score) as the cumulative sum of point-wise

error estimates:

d scorem ¼
Xm

n¼4
errðnÞ : (4)

The stopping point is determined by applying a threshold to the

d_score (line 13). The d score is expected to remain close to zero for

data points which follow a linear trend. It increases considerably

and crosses the threshold value at a point where the quality of the

linear fit degrades i.e. the fitted line is no longer able to explain the

additional datapoint. If the d score is less than the cutoff, the algo-

rithm continues and updates all the variables (line 16–18).

Otherwise the algorithm terminates and produces the final

assembly.

2.5 De novo removal of misassemblies
A disadvantage of merging several single kmer assemblies is the

increased number of misassemblies in the final result. In principle,

misassembled transcripts should only occur at kmer values that are

shorter than repeat length and thus they are unlikely to occur at all

different kmer values. To accommodate this idea we devised the fol-

lowing method. Assume we run our assembly for the values

k ¼ fk1; k2;k3; k4g. After producing the final clustering C of the

transcripts of these four assemblies T k1
; T k2

;T k3
;T k4

we consider

the clusters c in which only transcripts of a certain T kx
exist, i.e.

which are unique with respect to T kx
. We termed these clusters as

single-k clusters. We classified all the single-k clusters and tran-

scripts shorter than a predefined length threshold (300 bp for all

datasets) as misassemblies.

For measuring the difference in misassemblies between multi-

kmer assembly (say T multi) and single-kmer assembly (say T single) we

define:

misassembly rate ¼ observed

expected
(5)

where,

observed ¼ #misassemblies in T multi

jT multij
; (6)

expected ¼
#misassemblies in T single

jT singlej
: (7)

2.6 Data retrieval and preprocessing
All datasets were downloaded from the SRA (http://www.ncbi.nlm.

nih.gov/sra). Five RNA-seq datasets were used for analysis: 147M

paired-end reads of length 50 bps for human brain (Barbosa-Morais

Algorithm 1. Computation of largest kmer for a de novo tran-

scriptome assembler with KREATION

1: Input: Reads R, read length l, function f, kmin, threshold t

2: i ¼ 1

3: ki ¼ kmin

4: d score ¼ 0

5: T previous ¼1
6: repeat

7: T ki
¼ TranscriptomeAssemblyðR;kiÞ

8: C ¼ ComputeClustersðT previous; T ki
Þ

9: yi ¼ log extended C; T ki

� �� �
10: ðb0;b1Þi�1 ¼ lmðk1;k2 . . . ; ki�1Þ; ðy1; y2 . . . ; yi�1ÞÞ
11: byi ¼ b0 þ b1 ki

12: d scoreþ ¼ ðyi � byiÞ
2

13: if d score > t then

14: break

15: else

16: T previous ¼ T previous [T ki

17: i ¼ iþ 1

18: ki ¼ f ðki�1Þ " Compute next k value

19: end if

20: until k � l

21: Output: transcripts T previous [T ki

1672 D.A.Durai and M.H.Schulz

Deleted Text: ,
Deleted Text: s
Deleted Text: &hx2013;
Deleted Text: &hx2009;&hx003E;&hx2009;
Deleted Text: -
Deleted Text: ,
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra

et al., 2012, SRR332171), 45M paired-end reads of length 45 bps

for T-cell (Heap et al., 2010, SRX011545), 142M single-end reads

of length 50 bps from hESCs (Au et al., 2013, SRR1020625), 64M

paired-end reads of length 76 bps from HeLa cell lines (Cabili et al.,

2011, SRR309265) and 60M, 101bp paired-end reads from IMR90

cell lines from ENCODE (http://genome.ucsc.edu/cgi-bin/hgFileUi?

g¼wgEncodeCshlLongRnaSeq).

The quality of transcriptome assembly is highly affected by the

presence of sequencing errors (Le et al., 2013). Hence as a prepro-

cessing step, all datasets were error corrected using SEECER version

0.2 (Le et al., 2013) with default parameters, except for HeLa where

we used ks¼31 for SEECER. After each single kmer assembly we re-

move redundant transcripts in the same assembly by using CD-HIT-

EST clustering (sequence identity 99%) (Fu et al., 2012) and only

retaining the representative sequences of clusters.

