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Abstract
Background: The most renowned biological ontology, Gene Ontology (GO) is widely used for
annotations of genes and gene products of different organisms. However, there are shortcomings
in the Resource Description Framework (RDF) data file provided by the GO consortium: 1) Lack
of sufficient semantic relationships between pairs of terms coming from the three independent GO
sub-ontologies, that limit the power to provide complex semantic queries and inference services
based on it. 2) The term-centric view of GO annotation data and the fact that all information is
stored in a single file. This makes attempts to retrieve GO annotations based on big volume
datasets unmanageable. 3) No support of GOSlim.

Results: We propose a RDF model, GORouter, which encodes heterogeneous original data in a
uniform RDF format, creates additional ontology mappings between GO terms, and introduces a
set of inference rulebases. Furthermore, we use the Oracle Network Data Model (NDM) as the
native RDF data repository and the table function RDF_MATCH to seamlessly combine the result
of RDF queries with traditional relational data. As a result, the scale of GORouter is minimized;
information not directly involved in semantic inference is put into relational tables.

Conclusion: Our work demonstrates how to use multiple semantic web tools and techniques to
provide a mixture of semantic query and inference solutions of GO and its associations. GORouter
is licensed under Apache License Version 2.0, and is accessible via the website: http://
www.scbit.org/gorouter/.
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Background
The currently preferred tool for uniform data presentation
in systems biology, the syntactic and document orientated
eXtensible Markup Language (XML), cannot satisfy the
requirements of highly dynamic and integrated bioinfor-
matics applications. However, Semantic Web [1]http://
www.w3.org/2001/sw provides a universal mechanism
for information exchange by describing, in a machine-
interpretable way, the content of resources on the Web.
The growing need for integration of diverse and heteroge-
neous data sets from distinct communities of scientists in
separate biological research fields has thus been the major
driving force to migrate from traditional XML to Semantic
Web [2].

Gene Ontology [3] (GO, http://www.geneontology.org)
is by far the most widely used bio-ontology. As of August
2007, it contains approximately 23,700 terms, linked to a
database of more than 16 million annotations of genes
and gene products, originating from about 20 organisms.
As a Semantic Web application domain, Gene Ontology
Consortium provides a RDF-XML data file http://
archive.geneontology.org/full/2007-08-01/go_200708-
assocdb.rdf-xml.gz. It is an export of the database, con-
taining both the GO vocabulary and associations between
GO terms and gene products. However, this file has draw-
backs, making it unsuitable for providing complex seman-
tic query and inference services.

The first drawback is the lack of relationships between
concepts among different GO subontologies, limiting the
power of inference based on them. GO has three inde-
pendent subontologies, Cellular Component, Biological
Process and Molecular Function. The terms in the subon-
tologies are structured as Directed Acyclic Graphs (DAG),
and may have one or more parents with two types of rela-
tionships: 'is-a' is a simple class-subclass relationship,
while 'part-of' represents a complex part-whole relation-
ship. However, neither of them reflects the biological rela-
tionships among various subontologies. Several
approaches, Lexical [4-8] and non-lexical [9-12], have
been used to tackle this issue.

Lexical approaches are based on the fact that GO terms
and definitions are themselves a type of semi-structured
natural language. About 65% of all GO terms contain
another GO term as a proper substring [4]. For example,
the MFmannosyltransferase activity (GO:0000030) shares a sub-
string with the CCmannosyltransferase complex (GO:0031501). The
Obol project proposed a formal language to provide com-
putable definitions that serve to differentiate a term from
other similar terms [5]. Furthermore, Bada et al. designed
31 patterns to match term substrings to concepts and pre-
dicted an initial set of over 4000 associations [6]. Lexical
methods mainly focus on the analysis of the composi-

tional nature of Ontology terms, which leads to an
increase in the number of relationships. The same ideas
also could be applied to identify the dependence among
various domains of biological knowledge, such as the
Open Biological Ontology (OBO) family, chemical entity
(ChEBI), BRENDA Tissue ontologies, and so on [8].

Statistical approaches based on the assumption that since
some pairs of terms coming from different GO subontol-
ogies are annotated to the same gene or gene product, the
relationships should reflect an actual interdependence
between them. By analyzing the statistics of co-occurrence
of GO terms in the model organism annotation databases
of the Gene Ontology Annotation (GOA), Bada et al.
developed the Gene Ontology Annotation Tool (GOAT)
[9]. GOAT assists the Gene Ontology Next Generation
(GONG) project [11] to convert GO Terms into a descrip-
tion-logic-based ontology (DAML+OIL). Similarly,
Kumar mined the TIGR database to establish the corre-
sponding patterns of association between terms in GO
[10]. Other non-lexical methods, such as computing sim-
ilarity in vector space, association rule mining, ontologies
analysis, have also be introduced to address this problem
[12].

The second drawback is that the RDF-XML data file is
organized with a term-centric view of GO annotation
data. All information is stored in a single file. The loading,
querying and visualizing of massive amounts of RDF data-
sets are the main bottleneck of semantic web prototype
applications [13]. Several semantic web tools, Sesame
[14], Kowari [15], Jena2 [16], 3Store and RDFStore, have
been developed and made available. Unfortunately, these
repositories are not suitable for work with large amounts
of data http://simile.mit.edu/reports/stores/.

