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INTRODUCTION

Improving walking ability is a high priority for individuals 
with stroke; it is also one of the main goals of rehabilita-
tion.1,2) Conventional rehabilitation is known to improve 
walking ability, but its effectiveness is often limited3,4) 

because the recovery of walking ability in stroke patients 
reaches a plateau at 115) to 176) weeks after onset. Despite 
having completed rehabilitation, many stroke patients have 
residual gait disturbance that seriously limits their activities 
of daily living (ADL) and their social involvement 7,8) It is, 
therefore, necessary to develop ways to further improve the 
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Background: Conventional rehabilitation is known to improve walking ability after stoke, 
but its effectiveness is often limited. Recent studies have shown that gait training combining 
conventional rehabilitation and robotic devices in stroke patients provides better results than 
conventional rehabilitation alone, suggesting that gait training with a robotic device may lead to 
further improvements in the walking ability recovered by conventional rehabilitation. Therefore, 
the aim of this report was to highlight the changes in kinematic and electromyographic data 
recorded during walking before and after gait training with the Honda Walking Assist Device® 
(HWAT) in a male patient whose walking speed had reached a recovery plateau under conven-
tional rehabilitation. Case: The patient was a 42-year-old man with severe hemiplegia caused by 
right putaminal hemorrhage. He underwent conventional rehabilitation for 20 weeks following 
the onset of stroke, after which his walking speed reached a recovery plateau. Subsequently, we 
added robotic rehabilitation using HWAT to his regular rehabilitation regimen, which resulted in 
improved step length symmetry and gait endurance. We also noted changes in muscle activity pat-
terns during walking. Discussion: HWAT further improved the walking ability of a patient who 
had recovered with conventional rehabilitation; this improvement was accompanied by changes 
in muscle activity patterns during walking. The improvement in gait endurance exceeded the 
smallest meaningful change in stroke patients, suggesting that this improvement represented a 
noticeable enhancement in the quality of life in relation to mobility in the community. Further 
clinical trials are needed to confirm the results of the present case study.
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walking ability that has been recovered by conventional 
rehabilitation. Not only that, but it has also been shown that 
gait training that combines conventional rehabilitation and 
robotic devices in stroke patients provides better results than 
conventional rehabilitation alone.9,10)

The Honda Walking Assist Device® (HWA; Honda Mo-
tor Co., Ltd., Tokyo, Japan) is a wearable robotic device 
that assists hip flexion and extension on both sides during 
gait (Figure 1a). Hip joint actuators assist the symmetrical 
movement of the hip joints during walking by supporting the 
alternating movements of hip flexion and extension. HWA 
is applicable to patients with diseases related to the central 
nerve system11–15) and with orthopedic diseases.16–18) Ran-
domized controlled trials with stroke patients have shown 
that gait training with HWA (HWAT) can increase the walk-
ing speed, the step length of the affected side, the cadence, 
and the walking capacity and improve symmetry.11–13) These 

results raise the possibility that HWAT may lead to further 
improvements in walking ability on top of the recovery 
achieved by conventional rehabilitation. However, these 
studies targeted stroke patients who had further capacity for 
functional improvement, making it unclear whether HWAT 
can, in general, further improve walking abilities that 
have reached a recovery plateau by means of conventional 
rehabilitation. Moreover, the changes in electromyography 
(EMG) data during walking as a result of HWAT have not 
been reported and the details are unknown.

In the present study, we conducted a preliminary inves-
tigation into the possibility of HWAT further improving 
walking ability that had reached a recovery plateau with 
conventional rehabilitation, i.e., we applied HWAT in a pa-
tient whose walking speed had reached a recovery plateau 
with conventional rehabilitation. Furthermore, we report the 
changes in kinematic and EMG data during walking before 
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Fig. 1. (a) Honda Walking Assist Device® (HWA) and (b) gait training with the HWA. HWA assists hip flexion and exten-
sion of both limbs in line with the patient’s gait. The angle and torque sensors built into the hip joint actuator monitor the 
hip angle and generate appropriate torque. The torque exerted by the actuator is calculated and output in real time by an 
algorithm that adjusts to approximate normal walking.
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and after HWAT.

