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Background:Ovarian cancer (OC) is the most troubling malignant tumor of the

female reproductive system. It has a low early diagnosis rate and a high tumor

recurrence rate after treatment. Immunogenic cell death (ICD) is a unique form

of regulated cell death that can activate the adaptive immune system through

the release of DAMPs and cytokines in immunocompromised hosts and

establish long-term immunologic memory. Therefore, this study aims to

explore the prognostic value and underlying mechanisms of ICD-related

genes in OC on the basis of characteristics.

Methods: The gene expression profiles and related clinical information of OC

were downloaded fromTheCancer Genome Atlas (TCGA) andGene Expression

Omnibus (GEO) database. ICD-related genes were collected from the

Genecards database. ICD-related prognostic genes were obtained by

intersecting ICD-related genes with the OC prognostic-related genes that

were analyzed in the TCGA database. Functional enrichment, genetic

mutation, and immune infiltration correlation analyses were further

performed to identify underlying mechanisms. Subsequently, we developed

a TCGA cohort-based prognostic risk model that included a nine-gene

signature through univariate and multivariate Cox regression and LASSO

regression analyses. Meanwhile, external validation was performed on two

sets of GEO cohorts and the TCGA training cohort for three other common

tumors in women. In addition, a nomogram was established by integrating

clinicopathological features and ICD-related gene signature to predict survival

probability. Finally, functional enrichment and immune infiltration analyseswere

performed on the two risk subgroups.

Results: By utilizing nine genes (ERBB2, RB1, CCR7, CD38, IFNB1, ANXA2,

CXCL9, SLC9A1, and SLAMF7), we constructed an ICD-related prognostic

signature. Subsequently, patients were subdivided into high- and low-risk

subgroups in accordance with the median value of the risk score. In

multivariate Cox regression analyses, risk score was an independent

prognostic factor (hazard ratio = 2.783; p < 0.01). In the TCGA training

cohort and the two GEO validation cohorts, patients with high-risk scores

had worse prognosis than those with low-risk scores (p < 0.05). The time-
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dependent receiver operating characteristic curve further validated the

prognostic power of the gene signature. Finally, gene set enrichment

analysis indicated that multiple oncological pathways were significantly

enriched in the high-risk subgroup. By contrast, the low-risk subgroup was

strongly related to the immune-related signaling pathways. Immune infiltration

analysis further illustrated that most immune cells showed higher levels of

infiltration in the low-risk subgroup than in the high-risk subgroup.

Conclusion: We constructed a novel ICD-related gene model for forecasting

the prognosis and immune infiltration status of patients with OC. In the future,

new ICD-related genes may provide novel potential targets for the therapeutic

intervention of OC.

KEYWORDS

ovarian cancer, immunogenic cell death (ICD), risk model, prognosis, immune
infiltration

1 Introduction

Among all malignant diseases of the female reproductive

system, ovarian cancer (OC) is one of the most troublesome. The

most recent cancer statistics show that OC is expected to account

for 19,880 new cases and 12,810 fatalities in the United States in

2022 (Siegel et al., 2022). OC has an incidence rate that ranks

second among all gynecological tumor diseases (17.3%), but its

mortality rate jumps to the first place (39.0%) mainly due to the

following reasons: First, the ovaries are located deep in the pelvis,

and the early stage of OC has almost no symptoms. Therefore,

most patients are already in the advanced stage when they are

diagnosed with OC (Wu et al., 2022). Second, the effectiveness of

initial treatment in patients with OC has been limited due to

widespread drug resistance, with 70%–80% of patients

experiencing relapse within 2 years (Blagden et al., 2018).

Despite advances in contemporary medical technology, the 5-

year survival rate for OC remains lower than 50% (Yang et al.,

2022). Therefore, new biomarkers are urgently needed to predict

and improve the prognosis of patients with OC.

Immunogenic cell death (ICD) is a unique form of regulatory

cell death that can participate in immunity, as well activate fitness

in immunocompetent hosts through the release of damage-

associated molecular patterns (DAMPs) and cytokine

immunity and establish long-term immune memory, which is

critical for eradicating pathogens and balancing antitumor

immunity to affect the tumor immune cycle (Galluzzi et al.,

2020). Two anticancer drugs based on ICD have been developed.

One is belantamab mafodotin, which was approved by the FDA

in 2020 for the treatment of adult patients with relapsed or

refractory multiple myeloma; this drug induces ICD in vitro and

may contribute to T cell-mediated antitumor responses (Tzogani

et al., 2021). The other is lurbinectedin, which has been approved

by the FDA for the treatment of small cell lung cancer (Markham,

2020). Multiple ongoing clinical trials have shown that after ICD-

inducing chemotherapy, tumors tend to transition from “cold”

tumors that respond poorly to immunotherapy to “hot” tumors

that respond well to immune checkpoint inhibitors (Jia et al.,

2020). The study of these ICD-based therapies undoubtedly

provides a new direction for the study of the immunotherapy

of “cold” tumors, such as OC. However, the role of ICD-related

genes in OC prognosis is still largely unknown.

