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Abstract

Background: Gut barrier loss has been implicated as a critical event in the occurrence of postoperative complications. We
aimed to study the development of gut barrier loss in patients undergoing major non-abdominal surgery.

Methodology/Principal Findings: Twenty consecutive children undergoing spinal fusion surgery were included. This kind
of surgery is characterized by long operation time, significant blood loss, prolonged systemic hypotension, without directly
leading to compromise of the intestines by intestinal manipulation or use of extracorporeal circulation. Blood was collected
preoperatively, every two hours during surgery and 2, 4, 15 and 24 hours postoperatively. Gut mucosal barrier was assessed
by plasma markers for enterocyte damage (I-FABP, I-BABP) and urinary presence of tight junction protein claudin-3.
Intestinal mucosal perfusion was measured by gastric tonometry (PrCO2, Pr-aCO2-gap). Plasma concentration of I-FABP, I-
BABP and urinary expression of claudin-3 increased rapidly and significantly after the onset of surgery in most children.
Postoperatively, all markers decreased promptly towards baseline values together with normalisation of MAP. Plasma levels
of I-FABP, I-BABP were significantly negatively correlated with MAP at K hour before blood sampling (20.726 (p,0.001),
20.483 (P,0.001), respectively). Furthermore, circulating I-FABP correlated with gastric mucosal PrCO2, Pr-aCO2-gap
measured at the same time points (0.553 (p = 0.040), 0.585 (p = 0.028), respectively).

Conclusions/Significance: This study shows the development of gut barrier loss in children undergoing major non-
abdominal surgery, which is related to preceding hypotension and mesenterial hypoperfusion. These data shed new light
on the potential role of peroperative circulatory perturbation and intestinal barrier loss.
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Introduction
Patients undergoing major surgery or sustaining severe trauma

are at risk of developing morbidity and mortality from postoper-

ative or posttraumatic systemic inflammatory response syndrome

(SIRS), sepsis and multiple organ failure (MOF). The development

of such potentially lethal complications in relatively healthy

surgical or trauma patients is poorly understood [1,2]. Moreover,

few human studies investigated the hypothesis, generated from

animal studies, that the intestines are central in the origin of

postoperative and posttraumatic sequelae [3–5]. Major surgery

accompanied by systemic hypotension and blood loss is thought to

lead to redistribution of blood to preserve the vital organs (brain

and heart) at the expense of the splanchnic circulation [3–5]. Low

mesenteric blood flow subsequently leads to injury of the cells at

the most distal point from the mucosal blood supply, being the

mature enterocytes [6].

Experimental animal models, resembling the clinical situation of

major surgery and trauma, show that haemorrhagic shock leads to

disruption of the gut barrier, measured by elevated circulating

levels of Fatty Acid Binding Proteins (FABP), originating from

damaged intestinal epithelial cells and derangement of tight-

junctions [7,8]. Moreover, translocation of macromolecules,

microbial products and microbiota from the intestinal lumen to

the circulation and mesenteric lymph nodes, spleen and liver occur

[5,7]. The inflammatory response to translocated microbial

products as endotoxin has been reported to be induced via

various innate immune mechanisms, ranging from Toll Like

Receptors to complement activation [9,10].

Studies in patients undergoing major gastro-intestinal, cardiac

or vascular surgery, investigating the role of the gut in the

development of postoperative complications, are largely restricted

to data on increased intestinal permeability for sugars, 51Cr-EDTA
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and the circulatory levels of endotoxin [11–19]. Several authors

report changes in these parameters in patients following major

surgery, indicating that the gut barrier is injured [11–14].

However, other reports using these tests lack to support these

data [15–18]. Moreover, the value of measuring gut barrier with

the use of sugar absorption probes is argued [19]. In conclusion,

the debate regarding the involvement of the gut in patients

undergoing major surgery is still open.