CASE

A 42-year-old man with sudden weakness of his left limbs 
and gait disturbance was diagnosed with right putaminal 
hemorrhage based on a head computed tomography image 
in an emergency hospital. He received conservative treat-
ment and was admitted to our hospital for rehabilitation 41 
days after stroke onset. The patient’s physical function was 
characterized by severe motor paralysis of the left upper and 
lower limbs, with motor function classified as 0 on the Stroke 
Impairment Assessment Set (SIAS) and 16 on Fugl-Meyer 
Assessment (FMA) of the lower limbs. The deep tendon re-
flexes were enhanced in the left upper and lower limbs. The 
sensory function on SIAS was 3 for the position of the upper 
extremity and 2 for the others, which indicated mild sensory 
disturbance. The patient also had difficulty walking, and the 
Functional Ambulation Categories showed 0 and his ADL 
ability was 82 on the Functional Independence Measure.

The patient performed 60–120 min of physical therapy and 
40–60 min of occupational therapy each day. The former 
was carried out with the purpose of achieving independence 

of ADL by attaining a stabilized mobility capability, and 
included stretching of the affected lower limb, gait train-
ing using an orthosis, pedaling exercises, outdoor walking 
exercises, gait training without waking aids, and stair climb-
ing exercises. The latter exercises were aimed at achieving 
independence of ADL and at the functional reconstruction 
of the affected upper limb; these exercises included ADL 
re-acquisition training, stretching of the affected upper limb, 
and a functional reconstruction program (i.e., peripheral 
nerve electrical stimulation therapy for the reconstruction of 
finger function and repetitive arm movement under active 
assistance).

At the start of HWAT, which began 20 weeks after stroke 
onset, the patient’s severe motor paralysis of the left limbs 
and mild deep sensory disturbance in the left lower limb re-
mained unchanged. He was able to walk independently only 
in the hospital using a T-cane and plastic short leg brace. 
However, the patient strongly desired to acquire symmetrical 
and smooth walking and to improve walking stability on 
rough ground so that he could return to work and resume his 
hobby of playing survival games. It is worth noting that his 
maximal walking speed had plateaued by this point (Figure 
2).
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Fig. 2. Timeline of the maximum walking speed for the current patient. The maximum walking speed in this case had 
reached a plateau in recovery before the start of HWAT.
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The present study was conducted in accordance with the 
Declaration of Helsinki and was approved by the Ethics 
Committee of the Ibaraki Prefectural University of Health 
Sciences (approval number: e204). Written informed consent 
was obtained from the patient for the publication of this case 
study and for the use of the accompanying images.

HWAT Intervention
HWAT was conducted in parallel with conventional reha-

bilitation as part of physical therapy. The HWAT intervention 
was provided as an alternative to outdoor walking exercise. 
Other regimens, including occupational therapy, remained 
constant during the intervention. Each HWAT session in-
volved a maximum net walking time of 20 min, excluding 
rest time, and was carried out once a day, 5 times a week for 
4 weeks (20 sessions in total). At the start of each session, the 
torque assistance of HWAT was adjusted by the physiothera-
pist based on patient feedback and visual motion analysis to 
ensure that walking was as comfortable and symmetrical as 
possible. HWAT was performed in the physical therapy room 
or in the corridors of the hospital with the patient using a 
T-cane and a plastic short leg brace (Figure 1b).

Outcome Measurement
The FMA for motor paralysis of the affected lower limb, 

the Modified Ashworth Scale (MAS) for spasticity, the 
6-minute walking test (6MWT) for gait endurance, and the 
10-m walking test (10mWT) for assessing overall walking 
ability were recorded before and after 20 sessions of HWAT. 
The 10mWT was performed at a comfortable speed three 
times at each time point; the walking speed and cadence 
were calculated as the average values of these three trials. 
In addition, the subject was asked to carry an activity meter 
from 2 weeks before the start of HWAT to assess changes in 
the daily stepping activity during the HWAT intervention.