In this study, we downloaded the gene expression profiles and

related clinical information of OC from The Cancer Genome Atlas

(TCGA) and Gene Expression Omnibus (GEO) database and

collected ICD-related genes from the Genecards database. OC

prognosis-related genes were screened from the TCGA cohort

and intersected with the ICD-related gene set to obtain ICD-

related prognostic genes. Functional enrichment, genetic

mutation, and immune infiltration analyses were further carried

out to identify underlying mechanisms. Subsequently, through Cox

and LASSO regression analyses, we developed a TCGA cohort-

based prognostic risk model that included a nine-gene signature. At

the same time, we performed external validation with the GEO

cohort. Subsequently, we constructed a nomogram by integrating

clinicopathological data and prognostic gene signatures to predict

patient survival. Finally, we analyzed the functional and

immunological differences between high- and low-risk subgroups

depending on the above-mentioned risk groups.

2 Materials and methods

2.1 Data collection and preprocessing

The RNA expressionmatrix, related clinical information, and

RNA expression data from the clinical and follow-up

information on OC, cervical cancer, endometrial cancer, and

breast cancer were downloaded from TCGA database (https://

portal.gdc.cancer.gov/projects/TCGA-OV/). RNAseq data were

converted from fragments per kilobase per million format into

the transcripts per million (TPM) format and subsequently log2
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(TPM + 1) transformed to shrink the numeric range of the data

for further analysis. At the same time, samples with incomplete

survival data were ruled out. By using the R “survival” package,

the expression data were grouped by the median, and overall

survival (OS)-related prognostic molecules were screened out

through COX regression analysis. The obtained data were

considered significant when p < 0.01 was satisfied. The

Genecards Database (https://www.genecards.org/) is a

comprehensive database that integrates genomic,

transcriptomic, proteomics, genetic, clinical, and functional

information and other resources and is freely available to users

(Fishilevich et al., 2017). It was used to retrieve and download ICD-

related genes by applying the keyword “immunogenic cell death.”

Then, the relevance score provided by the database was utilized to

screen out molecules for further research. In this work, the relevance

score was computed by factoring in the importance of the different

resources associating the gene with the disease (Safran et al., 2021).

Themedian relevance score was set as the threshold to screen out the

related genes with strong correlation. OC prognosis-related

molecules and ICD-related genes were intersected to obtain the

OC ICD-related prognostic gene set, which was used to construct a

prognostic model. Finally, two datasets were downloaded from the

GEO database (GSE26712 https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE26712, GSE32062 https://www.ncbi.nlm.

nih. gov/geo/query/acc.cgi?acc = GSE32062) for external validation.

2.2 Gene expression analysis

Normalized mRNA expression data that had been

uniformly processed through the Toil (Vivian et al., 2017)

processes of the TCGA-OV cohort and GTEx were

downloaded from the UCSC Xena browser (https://

xenabrowser.net/datapages/), which was used to compare

the expression of prognostic-relevant gene sets between

tumor samples and normal samples. Before analysis and

comparison, duplicate samples were removed,

and the RNAseq data in TPM format were

log2 transformed. Finally, the R “ggplot2” package was

used for visualization.

2.3 Functional enrichment analysis

The STRING database (Szklarczyk et al., 2021) (https://

string-db.org/) aims to integrate all known and predicted

physical interactions and functional associations between

proteins. We used this database to obtain the protein–protein

interaction network (PPI) of ICD-related genes. We further

organized the PPI network lattice map by using the R

“igraph” package. Next, the R “clusterProfiler” package was

used to perform Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis to obtain a deepened understanding of the functional

roles of the ICD-genes.

2.4 Genetic mutation and immune
correlation analysis

The cBioPortal database (Gao et al., 2013) (http://www.

cbioportal.org/) is a web-based repository for exploring,

visualizing, and analyzing multidimensional cancer

genomics data. We used this website to examine the

genetic mutation status of 22 ICD-related genes in the

TCGA cohort. Subsequently, we applied the ssGSEA

algorithm built into the GSVA package to calculate the

degree of infiltration of 24 types of immune cells (Bindea

et al., 2013), including activated DC (aDC); B cells,

CD8 T cells, cytotoxic cells, DC, eosinophils, immature

DC (iDC), macrophages, mast cells, neutrophils, NK

CD56bright cells, NK CD56dim cells, NK cells,

plasmacytoid DC (pDC), T cells, T helper cells, T central

memory (Tcm), T effector memory (Tem) cells, T follicular

helper (Tfh) cells, T gamma delta (Tgd) cells, Th1 cells,

Th17 cells, Th2 cells, and Treg cells.