Plasma and urinary markers are currently available as useful

non-invasive tools to study the condition of enterocytes and tight-

junctions (TJ), the two components comprising the gut mucosal

barrier. Enterocyte damage was assessed using plasma levels of

Intestinal-Fatty Acid Binding Protein (I-FABP), a small cytosolic,

water-soluble protein, primarily limited to mature enterocytes of

small and large intestine [20]. I-FABP plasma levels rise rapidly

after episodes of acute intestinal ischaemia and inflammation [20–

22]. Next, also circulating levels of Ileal-Bile Acid Binding Protein

(I-BABP), which is exclusively present in mature enterocytes of the

jejunum and ileum, were assessed [23]. TJ between neighbouring

enterocytes are an important constituent of the intestinal epithelial

barrier [24]. The transmembrane TJ protein Claudin-3, the

essential sealing protein, disappears rapidly from the TJ following

haemorrhagic shock and is released into the urine (own

unpublished data).

The principal aim of this study was to investigate whether major

non-abdominal surgery leads to intestinal barrier loss.

Methods

Study design and patients
This is a prospective clinical observational study in children

undergoing spinal fusion surgery because of scoliosis in the

University Hospital Maastricht between March 2006 and October

2007. Major spinal fusion surgery is characterized by long

operation time, significant blood loss, prolonged systemic hypo-

tension and the potential development of postoperative complica-

tions [25]. This type of surgery was chosen because it does not

directly compromise the intestines by intestinal manipulation or

the use of extracorporeal circulation [25].

Informed, written consent was obtained by all patients or both

parents/caretakers whose information was used in the study prior

to inclusion; the study was conducted with approval from the local

medical ethical committee.

Surgical procedures
Preoperative preparation and anaesthesia. Anaesthesia

was induced and maintained with either a volatile based technique

with sevoflurane or an intravenous technique with propofol,

combined with an opioid and a non-depolarising muscle relaxant.

Sensory evoked potentials were monitored in patients at risk for

spinal cord problems during surgery. According to the hospital

protocol an intravenous technique with propofol was used in these

patients. All patients were intubated and ventilator settings were

adjusted to obtain normocapnia. Each patient had a forced-air

warming system and all intravenous fluids were warmed to prevent

hypothermia.

In addition to standard monitoring an arterial line was inserted

into a radial artery to measure arterial pressure and to sample

arterial blood, and a catheter was introduced into the bladder to

measure urine output. Blood-soaked gauzes were weighted as they

were passed off the surgical field and the blood content of the cell

saver was measured to measure blood loss.

Perioperative fluid therapy was adapted to the individual patient

with the aim to keep the patient normovolaemic throughout the

operation. Isotonic crystalloids were used for maintenance and

third space losses. Blood loss was replaced 1:1 with blood or colloid

or 3:1 with crystalloids. Fluid administration was guided by

calculation of maintenance and third space losses, blood loss, the

arterial blood pressure, and haemoglobin values. There was no

protocol to keep the blood pressure above or below a certain value.

Surgery. All the operations were performed by 2 senior spine

surgeons (LvR and AvO) using three fusion approaches: posterior

spinal fusion (PSF), anterior spinal fusion (ASF), and combined

anterior and posterior fusion. The decision regarding the preferred

fusion was made based on curve location, aetiology, rigidity, and

the child’s age, according to the current standards of scoliosis

operative repair.

In PSF, the patient was positioned prone on padded chest rolls,

rolled blanket bolster, or a Wilson spinal frame to provide

adequate cushioning for the chest and abdomen while allowing

vacant space preventing abdominal pressure. The skin was incised

in a straight line over the vertebrae to be fused. Following

osteotomy of all the spinous processes and facets included at the

fusion area, the vertebrae were instrumented with combinations of

pedicle-screws and hooks (CD Horizon Legacy 5.5 or 4.5 spinal

systems, Medtronic, Heerlen, the Netherlands). Curve correction

was performed with a combination of derotation and compres-

sion–distraction manoeuvres, and, if necessary, also by in situ

bending of the rods. In ASF, the patient was placed on the

operating table in the lateral position. The approach is from the

convex scoliotic side. A thoracoabdominal approach, which

included a split of the diaphragm near its insertion, retroperitoneal

approach, or lateral intrathoracic approach was performed

through the side of the curve convexity, with the patient lying

on his side. Following exposure of the vertebrae, the involved discs

and ribs were excised and the segmental vessels ligated or

preserved. In all cases of combined fusion, single-staged proce-

dures were carried out.