The patient’s movements during 10mWT were recorded 
in the sagittal plane with a digital video camera (Handy-
cam, Sony, Tokyo, Japan) to facilitate analysis of changes 
in gait pattern. The sampling frequency was 60 Hz, and 
two-dimensional motion analysis software (Frame Dias V, 
DKH, Tokyo, Japan) was used to analyze two consecutive 
gait cycles per trial (a total of six gait cycles at each time 
point). To ensure accurate analysis, we placed markers on the 
patient’s acromion, greater trochanter, lateral knee fissure, 
lateral malleolus (on the plastic short leg brace), and the fifth 
metatarsophalangeal base (on the shoe). We defined the trunk 
axis as the line that connects the acromion to the greater tro-
chanter, the thigh axis as the line linking the greater trochan-

ter to the lateral knee fissure, the lower leg axis as the line 
connecting the lateral knee fissure to the lateral malleolus, 
and the plantar axis as the line connecting the lateral malleo-
lus to the fifth metatarsophalangeal base. The angle between 
these axes was used to define the angle in the sagittal plane 
of the hip, knee, and ankle joints. However, calculating the 
correct angle for the ankle joint was challenging because the 
marker, which was placed on the shoe at the assumed loca-
tion of the fifth metatarsophalangeal base, moved because of 
twisting between the foot and the brace and/or between the 
brace and the shoe during walking. To address this problem, 
we calibrated the obtained ankle joint angles by defining 
the ankle joint angle at the point when the lower leg axis 
was perpendicular to the floor in the mid-stance phase as 0°. 
Furthermore, the step length of the affected and nonaffected 
lower limbs was calculated as the distance between the rear 
end of the shoe on the opposite limb and the rear end of the 
shoe on the target limb. We also calculated the symmetry 
of the step lengths (step length of the nonaffected limb/step 
length of the affected limb).

EMG data were recorded during 10mWT with a sampling 
frequency of 2000 Hz and with bandpass filtering of 20–450 
Hz from the gluteus maximus (Gmax), the proximal portion 
of the rectus femoris (RF-p), the distal portion of the rectus 
femoris (RF-d), the biceps femoris (BF), and the tibialis 
anterior (TA) of the affected lower limb (Trigno Lab; Delsys 
Inc., Boston, MA, USA). Surface EMG data have shown that 
RF-p is selectively activated during hip flexion; as a result, 
we employed RF-p as the muscle to indicate hip flexion.19,20) 
For analysis, we used the EMG data obtained for the same 
gait that was the target of the video analysis described above. 
The software program MATLAB (ver. R2020b; MathWorks, 
Natick, MA, USA) was used offline for the analysis, and the 
EMG data were debiased, rectified, integrated with a time 
constant of 200 ms, and then normalized to the EMG value 
at maximum voluntary contraction (MVC). Furthermore, the 
EMG data were segmented for each gait cycle, and each data 
set was interpolated to 200 data points.

Muscle synergy analysis has recently been applied to 
detect changes in the nervous system underlying the func-
tional improvement achieved during rehabilitation after a 
stroke.21–24) Muscle synergy is a hypothesis for the manage-
ment of the redundancy issue in multi-joint movement,25) 
and the physiological validity and robustness of muscle 
synergy analysis based on this hypothesis have been veri-
fied in previous studies.26,27) Compared with previous EMG 
studies, which compare individual muscle activity patterns, 
muscle synergy analysis is able to provide a comprehensive 
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assessment of movement coordination.28) Muscle synergy 
analysis was carried out in reference to the procedures used 
in previous studies relating to stroke patients.29–31) The EMG 
data were debiased, high-pass filtered (40 Hz) with a zero lag 
fourth-order Butterworth filter, rectified, and smoothed with 
a zero lag fourth-order low-pass (4 Hz) Butterworth filter. 
The post-filter EMG data were normalized to the EMG value 
at MVC. Furthermore, this EMG data was segmented ac-
cording to each gait cycle, and each data set was interpolated 
to 200 data points. The nonnegative matrix factorization 
(NNMF) algorithm that we applied generates a matrix of 
muscle weightings (which represent coactive muscle group-
ings) and a matrix of activation timing profiles that indicate 
at what time in the gait cycle the muscle groupings were 
active. The optimum number of modules was determined 
based on the variability accounted for (VAF) and is calcu-
lated by the equation below, which uses the original EMG 
(EMGo) and the reconstructed EMG (EMGr) that employs 
the muscle weightings and the activation timing profiles that 
were calculated using the NNMF algorithm:

 VAF = 1 − (EMGo − EMGr)2/EMGo
2

The optimum number of modules was defined as the 
number of modules in which the calculated VAF exceeded 
90% for the first time when the NNMF was performed by 
increasing the number of modules in order from 1.23,30,32)

Statistical Analyses
We obtained data relating to the step length for both sides, 

the symmetry of step length, and the joint angles from six 
gait cycles before and after the 20 HWAT sessions. After 
confirming normality by using the Shapiro–Wilk normality 
test, Student’s t-test was performed on the step lengths for 
both sides and the symmetry of step length to compare the 
mean values before and after the HWAT intervention. Re-
garding the joint angles, statistical analyses were performed 
on each peak angle of the hip and knee joint. The maximum 
extension angle of the hip joint occurred at between 30% and 
70% of the gait cycle, and the maximum flexion angle was 
between 80% and 100% of the gait cycle. The first maximum 
flexion angle of the knee joint occurred at between 0% and 
40% of the gait cycle, and the second maximum flexion angle 
was between 50% and 100% of the gait cycle (Figure 3a,b). 
Because the Shapiro–Wilk normality test was not met, the 
Mann–Whitney U test was performed on the joint angle 
data. Finally, statistical analyses were performed using SPSS 
software (IBM, Armonk, NY, USA) and the significance 
level was set at P < 0.05.

RESULTS

The patient was able to complete 20 sessions of HWAT 
without any adverse events. Table 1 shows the HWA torque 
settings for each HWAT session. The changes in various as-
sessments before and after the 20 HWAT sessions are shown 
in Table 2; these indicated that there was no change in the 
FMA and the MAS before and after the HWAT interven-
tion. The 6MWT distance increased from 342.1 m before the 
HWAT intervention to 400.6 m after the intervention. For 
the 10mWT, the HWAT sessions produced no substantial 
changes in speed or cadence.

The step length of the affected limb showed no significant 
change before and after the intervention (t(10) = 0.396, P = 
0.701, d = 0.23). However, there was a significant increase 
in the step length of the nonaffected limb after the HWAT 
intervention compared with that before (t(10) = 3.558, P = 
0.005, d = 2.05). Likewise, the step length symmetry was 
significantly higher after the intervention than before (t(10) = 
2.473, P = 0.033, d = 1.43).

Figure 3 shows the average angular changes over one gait 
cycle in the hip, knee, and ankle joints during the 10mWT. 
The maximum extension angle of the hip joint (which oc-
curred at between 30% and 70% of the gait cycle) after the 
HWAT intervention was significantly higher than that regis-
tered before (P = 0.002, r = 1.18). Furthermore, the maximum 
hip flexion angle (occurring at between 80% and 100% of the 
gait cycle) after the intervention was significantly lower than 
that observed before (P = 0.002, r = 1.18). The first maximum 
flexion angle of the knee joint (which occurred at between 
0% and 40% of the gait cycle) after the intervention was also 
significantly higher than that registered before (P = 0.002, r 
= 1.18). In contrast, the second maximum knee flexion angle 
(occurring at between 50% and 100% of the gait cycle) was 
virtually unchanged (P = 1.000, r = 0.00). The ankle joint 
angle before and after the HWAT intervention showed no 
substantial changes. 