3 Results

3.1 Common kmer selection strategies are suboptimal
Multi-kmer de novo transcriptome assemblers build the DBG for

several kmer values. Conceptually, the task is to find the best multi-

kmer assembly given a set of possible values K ¼ fk1; . . . ; kng and a

set of reads R. There are two problems to this: (i) which metric

should be used to define optimal performance? (ii) how to efficiently

find bK � K, such that bK achieves optimal performance for R, given

that there are
Xn

i¼1

n
i

� �
many such subsets?

For the first problem, one performance measure used often in the

literature is the number of annotated 80%-hits in a sequence data-

base. This is determined by aligning the transcripts to a reference se-

quence and comparing it with existing gene annotation, (see

‘Methods’). This metric does not consider the specificity of the

assembled transcripts and does not penalize for the amount of mis-

assemblies. Here, we suggest to optimize the sensitivity of the multi-

k assembly using the number of 80%-hits and use a misassembly re-

moval strategy for the final assembly. We define the number of

80%-hits Ensembl transcripts that are obtained by running the as-

sembler for all values in K for a dataset R as optimal. With this no-

tion, we can measure the performance of any multi-kmer assembly

with bK � K in terms of % of optimal. For example, if the exhaustive

assembly using K produces 2000 80%-hits, we set that as optimal. If

another multi-k assembly produces 1500 80%-hits, then it recon-

structed 75% of the optimal value.

The second problem is rarely addressed in the literature, in par-

ticular the problem of selecting a subset bK given R. In practice, the

following heuristics are common: (i) use the best single kmer assem-

bly according to an evaluation criteria, e.g. the one with the most

BlastX hits in a close species. Here we represent this strategy by an

optimistic approach selecting the single kmer assembly that has the

highest number of known reference transcripts assembled, termed

Best-k. (ii) Select an arbitrary subset of possible kmer values. We

created 3 such sets for each dataset, which are called Set 1–3 (see

‘Methods’). (iii) The last strategy is to run the assembly for the full

set of values in K. In this work we introduce KREATION (Kmer

Range EstimATION), a data-driven heuristic approach which tries

to maximize sensitivity without running the full set of kmer

assemblies.

In Figure 1, we show the performance of all three previous strat-

egies using the Oases assembler (Schulz et al., 2012) on four differ-

ent human RNA-seq datasets that have different read lengths and

sequencing depth (see ‘Methods’). Compared to running the full set

of kmers, which by definition is optimal, choosing a random set or

picking the Best-k shows a loss in performance up to 30%. In par-

ticular, each setup outperforms the others on a different dataset,

such that no one strategy can be recommended. KREATION

achieves close to optimal performance (Fig. 1).

3.2 Clustering of consecutive kmer assemblies reveals

assembly progress
The main focus of this work is to define a data-driven procedure

that predicts an optimal stopping point for a de novo multi-kmer as-

sembler. As we mentioned earlier, we want to find a subset bK that

shows a similar number of 80%-hits compared to the full assembly.

First, we investigated the contribution of each single-kmer assembly

to the performance of the full assembly using Oases. In Figure 2, we

plot the number of correct transcripts that are assembled in their

longest form in a particular single kmer assembly (x-axis). It can be

seen that the assembly with the smallest kmer value contributes

most of the correct transcripts and that a decreasing exponential

trend can be observed, with higher kmer values being less important.

From this we conclude that the problem of finding bK from all pos-

sible subsets
Xn

i¼1

n
i

� �
can be simplified. We suggest to consider a

series of increasing kmer values ðk1; . . . ; knÞ, where

k1 < k2; . . . ; < kn. In this work we used the series of kmers

ki ¼ ki�1 þ 2.

In Figure 3 (bottom) it is shown how the performance (% of op-

timal, left y-axis) changes when the multi-k assembly is constructed

up to index i in the series, i.e. T i ¼ T k1
[. . . [T ki

, by merging tran-

scripts, (see ‘Methods’). Similar to our observation in Figure 2 we

see that higher k values contribute little to the assembly, e.g. 99% of

the optimal sensitivity is reached at k¼39.