CD Horizon Legacy 5.5 or 4.5 spinal systems were used

depending on age and weight of the patient. In case of anterior

instrumentation CD Horizon Eclipse spinal system was used

(Medtronic). No drains were used.

Postoperative care. At the end of the surgery, all the

children were transferred to the paediatric Intensive Care Unit

(ICU). Extubation was performed after stabilization of vital signs

and according to accepted weaning parameters (usually 4–6 hours

after surgery). Paediatric ICU management was provided by the

attending physicians guided by the same general management

strategy and consisted of intravenous fluid administration,

correction of hypovolaemia, electrolyte disturbances and/or

anaemia and analgesics (acetaminophen and morphine).

Antibiotic cover (amoxicillin with clavulanate) was given starting

preoperatively until 24 hours after the end of surgery. Oral feeding

was introduced the day after surgery.

Follow-up in the ICU included a daily physical examination,

vital signs monitoring, routine blood tests, and chest radiographs

or other ancillary tests as required. The attending physicians

recorded complications and events.

Blood and urine sampling
Blood samples were collected from the arterial line in pre-chilled

EDTA vacuum tubes (BD vacutainer, Becton Dickinson Diagnos-

tics, Aalst, Belgium) and kept on ice. Blood was centrifuged at 4uC,

40006G for 15 minutes. Plasma was immediately stored in

aliquots at 280uC until analysis. Blood was sampled before

surgery (after the induction of anaesthesia), at 2 hours intervals

during surgery and 2, 4, 15 and 24 hours postoperatively from the

arterial line.

Gut Damage during Surgery

PLoS ONE | www.plosone.org 2 December 2008 | Volume 3 | Issue 12 | e3954



Fresh specimens of urine were collected from the urinary

bladder catheter, kept on ice and then frozen at 280uC in aliquots

within 2 hours of collection. Urine was collected every 20 minutes

in the first 2 hours during surgery and thereafter at the same

moments as blood was sampled.

Measurements of FABP and claudin-3
Plasma concentrations of I-FABP were determined using a

highly specific commercially available enzyme-linked immunosor-

bent assay (ELISA) that selectively detects human I-FABP

(standard: 20–5,000 pg/ml), kindly provided by Hycult Biotech-

nology (Uden, the Netherlands) and I-BABP (standard: 0.32–

5 ng/ml) as previously described [26].

Claudin-3 urine levels were analyzed by western blotting.

Equal amounts of each sample (adjusted to urinary creatinine

levels) were separated by SDS-PAGE gel, transferred to PVDF-

membrane and probed using primary antibody to claudin-3

(Rabbit anti-claudin-3 (34–1700), Zymed Laboratories, San

Francisco, CA). After incubation with goat anti rabbit HRP-

conjugated secondary antibody (Jackson, West Grove, PA),

signal was detected by supersignal west pico chemiluminescence

substrate (Pierce, Etten-Leur, the Netherlands). Band intensity

was semi-quantitatively analyzed using Quantity One (Biorad,

Hercules, CA).

Measurements of gastric mucosal tonometry
A gastric tonometry catheter (14F, Datex Ohmeda, Helsinki,

Finland) was introduced for measurement of intramucosal carbon

dioxide pressure (PrCO2 in kPa) throughout the surgical procedure

in the last seven patients, using the gas-automated capnograph

(Tonocap TC-200, Datex-Ohmeda).

Gastric tonometry measurements (PrCO2, and mucosal-arterial

pCO2 gap (Pr-aCO2-gap)) were measured at 30-minute intervals

from the start until the end of surgery using gas-automated

capnography. The pCO2 values of the blood gases were corrected

for the central blood temperature measurements, using the

formulas provided by the manufacturer (ABL 100, Radiometer,

Copenhagen, Denmark).

Statistical analysis
Statistical analysis was performed with Prism 4.0 for Windows

(GraphPad Software Inc. San Diego, CA) and SPSS 15.0 (SPSS,

Inc., Chicago, IL). Plasma FABP concentrations were presented as

mean6standard error (SEM). Normality of all data obtained was

verified by Kolmogorov-Smirnov test.