Figure 4 shows the average EMG values in the affected 
lower limb during 10mWT before and after the 20 HWAT 
sessions. The EMG activity of the RF-p showed a weak con-
tinuous activity throughout the gait cycle before the HWAT 
intervention, but it showed peak activities at 20% and 60% 
of the gait cycle after the intervention. Similarly, the EMG 
activity in RF-d proved to be continuous throughout the gait 
cycle before the intervention, but it had peak activities at 20% 
and 60% of the gait cycle after the intervention. Furthermore, 
the HWAT intervention shifted forward the peak activity in 
BF that previously occurred at 20% of the gait cycle to 10% 
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Fig. 3. Average angular changes over a gait cycle in the hip, knee, and ankle joints recorded during the 10mWT. (a) Hip joint, 
(b) knee joint, and (c) ankle joint. Gray lines, average angular change before HWAT; black lines, average angular change after 
20 sessions of HWAT.

Table 1. HWA torque settings for the 20 HWAT sessions

Session number
Right Hip Left Hip

Flexion torque (Nm) Extension torque (Nm) Flexion torque (Nm) Extension torque (Nm)
1 1.5 1.5 3.3 2.6
2 1.5 1.5 3.6 2.8
3 1.5 1.5 3.2 2.6
4 1.5 1.5 3.2 2.6
5 1.5 1.5 3.2 2.6
6 1.5 1.5 3.1 2.5
7 1.5 1.5 2.8 2.2
8 1.5 1.5 2.6 2.1
9 1.5 1.5 2.6 2.1
10 1.3 1.3 2.6 2.1
11 1.2 1.2 2.5 1.9
12 1.2 1.2 2.8 2.1
13 1.2 1.2 2.8 2.1
14 1.2 1.2 2.8 2.8
15 1.2 1.2 2.8 2.8
16 1.2 1.2 2.8 2.8
17 1.2 1.2 2.6 2.1
18 1.2 1.2 2.4 1.9
19 1.2 1.2 2.4 1.9
20 1.2 1.2 2.4 1.9
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of the gait cycle, and the EMG activity at 60%–100% of the 
gait cycle was lower after the intervention. Lastly, the EMG 
activities for Gmax and TA were more pronounced after the 
HWAT intervention.

Figure 5 shows the results of the muscle synergy analysis 
of the EMG data obtained during the 10mWT. Before the 
HWAT intervention, the calculations indicated the presence 
of only one module, but two modules were indicated after the 
intervention. The original module and module 2 after the in-
tervention showed similar muscle weightings and activation 
timing profiles; in contrast, module 1 after the intervention 
showed different tends.

Finally, the average numbers of steps per day indicated by 
the activity meter were 4060.2 ± 1207.2 steps during the 2 
weeks before HWAT and 3882.5 ± 2356.0 steps during the 
HWAT intervention.

DISCUSSION

For the current patient, whose maximal walking speed had 
reached a recovery plateau with conventional rehabilitation, 
the 20 sessions of HWAT combined with conventional reha-
bilitation increased the following parameters: the step length 
of the nonaffected limb, the symmetry of the step lengths, 

and gait endurance. The increase of 58.5 m in the 6MWT 
distance exceeded the smallest meaningful change of 54 m 
in stroke patients33) and therefore represents an improvement 
that can noticeably enhance the patient’s quality of life in 
terms of mobility within the community.

The improvement in walking ability by means of conven-
tional rehabilitation after a stroke has been reported to pla-
teau at between 115) and 17 weeks6) after onset. Our subject 
had exceeded 20 weeks after onset at the start of HWAT, 
and the maximum walking speed had, unsurprisingly, 
reached a recovery plateau. Furthermore, for motor paralysis 
recovery of the lower limbs, the FMA of the lower limbs 
often peaks at approximately 12 weeks34,35) after onset. The 
maximum walking speed has a significant positive correla-
tion with lower-limb FMA in patients with chronic stroke 
who have reached a recovery plateau in motor paralysis.36) 
The abovementioned details suggest that, at the start of 
HWAT, our patient had reached a recovery plateau in motor 
paralysis of the lower limbs and in the maximum walking 
speed. Nevertheless, the combination of 20 HWAT sessions 
and conventional rehabilitation increased the step length of 
the nonaffected limb in our patient, which also improved 
the symmetry of the step lengths and the gait endurance. 
A randomized controlled trial of HWAT in stroke patients 
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Table 2. Assessment scores before and after 20 sessions of HWAT