2.5 Construction and validation of a
prognostic ICD-Related gene signature

First, a univariate Cox regression model was utilized to

evaluate the interaction between ICD-related genes and the

OS of OC in the TCGA cohort. ICD-related genes with p <
0.05 were identified as factors with potential prognostic value.

Subsequently, Lasso regression analysis based on the R

“glmnet” package was applied to further screen variables.

Ten-fold cross-validation was used to identify the optimal

value of λ. Subsequently, genes screened by Lasso regression

analysis were input into the multivariate Cox regression

model, and the risk score of the ICD-related prognostic

model was determined in accordance with the multivariate

regression coefficient. Next, the samples were divided into the

high-risk and low-risk subgroups on the basis of the median of

the risk score as a cutoff. The risk score distribution, survival

status, and heatmaps of characteristic ICD-related gene

expression were also plotted. The OS Kaplan–Meier curve

between the two subgroups was drawn by using the R

“survival” package, and the log-rank test was performed.

The receiver operating characteristic (ROC) curves of the

3- and 5-year survival rates between the two subgroups

were analyzed by utilizing the R “timeROC” package to

evaluate the predictive ability of the prediction model with

the ICD-related gene signature. Finally, we also analyzed and

plotted the progression-free interval (PFI) and disease-specific

survival (DSS) Kaplan–Meier curves to estimate the
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robustness of the prognostic model that we constructed. At the

same time, external validation was performed on the two GEO

cohorts GSE26712 and GSE32062. Finally, sample validation

was performed with three other common female

malignancies.

2.6 Establishment of the prognostic
nomogram

The associations of relevant clinicopathological variables

(age, stage, and residual tumor) and ICD-related risk score

FIGURE 1
Overall flow chart of the study.
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with OS were measured by using univariate and multivariate Cox

proportional hazards regression models. Time-dependent ROC

curves were further analyzed and plotted to evaluate the

prognostic value of this nomogram. Furthermore, we drew

calibration curves by using the R “rms” package and the R

“survival” package to assess the agreement between actual and

nomogram-predicted survival probabilities.

2.7 Functional and immunological analysis
of ICD-Related prognostic signature

We performed gene set enrichment analysis (GSEA) on

differentially expressed genes between high-risk and low-risk

subgroups by using the “clusterProfiler” R package

(Subramanian et al., 2005), which used the genome “c2.

cp.kegg.v6.2. symbols.gmt” as the reference, to further

investigate the underlying functional mechanisms of ICD-

related prognostic features. A gene was considered to be

significantly enriched when it satisfied false discovery

rate <0.25 and P. adjust <0.05. Subsequently, we compared

the difference in immune-infiltrating cell scores between the

high- and low-risk subgroups to further clarify the correlation of

prognostic models with immune status.

2.8 Statistical analysis

All statistical analyses in this work were performed by using

R software (v3.6.3, https://www.r-project.org/) and

corresponding software packages. We used the Wilcoxon rank

sum test to compare differences between groups. Spearman’s

rank correlation coefficients were calculated to determine the

correlation between variables. Kaplan–Meier analysis using the

log-rank test was used to assess survival between different

subgroups. p < 0.05 was considered statistically significant

unless stated otherwise.

3 Results

Before presenting the results, we provide the overall flow

chart of this work in Figure 1 to help readers understand our

work. The baseline clinical characteristics of the patients with OC

in this study are summarized in Table 1.We enrolled 374 patients

with OC from TCGA as the derivation cohort and 445 patients

with OC from GEO as the validation cohort, which included

185 patients in the GSE26712 cohort and 260 patients in the

GSE32062 cohort.

3.1 Identification of prognostic genes
associated with ICD

First, we used the “survival” R package to find 709 genes

that were significantly associated with OC prognosis in the

TCGA cohort (p < 0.01) (Supplementary Table S1).

Subsequently, we searched the GeneCards database for

genes related to ICD by using “immunogenic cell death” as

the search term. As a result, we obtained 1706 related genes

TABLE 1 Baseline clinical characteristics of the patients with OC in this study.

Characteristic TCGA GSE26712 GSE32062 p

N 374 185 260

Age, median (IQR) 59 (51, 68) — —

Clinical stage, n (%) <0.001
I 1 (0.2%) — 0 (0%)

II 22 (3.5%) — 0 (0%)

III 291 (46.1%) — 204 (32.3%)

IV 57 (9%) — 56 (8.9%)

Histological grade, n (%)

1 1 (0.2%) — 0 (0%)

2 42 (6.6%) — 131 (20.7%)

3 319 (50.5%) — 129 (20.4%)

4 1 (0.2%) — 0 (0%)

B 3 (0.5%) — 0 (0%)

X 6 (0.9%) — 0 (0%)

OS time, median (IQR) 1028 (519.5, 1661) 1164.35 (660.65, 1879.75) 1245 (810, 1710) 0.001

PFI Time, median (IQR) 444.5 (253, 793.5) — —

DSS Time, median (IQR) 1028 (519.5, 1661) — —
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(Supplementary Table S2), and further used the median

relevance score as the threshold to screen out 853 genes.