In a de novo circumstance, how can we predict the index i such

that the obtained sensitivity is close to optimal sensitivity? We

observed that the number of transcripts going from i to iþ1 always

increases, i.e. jT ij > jT iþ1j, illustrated for a dataset in

Supplementary Table 1. However, we know from Figure 2 that for

higher k values the number of correct transcripts decreases approxi-

mately exponentially. Correct transcripts, as in Figure 2, need to be

novel. These novel transcripts in T iþ1 are the representative se-

quences of clusters that either extend transcripts in T i (extended

clusters) or form unique clusters, without any transcript from T i

Fig. 1. Comparison of kmer selection strategies: random selection of a set of

kmers (Set 1-3), best possible single kmer based assembly (Best-k), using

KREATION introduced here and merging assemblies over all possible kmers

(Full). Each column denotes one of the datasets analyzed. The intensity of the

heat map encodes how many of the optimal number of 80%-hits are achieved

by the approach (% of optimal)

kmer selection for de novo transcriptome assembly 1673

Deleted Text: human Embryonic Stem Cells (
Deleted Text:)
http://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncodeCshlLongRnaSeq
http://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncodeCshlLongRnaSeq
http://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncodeCshlLongRnaSeq
Deleted Text: -
Deleted Text: 1
Deleted Text: 2
Deleted Text: 1
Deleted Text: ,
Deleted Text: 2
Deleted Text: <italic>-</italic>
Deleted Text: 3
Deleted Text: above
Deleted Text: for example
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw217/-/DC1

(see ‘Methods’). For KREATION we use the CD-HIT-EST algo-

rithm that preserves sequence to cluster memberships in its output

and its clustering heuristic has an added advantage of being very fast

in practice.

In our de novo setup some of the novel clusters will represent

misassemblies. These misassemblies generally arise from the unique

clusters (Supplementary Figure S2). Extended clusters constitute

more 80%-hits than unique clusters (Supplementary Figure S3).

Therefore, we can approximate the number of correct transcripts for

Tiþ1 by counting extended clusters.

In Figure 3 (top) we show how the logarithm of the number of

extended clusters for the brain dataset behaves for different k values.

As the number of extended clusters also contains misassemblies we

observed the exponential trend, visible as a line in log space, only up

to k¼35. Afterwards, when fewer genuine transcripts are contrib-

uted by T iþ1, this trend changes. Hence, once the curve starts to de-

viate significantly from a straight line, dropping towards small

cluster numbers, it may be advisable to stop the assembly as we do

not expect contributions to the overall assembly.

3.3 Stopping the assembly by assessment of model fit
But how to measure if the exponential fit is worse after adding an-

other kmer assembly?

We tested the following method. Suppose we run our assembly

for values k ¼ k1;k2; . . . ;kn. We first fit a linear model to the log

counts of extended clusters for all indices until n � 1, (see

‘Methods’). Assuming that the predicted linear model would also ex-

plain the response variable of the current index n, we predict the log

count of extended clusters for n. We then deduce the error between

the actual value and the predicted value. The process is repeated

for all values of n and after each iteration errors are summed up

defining our deviation score (d score). Normally the error is close to

zero for data points which follow a linear trend and hence the result-

ing d score is very small. The error becomes significantly larger at a

point where the curve starts to deviate from the straight line. This re-

sults in a noticeable increase in d score. As seen in Figure 3 (top),

the value of d score remains close to zero until k¼37. Namely, until

a kmer value where all the points are well approximated by a

straight line. Beyond this kmer the d score increases significantly

and goes above a pre-defined threshold (0.01 in our case). This point

corresponds to a kmer that shows close to 99% of the optimal value

(Fig. 3 bottom, dotted line). Therefore, stopping at this point results

in almost no loss of assembly sensitivity and a significant reduction

in runtime (Fig. 3 bottom, secondary axis). We tested this heuristics

with other assemblers on the same dataset and found a similar be-

haviour (Fig. 4). Hence we used this heuristic to design the

KREATION algorithm, see Algorithm 1.