Before After P value
FMA LE (0–34) 20 20
MAS (0–4)
Knee flexor muscles 1 1
Knee extensor muscles 1 1
Plantar flexor muscles 2 2
Dorsiflexor muscles 1 1
6MWT
Distance (m) 342.1 400.6
Change in pulse rate (bpm) 109 → 124 92 → 119
Change in Borg Scale (6–20) 11 → 15 11 → 13
10mWT
Speed (m/s) 1.15 ± 0.10 1.16 ± 0.07
Cadence (steps/min) 110.3 ± 4.1 108.9 ± 6.5
Step length of the affected limb (m) 0.78 ± 0.04 0.77 ± 0.06 0.701
Step length of the nonaffected limb (m) 0.62 ± 0.04 0.70 ± 0.05 0.005
Symmetry of step length 0.79 ± 0.08 0.92 ± 0.10 0.033
Muscle synergy analysis (number of modules) 1 2
The step length for both sides and the step length symmetry were analyzed using Student’s t-test.
FMA, Fugl-Meyer Assessment; LE, lower extremity; MAS, Modified Ashworth Scale; 6MWT, 6-minute walking test; 

10mWT, 10 m walking test.
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revealed an increase of the walking speed, the step length 
of the affected side, the cadence, and the walking capacity 
and improved symmetry.11–13) The differences noted between 
the previous studies and the results of the present case (i.e., 
no change in walking speed, cadence, or the step length of 
the affected limb in our case) might be due to the differences 
in the patients’ characteristics. Specifically, Buesing et al.11) 
and Jayaraman et al.12) recruited stroke patients who had 
lived in the community for approximately 5 years after the 
onset of stroke and whose walking speed was in the range 
0.4–0.8 m/s, whereas Tanaka et al.13) recruited subacute 
stroke patients whose walking ability was in the recovery 
stage. In our patient, at the start of HWAT, the walking speed 
had reached 1.15 m/s, which was beyond the level of walking 

speed classified as independent for all activities in the com-
munity37,38) and exceeded the speed required for activities in 
the community. Furthermore, HWAT improved the walking 
ability of our patient, whose recovery had plateaued with 
conventional rehabilitation; however, rigorous clinical trials 
are needed to confirm the results of this case study.

After 20 sessions of HWAT, the current patient showed an 
improvement in step length symmetry. It has been shown that 
improvements in the symmetry of step length contribute to 
reducing the energy cost of walking after stroke.39) Further-
more, the maximum hip extension angle of the affected limb 
in the late stance phase was increased in our patient. HWAT 
reportedly increases the hip extension angle in the late stance 
phase in patients with central nerve system diseases11–15) and 
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Fig. 4. Average EMG changes over a gait cycle in the affected lower limb recorded during the 10mWT. (a) Gluteus maximus 
(Gmax), (b) proximal portion of the rectus femoris (RF-p), (c) distal portion of the rectus femoris (RF-d), (d) biceps femoris 
(BF), and (e) tibialis anterior (TA). Gray lines, average EMG changes before HWAT; black lines, average EMG change after 
20 sessions of HWAT.
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orthopedic diseases.17,18) There is a positive correlation be-
tween the hip extension angle of the affected limb in the late 
stance phase and the 6MWT distance in stroke patients.40) 
In contrast, the maximum hip flexion angle of the affected 
limb in the current patient was significantly decreased; the 
overall effect was that the step length on the affected side 
did not improve after HWAT. HWA reportedly increases the 
step length of the affected limb in patients with stroke.11,13) 
Why such discrepancies arise is still unknown. However, 
one possible explanation is that our patient was walking with 
a large swing of the affected limb prior to HWAT. In fact, 
the step length of the affected limb before HWAT was larger 
than that of the nonaffected limb (step length of the affected 
limb before HWAT vs. step length of the nonaffected limb 
before HWAT: 0.78 ± 0.04 m vs. 0.62 ± 0.04 m, see Table 2). 