Finally, two gene sets were intersected to obtain 22 ICD-

related OC prognostic genes, as shown in Figure 2A. These

genes included 10 risk factors (hazards ratio [HR] > 1),

namely, ERBB2, RB1, MITF, ICOSLG, EPHA2, JAK1, ELN,

ANXA2, SLC6A4, and SLC9A1, and 12 protective factors

(HR < 1), namely, IFNG, GZMB, ICOS, CEACAM1, CD2,

SELL, CCR7, CD38, IFNB1, TAP1, CXCL9, and SLAMF7.

Next, we analyzed the differences in the expression

profiles of these 22 genes in OC samples from TCGA and

the corresponding normal tissue samples from GTEx then

drew a correlation heat map, as shown in Figure 2B. The

results showed that ERBB2, IFNG, RB1, GZMB, ICOS,

CEACAM1, ICOSLG, EPHA2, CD2, SELL, CD38, IFNB1,

ANXA2, TAP1, CXCL9, SLC9A1, and SLAMF7 were

highly expressed in tumor tissues. By contrast, MITF,

CCR7, JAK1, ELN, and SLC6A4 were lowly expressed in

tumor tissues. The differences were all statistically

significant (Figures 2C,D).

3.2 Biological function analysis of ICD-
Related prognostic genes

We first applied the STRING database to analyze the PPI

network of the 22 ICD-related prognostic genes. We set the

parameter to “Homo sapiens” with medium confidence (0.400).

We obtained enrichment p < 1.0e −16 (Figure 3A). We further

drew PPI network dot plots showing high and low expression

levels and combined scores (Figure 3B). Subsequently, we

performed GO and KEGG enrichment analysis on the genes.

Under the conditions of P. adj <0.05 and q value <0.2, we
identified 216 BPs, 15 CCs, 5 MFs, and 18 KEGGs

(Supplementary Table S3). GO enrichment analysis revealed

that ICD-related prognostic genes were significantly enriched

in a variety of immune-related biological processes. KEGG

pathway analysis demonstrated that the enriched pathways of

these cancer-related genes were mainly necroptosis, JAK−STAT

signaling pathway, and natural killer cell-mediated cytotoxicity.

We visualized three representatives of each item, and the results

are presented in Figure 3C.

FIGURE 2
Identification of the candidate ICD-related prognostic genes in the TCGA cohort. (A) Venn chart showing the number of OC prognostic genes
associated with ICD-related genes. (B)Heatmap of the expression of 22 overlapping genes. (C,D) Box plot of the expression levels of 22 overlapping
genes in OC and normal ovarian tissue. p values are p ≤ 0.5 (*), p ≤ 0.01 (**), p ≤ 0.001 (***).
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3.3 Mutation and immunological analysis
of ICD-Related prognostic genes

The extent of inherited mutations partly explains the role of

genes in disease progression. We searched the cBioPortal website

for genetic mutations in the 22 genes (Figure 4A). We discovered

that among the genes, RB1 had the highest mutation frequency,

accounting for 11% of mutations, and its main mutation type was

deep deletion. Five genes had themutation frequency of 4%. They

included ERBB2, SLAMF7, CEACAM1, ELN, and TAP1, and

their mutation form was mainly amplification.

We applied the ssGSEA method to calculate the correlation

between each factor and the 24 types of immune cells (Figure 4B)

to further evaluate the relationship between the 22 ICD-related

prognostic genes and immune cell infiltration. Our results

demonstrated that EPHA2, ERBB2, ICOSLG, and

SLC9A1 were weakly associated with immune cells. In

addition, except for SLC6A4, most of the other genes were

positively correlated with immune cells. These findings echoed

the results of the functional enrichment analysis discussed above.

3.4 Construction of ICD-Related
prognostic signature in the TCGA cohort

First, we conducted univariate Cox regression analysis on the

above 22 ICD-related genes, and our results revealed that

15 genes were significantly associated with the prognosis of

patients with OC (Figure 5A). Next, we included these

prognostic genes in further LASSO Cox regression analysis.

Nine characteristic ICD-related prognostic genes were

identified on the basis of the base penalty parameter (λ)
(Figures 5B,C). These genes included ERBB2, RB1, CCR7,

CD38, IFNB1, ANXA2, CXCL9, SLC9A1, and SLAMF7.