Linear mixed model regression was used to analyze changes

over time in plasma FABP levels. Within-person correlations

between mean arterial pressure (MAP), PrCO2/CO2-gap and

circulating levels of FABP at all studied time points were

computed. Mixed model analysis accounts for unbalanced

numbers of samples measured, because at some time points not

all samples could be obtained because of removal of the arterial

line. Differences in plasma FABP levels between individual time

periods were compared using t tests of the mixed model procedure.

Next, to characterize the total amount of intestinal mucosal cell

injury during surgery, area under the curve (AUC) for I-FABP and

I-BABP was calculated for each patient. The AUCI-FABP and

AUCI-BABP for patients with and without early complications was

compared using unpaired t test. Early complications were defined

as complications occurring in the intraoperative or initial

hospitalization period.

A p-value below 0.05 was considered to be statistically

significant.

Results

Patients
Twenty patients undergoing spinal fusion surgery were

consecutively included in the study, 15 girls and 5 boys. Median

age was 12 years (range: 2–16 years). Demographic, surgical and

fluid balance data are presented in Table 1. Intraoperative fluid

resuscitation was adequate as evidenced by; 1) a mean (SEM)

positive fluid balance (total fluid in minus blood loss) of 13 (1) ml/

kg/hr; 2) adequate diuresis; 3) low plasma lactate levels and; 4)

adequate plasma haemoglobin value (data not shown).

Plasma I-FABP, I-BABP
The plasma concentration of I-FABP increased rapidly after the

initiation of surgery from a mean (SEM) baseline value of 221 (32)

pg/ml shortly before start of surgery, under anaesthesia (in-house

mean normal value: 106 pg/ml, range: 41-336 pg/ml) to 348 (44) pg/ml

at 2 hours after the onset of surgery (p = 0.006) (Figure 1a).

Thereafter, the mean plasma levels increased further to 369 (33)

pg/ml (p,0.001) at 4 hours after initiation of surgery. The peak

value of 443 (69) pg/ml (p,0.001) was reached at 6 hours after

the start of surgery, which often represented the end of surgery.

Thirteen patients showed an increase in plasma I-FABP levels of at

least twofold during surgery; while 7 patients had relatively

unchanged circulating I-FABP values. Plasma concentrations of I-

FABP decreased towards baseline values from 2 hours after the

end of surgery onwards.

Similar to the I-FABP levels, mean I-BABP plasma concentra-

tions also increased significantly between 2 and 8 hours after start

of surgery compared to baseline values in most of the patients

(Figure 1b).

Since FABP are excreted by the kidneys, we evaluated whether

high plasma values of FABP could be caused by impaired renal

function. Diuresis during and after surgery was adequate (Table 1)

and plasma creatinine values were not elevated, which indicates

that elevation of plasma FABP was caused by enterocyte cell

death.

Urinary claudin-3
The urinary claudin-3:creatinine ratio immediately increased

during the first 20 minutes of surgery. In the next 2 hours, the

claudin-3:creatinine ratio remained high and thereafter a decrease

towards preoperative values was detected (Figure 2).

Gastric tonometry and mean arterial pressure in relation
to intestinal damage

The very short circulating half-life of FABP (approximately

11 minutes) [27] allows to relate the presence of enterocyte cell

damage with preceding systemic hypotension and gastric mucosal

hypoperfusion. To this end within-person correlations were

studied between circulating levels of I-FABP, I-BABP and

intraoperative MAP at K hour before the blood sample was

collected in which FABP concentration was measured, and

PrCO2, Pr-aCO2-gap at the same moment of blood sampling.

Interestingly, plasma levels of I-FABP, I-BABP were significantly

negatively correlated with MAP at K hour before blood sampling

(correlation: 20.726 (p,0.001); 20.483 (P,0.001), respectively),

indicating a relationship between enterocyte cell damage and

preceding systemic hypotension (Figure 3, Table 2). Furthermore,

circulating values of I-FABP correlated with gastric mucosal

PrCO2 and Pr-aCO2-gap measured at the same time points

(correlation: 0.553 (p = 0.040) and 0.585 (p = 0.028), respectively),

whereas no correlation was observed between plasma levels of I-

BABP and PrCO2 or Pr-aCO2-gap. These data show a clear

Gut Damage during Surgery
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association between the most prominent plasma marker for

enterocyte cell death (I-FABP), hypotension and splanchnic

hypoperfusion, assessed by gastric mucosal PrCO2 and Pr-aCO2-gap.