Thus, the hip flexion angle and the step length of the affected 
limb were satisfactory before the HWAT intervention in our 
patient. After HWAT, the step length of the nonaffected limb 
increased because the hip extension angle on the affected 
limb increased in the late stance phase, thereby improving 
the step length symmetry. Furthermore, there was an in-
crease in the knee flexion angle during the loading response 
phase after HWAT. The knee flexion movement during the 
loading response phase is involved in efficient walking with 
less vertical movement.41,42) HWAT has been reported to 
lead to the appearance of knee flexion during the loading 
response phase in a patient undergoing total knee arthro-
plasty.16) These facts support the possibility that our patient 
acquired a more efficient gait as a result of HWAT, and this 
subsequently led to the improvement of gait endurance.

Prog. Rehabil. Med. 2021; Vol.6, 20210037 9

Fig. 5. Results of the muscle synergy analysis of data recorded during the 10mWT. (a) Before HWAT and (b) after 20 ses-
sions of HWAT. Only one module was evident before the HWAT intervention, whereas there were two modules after the 
intervention.
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The pattern of muscle activity before and after the HWAT 
intervention showed substantial changes in RF-p, RF-d, and 
BF toward the muscle activity patterns normally seen in 
gait, i.e., the hip flexor muscles are active at about 10% and 
70% of the gait cycle, the knee extensor muscles are active 
at about 10% and 60% of the gait cycle, and the knee flexor 
muscles are active at the beginning and after about 80% of 
the gait cycle.43,44) Furthermore, the muscle synergy analysis 
performed on EMG data from the 10mWT indicated that the 
number of modules during walking increased from 1 to 2 
after HWAT. The change in the number of modules reflects 
a change in the relevant neural network,23) and there is an 
association between an increase in the number of modules 
and an improvement in walking ability in stroke patients.21) 
In healthy subjects, there are approximately four modules 
during walking, 45) whereas the modules are merged because 
of the co-contractions of several muscles in stroke patients, 
resulting in a decreased number of modules.30,46) In our case, 
the mechanism through which the muscle activities were 
able to change and the number of modules to increase after 
the intervention is unknown. However, HWA assisted the 
hip movements symmetrically and alternately during walk-
ing, and the muscle activity patterns shifted to the patterns 
observed in normal gait without motor paralysis improve-
ment. The central pattern generator (CPG) of the spinal 
cord, which is deeply involved in the generation of walking-
specific muscle activities, is activated by hip movement.47) In 
particular, the activity of CPG is amplified by alternate hip 
movement rather than unilateral hip movement.48)

The HWA torques were set to decrease as the number 
of sessions progressed, although some variations were 
observed, as shown in Table 1. This setup was conducted 
according to the hypothesis that excessive assistance by a 
robotic device would reduce the patient’s effort and could be 
detrimental to motor recovery after stroke.49) However, the 
optimality of this setup remains uncertain. Nevertheless, in 
our case, HWAT was performed using this setup, and the 
abovementioned results were achieved.

There are several limitations to this case study. First, this 
is the report of a single case without a control group, which 
implies that the results of our case can in no way be general-
ized, and future validation with similar patients is necessary. 
Second, it is unclear how long the changes obtained through 
HWAT intervention will be sustained from the follow-up on-
wards. Third, the number of EMG channels recorded in our 
case was small because a brace was worn at the time of EMG 
recording. Consequently, we were not able to record data for 
the lower leg muscles, such as the soleus and gastrocnemius 

muscle, which have an important function in walking.29)

In conclusion, 20 treatment sessions that included HWAT 
were completed by a patient whose walking speed had 
reached a recovery plateau after conventional rehabilitation. 
Consequently, we noted improvements in the maximum hip 
extension angle of the affected limb during the late stance 
phase, in the knee flexion angle of the affected limb during 
the loading response phase, in the symmetry of step length, 
and in gait endurance. These improvements were accompa-
nied by changes in muscle activity patterns during walking. 
The improvement of gait endurance exceeded the smallest 
meaningful change in patients with stroke, indicating a sig-
nificant enhancement in the patient’s quality of life in terms 
of mobility in the community. However, further clinical trials 
should be conducted to confirm the results of this case study.
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