On this basis, we calculated the risk score of our new

prognostic model through multivariate Cox regression analysis

FIGURE 3
Biological function analysis. (A) Interactions among candidate genes shown by the PPI network obtained by using the STRING database. (B)
Correlation network of selected candidate genes (different color depths represent the strength of the correlation coefficient. Red represents down-
regulation, and blue represents up-regulation). (C) Results of GO and KEGG analyses.
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FIGURE 4
Mutation and immunological analysis. (A) Genetic mutation status of 22 genes in the TCGA cohort in the cBioPortal website. (B) Correlation
between 22 ICD-related prognostic genes and 24 types of immune cells calculated by the ssGSEA algorithm. p values are p ≤ 0.5 (*), p ≤ 0.01 (**), p ≤
0.001 (***).
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by using the following formula: risk score = 0.0521608 ×

ERBB2 expression +0.20999961 × RB1 expression +

(−0.0850947) × CCR7 expression + (−0.1610273) ×

CD38 expression + (−0.2437315) × IFNB1 expression

+0.09886907 × ANXA2 expression + (−0.0133657) ×

CXCL9 expression +0.22922048 × SLC9A1 expression +

(−0.0492765) × SLAMF7 expression + (−2.427119). Finally,

we explicitly separated the patients in the TCGA cohort into

the high- and low-risk subgroups on the basis of their

intermediate survival scores. Risk factor maps, including risk

score distributions, the survival status of patients, risk subgroups,

and the heatmap of risk gene expression in the two cohorts were

also drawn. As shown in Figure 6A, the high-risk subgroup had

significantly more deaths than the low-risk subgroup. Similarly,

Kaplan–Meier curve analysis illustrated that patients in the high-

risk subgroup had a significantly poorer OS than those in the

low-risk subgroup (p < 0.001, Figure 6B). Time-dependent ROC

analysis was utilized to further assess OS predictive power

(Figure 6D), yielding the AUC values of 0.599 and 0.692 for

the prediction of OS at 3 and 5 years, respectively. We also

predicted survival differences in PFI and DSS between the two

subgroups to demonstrate the robustness of our predictive

model. Our results showed that the high-risk subgroup had

worse PFI and DSS outcomes than the low-risk subgroup with

p = 0.007 and p < 0.001, respectively (Figures 6C,E).

3.5 Validation of the ICD-Related
prognostic signature in the GEO cohort

We assessed the reproducibility of the prognostic signature

in two independent GEO cohorts. (GSE26712 and GSE32062)

to validate our findings in the TCGA cohort. Patients in both

cohorts were divided into the high- and low-risk subgroups in

accordance with the median risk score derived from the risk

score formula above, and survival and time-dependent ROC

curve analyses were performed on OS. Kaplan–Meier analysis

showed that in both cohorts, the high-risk group had

FIGURE 5
Construction of ICD-related prognostic signature in the TCGA Cohort. (A) Univariate Cox regression analysis identified 15 ICD-related genes
associated with OS in patients with OC. (B) LASSOCox regression analysis determined 15 ICD-related genes as the optimal combination for the ICD-
related prognostic signature construction. (C) Plot of variable trajectories generated for log(λ) sequences in LASSO Cox regression analysis.
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significantly worse OS than the low-risk group (p = 0.012 and

p = 0.003) (Figures 7A,C). In addition, the results of time-

dependent ROC curve analysis revealed that the AUCs for the

3- and 5-year OS in the GSE26712 cohort were 0.629 and 0.574,

respectively (Figure 7B), and were 0.624 and 0.653 in the

GSE32062 cohort, respectively (Figure 7D). These results all

verify the robustness of the prognostic model that we

constructed.

FIGURE 6
Prognostic analysis of the nine-gene signature model in the TCGA cohort. (A) Distribution of risk score, OS, survival status (blue dots indicate
alive, red dots indicate death) and the expression heatmaps of nine genes. (B,C,E) Kaplan–Meier analysis of OS, PFI, DSS curves in the low- or high-
risk subgroups of patients with OC. (D) AUC of time-dependent ROC curves for the prediction of 3- and 5-year OS in TCGA.
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3.6 Validation of the ICD-Related
prognostic signature in other common
female malignancies

We also performed survival analysis and time-dependent

ROC curve analysis by using the data of three common female

malignant tumors (cervical, endometrial, and breast cancers) in

TCGA to further verify the universality of the prognostic

signature that we constructed. Kaplan–Meier analysis showed

that OS, PFI, and DSS in the high-risk group were significantly

worse than those in the low-risk group. (p = 0.014, 0.005, and

0.024) (Supplementary Figures S1B,C,E). In addition, the results

of time-dependent ROC curve analysis revealed that our

constructed prognostic signature can well predict the survival

time of cervical cancer (Supplementary Figure S1D). The AUC at

5 years, which had the value of 0.656, was the highest. However,

the prediction signature that we constructed did not demonstrate

obvious prognostic ability for the data of endometrial cancer

(Supplementary Figure S2). Finally, for breast cancer

(Supplementary Figure S3), the OS of the high-risk group was

significantly worse (p = 0.032) than that of the low-risk

group. However, no significant difference was found for PFI

and DSS. Meanwhile, the results of the time-dependent ROC

curve showed that the predictive ability of the ICD-related gene

signature for breast cancer was not ideal.