Complications
Six patients had nine early complications, including postoper-

ative fever (n = 3), urinary tract infection (n = 2), pneumonia

(n = 1), wound infection (n = 1), peroperative anaphylactic reaction

to poly(O-2-hydroxyethyl)starch (Venofundin) (n = 1) and melaena

of unknown origin (n = 1).

The mean AUCI-FABP for the six patients with complications

was 222 pg*hr/ml (range: 0–493 pg*hr/ml), while for patients

without complications the mean AUCI-FABP was 81 pg*hr/ml

(range: 0–222 pg*hr/ml) (p = 0.032) (Figure 4). No significant

changes were found in mean AUCI-BABP during surgery between

patients with and without complications (3.1 vs. 2.0 ng*hr/ml,

p = 0.341).

Discussion

The data showing an early increase of circulating FABP and

urinary claudin-3, followed by rapid return towards baseline

values, indicate that the patients suffered transient injury to the

mature enterocytes and their tight junctions. Interestingly, similar

kinetics of circulating FABP and urinary claudin-3 were found in

all patients, regardless of extension of surgery or amount of blood

loss. It remains to be established whether this insult is sufficient for

a breakdown of the intestinal mucosal barrier, eliciting an

inflammatory response and postoperative complications, as has

been shown in animal studies [5,8,28]. Although this study was

only set up to explore the development of intestinal mucosal cell

damage during major non-abdominal surgery, a limited analysis of

the postoperative course of patients with intestinal mucosal cell

damage revealed that higher plasma levels of I-FABP were

associated with a higher rate of postoperative complications. All

possible complications are described as end point, because this

type of surgery in relatively healthy children rarely results in

important complications, including sepsis, MOF and death.

Nevertheless, the described complications were associated with

prolonged hospitalization. Taken together, this study did not prove

causality that the observed gut barrier loss and inflammation are

the inducing factors for SIRS and MOF. Additional work,

Figure 1. Time course of mean (SEM) plasma I-FABP (a) and I-
BABP (b) levels in children undergoing spinal fusion surgery
(n = 20). * p,0.05 vs. baseline values.
doi:10.1371/journal.pone.0003954.g001

Figure 2. Time course of urinary claudin-3:creatinine ratio of
two representative of the last five children undergoing spinal
fusion surgery.
doi:10.1371/journal.pone.0003954.g002

Figure 3. Translated values of plasma levels of circulating I-
FABP and translated values of preceding systemic hypotension
(MAP t-Khr) in children undergoing spinal fusion surgery were
plotted. Circulating I-FABP correlated significantly negatively with MAP
at K hour before blood sampling (n = 89, correlation: 20.726
(p,0.001). Translations of both variables are specific for an individual
in such a way that all within-person means correspond to the zeros in
the plot. In this way the variation of individual levels are cancelled and
the pure association of both variables remains.
doi:10.1371/journal.pone.0003954.g003
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enrolling more patients, including those likely to experience

serious complications, is needed in order to fully unravel the

sequelae of the observed gut barrier loss.

Our work is supported by three previous studies showing the

temporary presence of intestinal villous cell damage, measured by

increased urinary levels of I-FABP, in patients undergoing cardiac

surgery with cardiopulmonary bypass (CPB) [29–31]. In line, the

patients with high urinary I-FABP levels developed postoperative

gastro-intestinal complications [29]. The use of CPB was shown to

be responsible for alterations in blood flow with consequently

intestinal mucosal hypoxia and villous tip ischemia [30,31]. In our

patients a similar influence of variation in blood flow on the

provocation of intestinal villous cell injury was found, without the

use of extracorporeal circulation.