Fig. 2. Total number of correct transcripts (y-axis) which were assembled dur-

ing iteration of kmer k (x-axis) in the final merged assembly. Correctness of

transcripts is determined through alignment to the genome, see ‘Methods’

section

Fig. 3. Concordance between d_score, behaviour of extended clusters and the

assembly of known transcripts. (top) The number of extended clusters (pri-

mary y-axis, log10 base) and d_score (secondary y-axis) is shown as a func-

tion of increasing k values in the multi-k assembly (x-axis), see text. The

d_score crosses the threshold value (dotted horizontal line) at a k value after

which no significant contribution is made to the assembly. This can be seen

from the bottom plot which shows the contribution of each kmer (x-axis) to-

wards assembly of optimal number of known 80%-hits (y-axis). The vertical

dotted line represents the kmer where the assembly is stopped

Fig. 4. Analysis of optimal kmer value for Trans-ABySS (left) and

SOAPdenovo-Trans (right) on the brain dataset. The points in the curve repre-

sents how much of the final 80% transcripts (final here means the 80% tran-

script discovered using all k-values and thus termed optimal) are predicted

by a multi-k assembly up to the current kmer (x-axis). The dashed line in each

plot represents the optimal kmer suggested by KREATION

1674 D.A.Durai and M.H.Schulz

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw217/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw217/-/DC1
Deleted Text: &hx2013;
Deleted Text: (

3.3.1 Application to other datasets

In addition to the brain dataset, we tested KREATION on four other

data sets with different read length and coverage (see ‘Methods’). In

all cases the point where d score crosses the threshold value coin-

cides with a kmer value close to the optimum (see Supplementary

Figure S4–S7).

We list the complete numbers for all five datasets in Table 2. As

the table shows, consistently for all datasets the stopping point only

leads to a small decrease in the 100 and 80%-hits. Further the final

number of transcripts is reduced without affecting the nucleotide

sensitivity and specificity. We also show the number of kmer assem-

blies not computed and the time saved due to KREATION. In par-

ticular, for the longer read datasets (HeLa and IMR90) KREATION

avoids a significant number of assemblies, saving up to days of com-

putation on our computing cluster. Note that the clustering done

after each kmer assembly, only takes in the order of a few minutes

as CD-HIT-EST is parallelized and very fast (Fu et al., 2012).

3.3.2 Effect of d_score threshold

The threshold t for d score is an important parameter for

KREATION. We tested our approach for various values of t ¼
(0.001, 0.005, 0.01, 0.05, 0.1, 0.2) on all datasets and assemblers.

We found that selecting a threshold of 0.001 leads to at least a 50%

reduction in runtime, and at the same time a loss up to at most 9%

in comparison to the full assembly. A high threshold value results in

achieving an almost 100% optimal assembly, but results in insignifi-

cant reduction of runtime (Fig. 5). For our analyses we chose a

threshold value of 0.01, which seems to be a good tradeoff between

runtime and quality of the final assembly, but other values may be

preferred by the user.

3.4 Single-k clusters are enriched in misassemblies
The major drawback of a multi-kmer based assembly is the gener-

ation of a high number of misassemblies. We observed, and also

various studies have shown, that misassemblies are generally shorter

in length (see Supplementary Figure S8) and hence a large percent-

age of them can be removed by applying a length cutoff (300 bp in

our case) on the final transcripts (Fig. 6 top). As clustering tran-

scripts produced by different kmer assemblies is an integral part of

KREATION, we wondered how misassemblies are distributed over

the clusters. We observed that clusters which contained transcripts

from only one kmer value consisted of a large number of misassem-

blies. We termed these clusters single-k clusters (see ‘Methods’).

Removing these clusters also reduces the number of misassemblies

Table 2. Analysis of assembly results with all assemblers on the five datasets

Oases

Dataset kmer range No. Transcripts Sens. (%) Spec. (%) 100%-hits 80%-hits Runs saved %hrs reduced Runtime (hrs)

Brain KREATION 462 896 46.59 68.98 6264 42 540 6 32 15

Brain Full 468 056 46.74 68.94 6315 42 629 — — 22

hESC KREATION 196 824 37.58 73.13 12 783 42 899 8 31 9

hESC Full 203 042 37.43 73.62 13 105 43 635 — — 13

HeLa KREATION 113 009 24.06 78.81 4243 25 625 15 10 162

HeLa Full 119 009 24.1 77.43 4284 25 721 — — 180

TCell KREATION 129 868 19.11 77.91 3050 18 650 5 15 6

TCell Full 132 975 19.05 75.42 3131 18 918 — — 7

IMR90 KREATION 1 362 744 49.65 37.21 22 165 59 253 14 34 600

IMR90 Full 1 384 061 49.55 36.75 22 246 59 700 — — 901

SOAPdenovo-Trans

Dataset kmer range No. Transcripts Sens. (%) Spec. (%) 100%-hits 80%-hits Runs saved %hrs reduced Runtime (hrs)