3.7 Establishment of a reliable nomogram
for the prediction of OC prognosis

Age, FIGO stage, residual tumor, and risk score were

included in the univariate and multivariate Cox regression

models. The univariate cox regression results showed that age,

FIGO stage, residual tumor, and risk score were all significantly

correlated with OS (Figure 8A). Multivariate Cox regression

analysis revealed that age, residual tumor of 1–10 mm,

residual tumor >20 mm, and risk score did appear to be

independent prognostic factors for the OS of patients with

FIGURE 7
Validation of the nine-gene signature model in GEO cohorts. (A) Kaplan–Meier curves for the OS of patients in GSE26712, which was divided
into high- and low-risk groups. (B) AUC of time-dependent ROC curves for predicting 3- and 5-year OS in GSE26712. (C) Kaplan–Meier curves for
the OS of patients in GSE32062, which was divided into high- and low-risk groups. (D) AUC of time-dependent ROC curves for predicting the 3- and
5-year OS in GSE32062.
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OC (Figure 8B). Next, we incorporated these clinicopathological

parameters and the risk score to construct a nomogram to

evaluate survival outcome (Figure 8C), with high total points

indicating the worsened prognosis of the patient. Time-

dependent ROC curves were further plotted to confirm that

the nomogram was highly powerful in predicting patient survival

FIGURE 8
Construction of a nomogram that accurately predicts OC prognosis. (A,B) Univariate and multivariate Cox regression model incorporating
clinicopathological factors and risk score. (C) Nomogram model based on risk model and clinical features. (D) Predictive efficacy of the nomogram
for 3- and 5-year survival verified through ROC curves. (E,F) Calibration plots showing the association of the predicted 3- and 5-year OS with actual
survival duration.
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outcomes (Figure 8D). In addition, the calibration curve plotting

the predicted probability of survival was generated. As shown in

Figures 8E,F, the calibration curve and C index (Concordance =

0.659 [se = 0.023]) indicated that the prediction results of the

nomogram had good fit.

3.8 Functional enrichment analysis of the
ICD-Related prognostic signature and
interaction with immune cell infiltration

We performed GSEA to characterize the biological differences

between high- and low-risk subgroups as shown in Figures 9A,B.

Cytokine–cytokine receptor interaction, chemokine signaling

pathway, NK cell-mediated cytotoxicity, oxidative

phosphorylation, systemic lupus erythematosus, JAK–STAT

signaling pathway, cell adhesion molecule cams, T cell receptor

signaling pathway, Toll-like receptor (TLR) signaling pathway,

proteasome, and primary immunodeficiency were enriched in the

low-risk subgroups. At the same time, tumorigenic pathways, such

as hedgehog signaling pathway, ECM receptor interaction, WNT

signaling pathway, calcium signaling pathway, pathways in cancer,

MAPK signaling pathway, and TGF beta signaling pathway, were

significantly activated in the high-risk subgroup, suggesting that

the high-risk subgroup had a detrimental effect on survival

outcomes.

We quantified the differences in the scores of 24 immune-

infiltrating cells between the high- and low-risk subgroups to

further explore the correlation between our constructed genetic

signature risk score and immune status. Wilcoxon rank sum test

showed that only NK cells and Tcm were enriched in the high-

risk subgroup. However, most immune-infiltrating cells were

significantly enriched in the low-risk subgroup. These cells

included pDC, T cells, T helper cells, TFH, Th1 cells,

Th2 cells, Treg cells, aDC, B cells, CD8 T cells, cytotoxic cells,

DC, macrophages, and NK CD56dim cells (Figure 9C,D).

4 Discussion

OC, as the main cause of death by gynecological

malignancies, is a perennial object of interest of researchers.

New treatment options, such as targeted therapy, biological

therapy, and immunotherapy, have been introduced, but their

results continue to be unsatisfactory. In recent years, immune

checkpoint blockers have been recognized as the most promising

method for cancer treatment. However, in a variety of

immunologically “cold” tumor types, including OC, their

therapeutic efficacy is largely limited by factors, such as the

lack of tumor antigens, the activation of T cells, priming, and

infiltration (Bonaventura et al., 2019). Recently, the advent of

ICD has heralded a new dawn in the diagnosis and treatment of

FIGURE 9
Functional enrichment analysis of ICD-related prognostic signature and interaction with immune cell infiltration. (A,B)GSEA revealed biological
differences between high- and low-risk subgroups. (C,D) Differences in the scores of 24 immune-infiltrating cells between high-risk and low-risk
subgroups. p values are p ≤ 0.5 (*), p ≤ 0.01 (**), p ≤ 0.001 (***).

Frontiers in Genetics frontiersin.org13

Zhang et al. 10.3389/fgene.2022.1001239

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1001239


OC. Studies have clearly pointed out that ICD-based cancer

vaccines can be immunogenic against “cold” tumors while

increasing sensitivity to immunotherapy (Jin and Wang,

2021). Therefore, understanding the intimate relationship

between differentially expressed genes in OC and ICD will

allow us to explore the therapeutic potential of ICD-based

treatments on a deep level.