Hypotension is often accepted to diminish blood loss and

thereby facilitating surgical exposure and reducing the need for

blood transfusions during e.g. oromaxillofacial, neurosurgery and

major orthopaedic surgery [32,33]. Peroperative hypotension is

considered to be caused by hypovolaemia and/or anaesthetics. It

is unlikely that the children undergoing spinal fusion repair were

hypovolaemic, because fluids were administered adequately,

which is reflected by positive fluid balance, low plasma lactate

levels and sufficient diuresis. Therefore, anaesthetics are the major

cause of low MAP. Propofol and sevoflurane, which were used in

almost all children as anaesthetic agents have only minimal effects

on cardiac output, but they decrease the systemic vascular

resistance significantly, resulting in hypotension [34]. However,

the fall in blood pressure together with prolonged surgery and

anaemia potentially results in tissue hypoxia, represented by

transient splanchnic hypoperfusion, impairment of hepatocellular

integrity, renal dysfunction and visual loss because of optic nerve

ischemia [32,33,35]. Our study shows for the first time the relation

between accepted hypotension and the development of intestinal

mucosal cellular damage in patients undergoing major non-

abdominal surgery.

The clinical consequences of our findings are challenging. It is

clear that major (non-abdominal) surgery, accompanied by

accepted systemic hypotension aimed at minimizing intraoperative

blood loss, can induce splanchnic mucosal hypoperfusion and gut

barrier loss. While organ blood flow regulation is preserved over a

wide range of MAP, organ perfusion becomes pressure dependent

when the MAP decreases below a certain critical level (autoreg-

ulatory threshold). The autoregulatory threshold varies between

different organs, the presence of diseases and age; little data are

available on the autoregulatory threshold in children, and no

studies report on the child intestinal autoregulation. We are

currently performing a study in which haemodynamic optimiza-

tion, aimed at normotension and flow-directed parameters, is

intended during major surgery in order to prevent the develop-

ment of intestinal damage.

The present study concerns relatively healthy children and

young adolescents, who have an insignificant risk for important

complications after major surgery. In line, studies with older

patients undergoing surgery or trauma show that increasing age is

one of the most crucial risk factors influencing adverse outcome

[36,37]. Therefore, we speculate that the loss of the intestinal

mucosal barrier as observed in our study in relatively healthy

children undergoing major non-abdominal surgery would have a

larger effect on the development of postoperative complications in

older patients. Collectively, these findings shed a new light on the

potential role of intestinal barrier compromise during major

surgery, which was adapted from numerous animal studies, but

now reported in relatively healthy children and adolescents

undergoing major non-abdominal surgery. Furthermore, we

consider that these results indicate a need to re-examine currently

accepted criteria of haemodynamic parameters in patients

undergoing major surgery.

Acknowledgments

The authors thank Dr. H Fujii for providing the I-15P expression vector

pET/Hu I-15P, which helped us to develop the I-BABP ELISA.

Author Contributions

Conceived and designed the experiments: JD DvW EH TA LvR WB.

Performed the experiments: JD GT HW MK AvB MP AvO LvR.

Table 2. Within-person correlations between enterocyte cell damage and preceding systemic hypotension and gastric mucosal
hypoperfusion.

N MAP t-Khr (mmHg) PrCO2 (kPa) Pr-aCO2-gap (kPa)

89 32 32

I-FABP (pg/ml) 20.726 (P,0.001) 0.553 (P = 0.040) 0.585 (P = 0.028)

I-BABP (ng/ml) 20.483 (P,0.001) 20.051 (P = 0.862) 20.079 (P = 0.787)

Within-person correlations between enterocyte cell damage (plasma I-FABP and I-BABP) and preceding systemic hypotension (mean arterial pressure (MAP) at K hour
before collection of the blood sample for FABP assessment) and gastric mucosal hypoperfusion (PrCO2, Pr-aCO2-gap at the same moment of blood sampling).
N = number of measurements.
doi:10.1371/journal.pone.0003954.t002

Figure 4. Area under the curve of plasma I-FABP values (AUCI-

FABP) during surgery for six patients with early complications
and 14 patients without complications. Mean AUCI-FABP was
significantly higher in patients with complications than in patients
without complications (p = 0.032). The horizontal lines indicate the
mean AUCI-FABP.
doi:10.1371/journal.pone.0003954.g004

Gut Damage during Surgery

PLoS ONE | www.plosone.org 6 December 2008 | Volume 3 | Issue 12 | e3954



Analyzed the data: JD DvW HW AvB MP TA WB. Contributed reagents/

materials/analysis tools: JD. Wrote the paper: JD DvW HW LvR WB.