Brain KREATION 295 870 33.28 63.08 4192 25 416 5 9 11

Brain Full 298 286 33.28 63.35 4235 25 621 — — 12

hESC KREATION 226 974 35.52 60.34 8072 34 914 5 25 6

hESC Full 229 635 35.45 60.27 8128 35 087 — — 8

HeLa KREATION 139 955 25.63 61.89 3413 23 308 15 20 60

HeLa Full 144 909 25.63 60.3 3456 23 559 — — 75

TCell KREATION 94 233 18.79 73.37 2598 16 589 4 34 4

TCell Full 94 925 18.8 73.48 2624 16 634 — — 6

IMR90 KREATION 1 836 920 38.58 8.65 11 936 45 276 17 10 573

IMR90 Full 1 847 582 38.99 9.71 12 720 47 308 — — 635

TransABySS

Dataset kmer range No. Transcripts Sens. (%) Spec. (%) 100%-hits 80%-hits Runs saved %hrs reduced Runtime (hrs)

Brain KREATION 348 824 36.88 64.59 6715 36 531 5 10 18

Brain Full 350 814 36.39 64.14 6766 36 629 — — 20

hESC KREATION 263 654 36.5 59.61 10 514 40 845 9 40 6

hESC Full 274 615 36.72 57.95 10 975 41 618 — — 10

HeLa KREATION 143 423 26.8 68.56 4210 26 841 20 24 100

HeLa Full 173 170 26.9 65.24 4402 27 460 — — 130

TCell KREATION 108 830 20.47 75.74 3572 212 347 4 25 4.5

TCell Full 109 990 20.44 75.84 3608 21 409 — — 6

IMR90 KREATION 1 396 311 44.32 19.5 18 761 57 922 23 29 560

IMR90 Full 1 470 188 46.03 22.8 20 653 60 095 — — 780

The first row for each dataset analyses the transcripts obtained by running the assembly till the optimal kmer. The second row for each dataset represents the re-

sults obtained by running the assembly till a feasible kmer closest to the read length. KREATION used a d score threshold of 0.01 for all the cases.

kmer selection for de novo transcriptome assembly 1675

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw217/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw217/-/DC1
Deleted Text: -
Deleted Text: &hx0025;-
Deleted Text: ar
Deleted Text: e
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw217/-/DC1

significantly (Fig. 6 top). We found that removing all transcripts

which are either shorter than the length cutoff or which belong to

single-k clusters reduces more misassemblies as compared to apply-

ing only one of the above mentioned filters (Fig. 6 top).

Further we wanted to check whether merging assemblies from

multiple kmer values as done in KREATION is better than the sin-

gle-kmer assembly with the highest sensitivity (k1 in our case). In

other words, we wanted to check whether we are generating more

misassemblies than useful transcripts, when we merge assemblies

from multiple kmer values. For this, we define 80%-hit improve-

ment rate as the fold-change of 80%-hits from the assembly gener-

ated by the lowest kmer and misassembly rate as the ratio of

observed to the expected number of misassemblies. Figure 6 (bot-

tom) shows the comparison between these two metrics for all

KREATION assemblies computed, separated by dataset. In an ideal

situation, the 80%-hit improvement rate should be better than the

misassembly rate and hence all the points in the graph should be

above the diagonal. We show that for most of the datasets the cor-

responding points are either above the diagonal or close to the diag-

onal, except for the HeLa dataset assembled by TransABySS, which

has a misassembly rate of 1.93. We conclude that the multi-kmer

based assembly approach followed by appropriate filtering of misas-

semblies is better than the single kmer based assembly.