We performed the first comprehensive identification and

investigation of the ICD-related prognostic signature of OC.

Our work can expand the ideas for the improvement of OC

prognostic prediction and the guidance of individualized

treatment. In this study, we mined 22 ICD-related genes

with distinct prognostic implications in OC. We applied

unpaired samples to further analyze the expression of these

22 genes in OC tissue in TCGA and the corresponding normal

tissue in GTEx. We found that only five genes (MITF, CCR7,

JAK1, ELN, and SLC6A4) functioned as tumor suppressors,

whereas the remaining 17 genes functioned as oncogenes. Next,

we performed further functional analysis on these genes. As a

result, we discovered that the vast majority were involved in

immune-related biological processes. This finding was

consistent with the characteristics of ICD. Our KEGG

enrichment pathway analysis results showed that ICD-related

genes were involved in the JAK–STAT signaling pathway and

natural killer cell-mediated cytotoxicity. Previous studies have

demonstrated that the ICD-related gene IFN can induce a

variety of cell phenotypes by activating the JAK–STAT

signaling pathway (Medrano et al., 2017). Minute et al. co-

cultured tumor cells and cytotoxic immune cells (such as T

lymphocytes and NK cells) and observed the presence of ICD

markers. They found that cytotoxic immune cells could induce

the release of DAMPs, further triggering the antitumor immune

response (Minute et al., 2020). Consistent with our enrichment

analysis results, this phenomenon suggested that cytotoxicity is

a type of ICD.

The immune system is our primary defense mechanism

against exogenous and endogenous threats (Lakins et al.,

2018). It mainly includes innate immune cells (such as

macrophages, dendritic cells, and natural killer cells) and

adaptive immune cells (such as T and B cells) (Chu et al.,

2022). Numerous studies have demonstrated that genetic

mutations in genes can affect tumor immune status (Xu et al.,

2014). Mutations in U2AF1 have been shown to activate innate

immune pathways in myeloid malignancies (Smith et al., 2019).

Furthermore, p53 mutations can support immune dysfunction

by altering the tumor microenvironment, disrupting innate

immunity by modulating the TLR signaling pathway, and

promoting immune privilege and the ability to survive by

disrupting cell-mediated immunity (Agupitan et al., 2020).

Therefore, we analyzed the genetic mutation status of ICD-

related genes and their association with immune-infiltrating

cells. We found that only RB1 mutations were dominated by

deep deletion mutations. By contrast, the mutations of other

genes were dominated by amplification. The results of immune

infiltration analysis showed that most genes were positively

correlated with immune-infiltrating cells. This situation

indicated that the prognostic model we constructed may have

a certain predictive ability in immunotherapy.

Next, we constructed the nine-gene signature of the

prognostic risk model by performing univariate/multivariate

Cox regression and LASSO regression analyses. This signature

included ERBB2, RB1, CCR7, CD38, IFNB1, ANXA2, CXCL9,

SLC9A1, and SLAMF7. ERBB2, commonly referred to as HER2,

is a oncogene located on chromosome 17 that encodes a member

of the epidermal growth factor receptor family of receptor

tyrosine kinases (Li et al., 2022). ERBB2 amplification and

mutation have been identified in many cancer types

(Abrahao-Machado and Scapulatempo-Neto, 2016; Lin et al.,

2021). They promote cancer cell growth and invasion and

portend poor prognosis (Uchida et al., 2021). Currently

developed nanoparticles targeting ERBB2 can enhance ICD

effects at tumor sites (Zheng et al., 2020). CCR7 is a

lymphocyte-specific G protein-coupled receptor (Birkenbach

et al., 1993) that executes a unique antagonistic role in

tumorigenesis by transferring tumor cells to the T cell region

of lymph nodes (Zlotnik et al., 2011). It is essential for initiating

adaptive immune responses. Interestingly, however, we found

that some studies point to the opposite role of CCR7; specifically,

CCR7 is induced in some cancer cells and contributes to

metastasis formation (Gerken et al., 2022). CD38 is a

messenger for intracellular calcium mobilization (Schmid

et al., 2011), which participates in and regulates immune cell

differentiation, activation, and tolerance (Malavasi et al., 2008).