References

1. Russell JA (2006) Management of sepsis. N Engl J Med 355: 1699–1713.

2. Rizoli SB, Marshall JC (2002) Saturday night fever: finding and controlling the

source of sepsis in critical illness. Lancet Infect Dis 2: 137–144.

3. Fink MP, Delude RL (2005) Epithelial barrier dysfunction: a unifying theme to

explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit

Care Clin 21: 177–196.

4. Moore FA (1999) The role of the gastrointestinal tract in postinjury multiple

organ failure. Am J Surg 178: 449–453.

5. Rotstein OD (2000) Pathogenesis of multiple organ dysfunction syndrome: gut

origin, protection, and decontamination. Surg Infect (Larchmt) 1: 217–223.

6. Ohri SK, Somasundaram S, Koak Y, Macpherson A, Keogh BE, et al. (1994)

The effect of intestinal hypoperfusion on intestinal absorption and permeability

during cardiopulmonary bypass. Gastroenterology 106: 318–323.

7. Haan Jd, Lubbers T, Hadfoune M, Luyer M, Dejong C, et al. (2008) Post-Shock

Intervention with High-Lipid Enteral Nutrition Reduces Inflammation and

Tissue Damage. Ann Surg.

8. Yang R, Han X, Uchiyama T, Watkins SK, Yaguchi A, et al. (2003) IL-6 is

essential for development of gut barrier dysfunction after hemorrhagic shock and

resuscitation in mice. Am J Physiol Gastrointest Liver Physiol 285: G621–629.

9. Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor

signalling. Nature 430: 257–263.

10. Quezado ZM, Hoffman WD, Winkelstein JA, Yatsiv I, Koev CA, et al. (1994)

The third component of complement protects against Escherichia coli

endotoxin-induced shock and multiple organ failure. J Exp Med 179: 569–578.

11. Braun JP, Buhner S, Kastrup M, Dietz E, Langer K, et al. (2007) Barrier

function of the gut and multiple organ dysfunction after cardiac surgery. J Int

Med Res 35: 72–83.

12. Holland J, Carey M, Hughes N, Sweeney K, Byrne PJ, et al. (2005)

Intraoperative splanchnic hypoperfusion, increased intestinal permeability,

down-regulation of monocyte class II major histocompatibility complex

expression, exaggerated acute phase response, and sepsis. Am J Surg 190:

393–400.

13. Riddington DW, Venkatesh B, Boivin CM, Bonser RS, Elliott TS, et al. (1996)

Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in

patients undergoing cardiopulmonary bypass. Jama 275: 1007–1012.

14. Soong CV, Halliday MI, Barclay GR, Hood JM, Rowlands BJ, et al. (1997)

Intramucosal acidosis and systemic host responses in abdominal aortic aneurysm

surgery. Crit Care Med 25: 1472–1479.

15. Kanwar S, Windsor AC, Welsh F, Barclay GR, Guillou PJ, et al. (2000) Lack of

correlation between failure of gut barrier function and septic complications after

major upper gastrointestinal surgery. Ann Surg 231: 88–95.

16. Buttenschoen K, Buttenschoen DC, Berger D, Vasilescu C, Schafheutle S, et al.

(2001) Endotoxemia and acute-phase proteins in major abdominal surgery.

Am J Surg 181: 36–43.

17. Rossi M, Sganga G, Mazzone M, Valenza V, Guarneri S, et al. (2004)

Cardiopulmonary bypass in man: role of the intestine in a self-limiting

inflammatory response with demonstrable bacterial translocation. Ann Thorac

Surg 77: 612–618.

18. Malagon I, Onkenhout W, Klok G, van der Poel PF, Bovill JG, et al. (2005) Gut

permeability in paediatric cardiac surgery. Br J Anaesth 94: 181–185.