4 Discussion and conclusion

We have presented KREATION, an algorithm that is able to auto-

matically stop a de novo multi-k transcriptome assembly at a kmer

value close to the optimal sensitivity. We showed that clustering

newly assembled transcripts with all assemblies made in previous

rounds can be used to estimate how many transcripts have been im-

proved due to the last round, by counting extended clusters. We

empirically found that the number of extended clusters falls expo-

nentially with increasing k, when we consider to run the multi-k

assembler from smaller kmer values to larger ones, as is most rea-

sonable for transcriptome assemblies. This motivated us to predict

the kmer value at which the assembly should stop by selecting the

kmer where deviation to the expected exponential trend deviates

considerably, as measured with the designed the d_score. We have

shown that thresholding the d_score works well for three popular de

novo assemblers, and datasets with different coverages and read

lengths. For longer read datasets KREATION may save days of

computation.

Fig. 5. Analysis of KREATION performance with different d_score thresholds.

(top, higher is better) Assembler performance is measured as % of optimal

(y-axis) for different d_score thresholds (x-axis). (bottom, lower is better)

KREATION runtime is shown in comparison to the time taken by the Full as-

sembly (y-axis). Each box plot shows the results for all three assemblers

applied to the five data sets

Fig. 6. Analysis of different misassembly removal strategies. (top) The bar

plot represents the performance of various removal strategy in terms of per-

centage of misassemblies removed on Brain dataset. Single-k cluster re-

moval (white bar) and 300 bp length cutoff based removal (grey bar) removes

a high percentage of misassemblies. A combination of both methods (black

bar) performs better than applying only one strategy. (bottom) Comparison

of 80%-hit improvement rate and misassembly rate for all computed assem-

blies (see ‘Methods’)

1676 D.A.Durai and M.H.Schulz

However, KREATION is a heuristic approach and there is no

guarantee that the d_score threshold corresponds to a good stopping

point or that there will be an optimum for the set of kmers tested, al-

beit both is true for the datasets and assemblers tested in this work.

Still, we think that there is a theoretical connection that is worth

exploring further. KREATION often selects different stopping kmer

values for each assembler when applied to the same dataset. This

points to a complex interplay between graph structure, transcriptome

complexity, read coverage and assembler implementations. It may be

the reason why simpler strategies for selecting kmers do not seem to

generalize for datasets with different characteristics (cf. Fig. 1).

One disadvantage of merging the assemblies of several k values is

the increased number of misassemblies as compared to using one

kmer. However, recent studies have shown that appropriate filters

(Yang and Smith, 2013) or a proper statistical treatment with repli-

cate data (Davidson and Oshlack, 2014) allows to remove most mis-

assemblies and therefore ease downstream analyses. Here we show

that a large number of misassemblies stem from single-k clusters that

can be removed easily. Together with a length cutoff on assembled

transcripts this denotes a powerful approach to get rid of most of the

misassemblies without removing genuine transcripts (Fig. 6,

Supplementary Figure S9). We argue that this makes multi-kmer as-

sembly strategies more useful for the community, but we think that

there is still room for improvement for removing misassemblies.

In a recent work (Li et al., 2014) a reference free transcriptome as-

sembly evaluation approach was introduced. Based on a graphical

model of the RNA-sequencing process, an assembly quality estimate

can be computed by aligning reads to the assembled transcripts. We

note that in principle their method may be used as an alternative func-

tion to decide when to stop. However, this approach would constitute a

serious runtime cost as read alignment, SAM file writing and model

building would take in the order of hours for one kmer iteration.

Instead, we see their work complementary to our work. We have

focused on the question where to stop the assembly, but there are other

parameters that are worth tuning. For example, we are currently assum-

ing the k1 is given, which is partly due to the fact that it just needs to be

chosen in such a way to avoid small kmers that produce misassemblies.

As a conclusion, we show that an informed kmer selection ap-

proach for de novo transcriptome assembly shows an improvement

over simpler methods suggested so far. We believe that KREATION

with the misassembly filters will be useful for the community and

implemented the mentioned ideas in a software that currently sup-

ports the de novo assemblers tested in this work (https://github.com/

SchulzLab/KREATION).

Acknowledgement

We like to thank the anonymous reviewers for their constructive comments.

Funding

This work was supported by the Cluster of Excellence on Multimodal

Computing and Interaction (EXC284) of the German National Science

Foundation (DFG).