Several studies have shown that the expression of CD38 in

tumors can induce proliferation and inhibit apoptosis (March

et al., 2007) and participate in processes, such as tumor cell

energy metabolism (Liao et al., 2020), and immune tolerance and

resistance (Chen et al., 2018). IFNB1 is a cytokine of the well-

known signaling protein type I interferon family and is involved

in cell differentiation and antitumor defense (Daman and

Josefowicz, 2021). It has powerful antiproliferative,

proapoptotic, antiangiogenesis, and immunomodulatory

functions (Ambjorn et al., 2013). The ANXA2 gene encodes a

member of the calcium-dependent phospholipid-binding protein

family, which may play a role in regulating cell growth and signal

transduction pathways (Bharadwaj et al., 2013). A growing body

of evidence shows that the dysregulation of ANXA2 expression is

associated with tumorigenesis and immunity in a variety of

cancers, such as glioma (Li et al., 2021), oral squamous cell

carcinoma (Ma and Wang, 2021), pancreatic cancer (Karabulut

et al., 2020), colorectal cancer (Hu et al., 2020), breast cancer

(Sharma and Jain, 2020), thyroid cancer (Qin et al., 2020), and

gastric cancer (Han et al., 2017). A recent experiment explored

the effect of OC cell-derived exosomal ANXA2 on peritoneal

implantation and tumor metastasis and its underlying

mechanism (Gao et al., 2021). CXCL9, a member of the CXC
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chemokine subfamily, encodes secreted proteins that participate

in immune regulation and inflammatory processes (Balkwill,

2004). Research on its role in tumors remains controversial. It

can either act as an oncogenic factor to promote tumor

progression or as a tumor suppressor to exert antitumor

effects (Xiu and Luo, 2021). Our analysis showed that it may

function as the former. SLC9A1 is a member of the solute carrier

family 9. It encodes a protein that acts as a plasma membrane

transporter with a crucial role in regulating pH homeostasis, cell

migration, and cell volume (Cardone et al., 2019). SLAMF7 is a

member of the signaling lymphocyte activating molecule family

of receptors, which could be involved in adaptive immune

responses. (Cannons et al., 2011). Studies have indicated that

its expression has prognostic significance in cancers dominated

by T cell exhaustion (O’Connell et al., 2021). In addition, a recent

study found that SLAMF7 can mediate ICD in colorectal cancer

cells (Roh et al., 2021). These genes can promote or inhibit tumor

immune pathways through various mechanisms. However,

whether they play an important role in the prognosis of

patients with OC by affecting ICD remains unclear.

In recent years, on the basis of the characteristics of ICD,

researchers have explored immunotherapy based on ICD in an

attempt to overcome the limitations of conventional tumor

treatment. However, the potential relationship between ICD

and OC prognosis has yet to be elucidated. Our study divided

OC samples from the TCGA database into high- and low-risk

subgroups on the basis of the median risk score and assessed their

prognostic value for OS, PFI, DSS, and 3-year and 5-year survival

ROC curves. Patients in the high-risk subgroup had a

significantly worse prognosis than those in the low-risk

subgroup. The risk model we constructed had good predictive

value for the 3- and 5-year survival rates of patients. In addition,

we performed external validation by using two sets of GEO

cohorts, further illustrating the power of the prognostic model.

We also used the data on cervical, endometrial, and breast

cancers in the TCGA database to validate the usefulness of

our prognostic signature for multiple cancers, and our results

showed that the prognostic signature that we constructed has a

certain universality. Subsequently, we constructed a nomogram

incorporating relevant clinicopathological factors to predict

survival probability. After completing these works, we

analyzed the differentially expressed genes between high- and

low-risk subgroups then performed GSEA. Interestingly, we

found that various cancer-related pathways were enriched in

the high-risk subgroup. This situation further explained the poor

prognosis of the high-risk subgroup. Enriched pathways in the

low-risk subgroup were mainly closely related to the immune

response. Studies have also illustrated that most T-cell markers,

including CD8+ T cells, Th1, and Tem cells, were closely

associated with good prognosis (Bindea et al., 2013).

Therefore, we further analyzed the differences in the

abundance of immune-infiltrating cells between the two

groups. In coincidence with previous research findings, our

results showed that most immune-infiltrating cells were

significantly enriched in the low-risk subgroup. This situation

suggested that the risk score formed by our nine-gene signature

was inversely associated with immune cell infiltration and that

our model may predict immune responses in tumors. Similarly,

Wang et al. recently constructed an ICD-related classification

signature to predict prognosis and immunotherapy response in

head and neck squamous cell carcinoma (Wang et al., 2021). In

their prognostic signature, the high-risk cohort score also

corresponded to poor OS. In addition, patients with high-risk

scores were inversely associated with CD8 T cells. This

association was also confirmed in our study. Therefore, we

can reasonably speculate that the identification of ICD-related

biomarkers may be beneficial for a variety of malignant tumors

and that these biomarkers can help identify patients with tumors

who can benefit from immunotherapy (Wang et al., 2021).

In summary, we provided additional insights into the

association between ICD-related genes and OC prognosis. Our

newly constructed ICD signature demonstrated certain

sensitivity and specificity as a prognostic predictor of OC. The

prognostic nomogram based on the ICD-related signature also

showed an excellent ability to forecast the OS of patients with

OC. However, our research continues to have some deficiencies.

The ICD-related prognostic model that we established was based

only on public databases for bioinformatics analysis. In the

future, we will perform experimental studies and validate the

comprehensive roles of ICD-related genes in the progression

of OC.
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