19. Bjarnason I, MacPherson A, Hollander D (1995) Intestinal permeability: an

overview. Gastroenterology 108: 1566–1581.

20. Lieberman JM, Sacchettini J, Marks C, Marks WH (1997) Human intestinal

fatty acid binding protein: report of an assay with studies in normal volunteers
and intestinal ischemia. Surgery 121: 335–342.

21. Kanda T, Fujii H, Tani T, Murakami H, Suda T, et al. (1996) Intestinal fatty

acid-binding protein is a useful diagnostic marker for mesenteric infarction in
humans. Gastroenterology 110: 339–343.

22. Derikx JP, Matthijsen RA, de Bruı̈ne AP, van Bijnen AA, Heineman E, et al.
(2008) Rapid reversal of human intestinal ischemia-reperfusion induced damage

by shedding of injured enterocytes and reepithelialisation. PLoS ONE 3: e3482.
23. Watanabe K, Hoshi N, Tsuura Y, Kanda T, Fujita M, et al. (1995)

Immunohistochemical distribution of intestinal 15 kDa protein in human

tissues. Arch Histol Cytol 58: 303–306.
24. Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, et al. (2007) Changes in

expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight
junctions and barrier dysfunction in active Crohn’s disease. Gut 56: 61–72.

25. Deyo RA (2007) Back surgery–who needs it? N Engl J Med 356: 2239–2243.

26. Derikx JP, Blijlevens NM, Donnelly JP, Fujii H, Kanda T, et al. (2008) Loss of
enterocyte mass is accompanied by diminished turnover of enterocytes after

myeloablative therapy in haematopoietic stem cell transplant recipients. Ann
Oncol.

27. van de Poll MC, Derikx JP, Buurman WA, Peters WH, Roelofs HM, et al.
(2007) Liver manipulation causes hepatocyte injury and precedes systemic

inflammation in patients undergoing liver resection. World J Surg 31:

2033–2038.
28. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, et al. (2005)

Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the
vagus nerve. J Exp Med 202: 1023–1029.

29. Holmes JHt, Lieberman JM, Probert CB, Marks WH, Hill ME, et al. (2001)

Elevated intestinal fatty acid binding protein and gastrointestinal complications
following cardiopulmonary bypass: a preliminary analysis. J Surg Res 100:

192–196.
30. Morariu AM, Loef BG, Aarts LP, Rietman GW, Rakhorst G, et al. (2005)

Dexamethasone: benefit and prejudice for patients undergoing on-pump
coronary artery bypass grafting: a study on myocardial, pulmonary, renal,

intestinal, and hepatic injury. Chest 128: 2677–2687.

31. Hanssen SJ, Derikx JP, Vermeulen Windsant IC, Heijmans JH, Koeppel TA, et
al. (2008) Visceral injury and systemic inflammation in patients undergoing

extracorporeal circulation during aortic surgery. Ann Surg 248: 117–125.
32. Degoute CS (2007) Controlled hypotension: a guide to drug choice. Drugs 67:

1053–1076.

33. Dutton RP (2004) Controlled hypotension for spinal surgery. Eur Spine J 13:
S66–71.

34. Akata T (2007) General anesthetics and vascular smooth muscle: direct actions
of general anesthetics on cellular mechanisms regulating vascular tone.

Anesthesiology 106: 365–391.

35. Suttner SW, Boldt J, Schmidt CC, Piper SN, Schuster P, et al. (1999) The effects
of sodium nitroprusside-induced hypotension on splanchnic perfusion and

hepatocellular integrity. Anesth Analg 89: 1371–1377.
36. Hannan EL, Racz MJ, Walford G, Ryan TJ, Isom OW (2003) Predictors of

readmission for complications of coronary artery bypass graft surgery. Jama 290:
773–780.

37. Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, et al. (2005)

Determinants of long-term survival after major surgery and the adverse effect of
postoperative complications. Ann Surg 242: 326–341.

Gut Damage during Surgery

PLoS ONE | www.plosone.org 7 December 2008 | Volume 3 | Issue 12 | e3954