References

Au,K.F. et al. (2013) Characterization of the human ESC transcriptome by hy-

brid sequencing. Proc.Natl. Acad. Sci. USA, 110, E4821–E4830.

Barbosa-Morais,N.L. et al. (2012) The evolutionary landscape of alternative

splicing in vertebrate species. Science, 338, 1587–1593.

Cabili,M.N. et al. (2011) Integrative annotation of human large intergenic

noncoding RNAs reveals global properties and specific subclasses. Genes

Dev., 25, 1915–1927.

Chang,Z. et al. (2015) Bridger: a new framework for de novo transcriptome

assembly using rna-seq data. Genome Biol., 16, 30. Zheng Chang and

Guojun Li contributed equally to this work.

Chikhi,R. and Medvedev,P. (2014) Informed and automated k-mer size selec-

tion for genome assembly. Bioinformatics, 30, 31–37.

Cunningham,F. et al. (2014) Ensembl 2015. Nucleic Acids Res., 43,

D662–D669.

Davidson,N.M. and Oshlack,A. (2014) Corset: enabling differential gene ex-

pression analysis for de novo assembled transcriptomes. Genome Biol., 15,

410.

Fu,L. et al. (2012) CD-HIT: accelerated for clustering the next-generation

sequencing data. Bioinformatics, 28, 3150–3152.

Grabherr,M.G. et al. (2011) Full-length transcriptome assembly from RNA-

Seq data without a reference genome. Nat. Biotechnol., 29, 644–652.

Haznedaroglu,B.Z. et al. (2012) Optimization of de novo transcriptome as-

sembly from high-throughput short read sequencing data improves func-

tional annotation for non-model organisms. BMC Bioinformatics, 13, 170.

Heap,G.A. et al. (2010) Genome-wide analysis of allelic expression imbalance

in human primary cells by high-throughput transcriptome resequencing.

Hum. Mol. Genet., 19, 122–134.

Ilie,L. et al. (2011) HiTEC: accurate error correction in high-throughput

sequencing data. Bioinformatics, 27, 295–302.

Kent,W.J. (2002) BLAT—The BLAST-Like alignment tool. Genome Res., 12,

656–664.

Le,H.S. et al. (2013) Probabilistic error correction for RNA sequencing.

Nucleic Acids Res., 41, e109.

Li,B. et al. (2014) Evaluation of de novo transcriptome assemblies from RNA-

Seq data. Genome Biol., 15, 553.

Peng,Y. et al. (2013) IDBA-tran: a more robust de novo de Bruijn graph assem-

bler for transcriptomes with uneven expression levels. Bioinformatics, 29,

i326–i334.

Robertson,G. et al. (2010) De novo assembly and analysis of RNA-seq data.

Nat. Methods, 7, 909–912.

Schulz,M.H. et al. (2012) Oases: robust de novo RNA-seq assembly across the

dynamic range of expression levels. Bioinformatics, 28, 1086–1092.

Schulz,M.H. et al. (2014) Fiona: a parallel and automatic strategy for read

error correction. Bioinformatics, 30, i356–i363.

Simpson,J.T. (2014) Exploring genome characteristics and sequence quality

without a reference. Bioinformatics, 30, 1228–1235.

Sloan,D.B. et al. (2012) De novo transcriptome assembly and polymorphism

detection in the flowering plant Silene vulgaris (Caryophyllaceae). Mol.

Ecol. Resour., 12, 333–343.

Sultan,M. et al. (2008) A global view of gene activity and alternative splicing

by deep sequencing of the human transcriptome. Science, 321, 956–960.

Surget-Groba,Y. and Montoya-Burgos,J.I. (2010) Optimization of de novo

transcriptome assembly from next-generation sequencing data. Genome

Res., 20, 1432–1440.

Xie,Y. et al. (2014) SOAPdenovo-Trans: de novo transcriptome assembly with

short RNA-Seq reads. Bioinformatics, 30, 1660–1666.

Yang,Y. and Smith,S.A. (2013) Optimizing de novo assembly of short-read

RNA-seq data for phylogenomics. BMC Genomics, 14, 328.

kmer selection for de novo transcriptome assembly 1677

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw217/-/DC1
https://github.com/SchulzLab/KREATION
https://github.com/SchulzLab/KREATION
Deleted Text: grant number

	btw217-TF1