On the other hand, the scale of semantic web datasets of
the life sciences increases dramatically. Many communi-
ties, such as GO, UniProt, UMLS, OMIM, KEGG and
MGED, have provided download services for data
encoded in RDF or Web Ontology Language (OWL) for-
mat. Correspondingly, semantic web prototype tools have
been developed to address life science and health care
requirements. For example, BioDASH [17] provides a
Drug Development Dashboard that associates disease, com-
pounds, drug progression stages, molecular biology, and
pathways for a group of users. The YeastHub [18] and
Bio2RDF [19] projects explore how the needs for data
integration can be addressed by the semantic web and
how a life sciences data warehouse can be built. However,
most of the semantic web prototype applications create an
RDF repository using the computers' main memory to
speed up performance. This solution poses a high demand
on the application server and is unable to satisfy the need
for rapid growth of semantic web applications.
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The third drawback is the lack of support for GOSlim.
GOSlims are cut-down versions of the GO ontologies con-
taining a subset of all terms in GO. They are particularly
useful for giving a summary of the results of GO annota-
tions of genomes, microarrays or cDNA collections
[20,21]. However, GOSlim properties are not considered
in RDF-XML data files.

Results
In this paper, we present a RDF model GORouter, which
mainly demonstrates how to use multiple semantic web
tools and techniques to integrate heterogeneous resources
and to create additional semantic relationships between
different RDF datasets.

By introducing GLUE system [22] to create ontology map-
pings between pairs of terms coming from the three inde-
pendent GO sub-ontologies, introducing a set of inference
rulebases, and using the Oracle Network Data Model
(NDM) [23] as the native RDF data repository, we believe
that GORouter has the capability to allow complex seman-
tic queries and inference services for GO and its associa-
tions.

Datasets and software availability
GORouter is licensed under Apache License Version 2.0
and available for free download from the SourceForge
website http://sourceforge.net/projects/gorouter. Based
on GORouter, we provide an application http://
www.scbit.org/gorouter/ for searching and browsing GO
and its associations, and which also delivers additional
functions such as semantic inference services.

Discussion and conclusion
Algorithm advance
In this section, we discuss some shortcomings of current
algorithms for ontology mapping.

Firstly, finding associations using non-lexical and lexical
approaches has little overlap [12]. Myhre et al. attempt
multiple strategies to bridge this gap [24]. The GLUE sys-
tem supports multiple learning strategies to generate join
probability distribution. However, our project currently only
employs an annotation statistics strategy. Integrating lexical
learning strategies into the project will be the main focus
of the next development phase.

Secondly, the GLUE system can currently not handle more
sophisticated mappings (i.e. non one-to-one mapping)
between GO terms. As an extended version of the GLUE
system, CGLUE [25] can be used to exploit complex map-
pings.

Thirdly, the GLUE system only focuses on finding corre-
spondences among the taxonomies of two given ontolo-

gies. Ontology specifies a conceptualization of a domain
in terms of concepts, attributes and relations. The con-
cepts provide model entities of interest in the domain,
and they are typically organized into a taxonomy tree.
Despite taxonomies being central components of ontolo-
gies, attributes and relations also need to be considered
during the process of exploit mapping.

RDF to OWL
OWL builds on RDF and adds more vocabulary along
with formal computational definitions for reasoning.
Compared with RDF, OWL facilitates greater machine
interpretability of Web content. The OWL format is
becoming the next generation of bio-ontology representa-
tion [26-29]. Several ontology editors, such as OBO-Edit
[30], Protégé-OWL [31] and COBrA [32], can be used to
perform the translation and provide Description Logic
reasoning.

We currently use Oracle 10gR2 NDM as RDF repository,
which does not incorporate native OWL support. The next
generation, Oracle Spatial 11g, will support both RDF and
OWL data management [33]. It is another important task
for us to migrate GORouter from RDF to OWL format.

Refinement and extension
The GO project is a collaborative effort to address the
need for consistent descriptions of gene products in vari-
ous databases. However, some molecular functions, bio-
logical processes and cellular components are not
common to all life forms. GO uses the designator sensu,
'in the sense of', to name those species-specific terms. For
instance, BPinvasive growth (sensu Saccharomyces) (GO:0001403) rep-
resents the invasive growth process of Saccharomyces cell,
which can only be used to annotate genes and gene prod-
ucts of the Saccharomyces Genome Database (SGD).
These species-specific terms violate the species-independ-
ent principle of the GO vocabulary.

From another point of view, one could call this phenom-
enon a semantically-weak problem: the GO vocabulary
has no control over the semantic context of term names.
We will address this problem by introducing the NCBI
organism classification (TAXON) into GORouter. By sepa-
rating species-specific terms from the GO vocabulary, we
plan to create a set of special GO subsets, which can be
applied to the specified class of organism. Furthermore,
the TAXON vocabulary can also be used to identify the
species encoding gene products. By introducing TAXON,
we can create richer relations across various GOs and their
annotations.

Similarly, we also plan to introduce Sequence Ontology
[34] (SO), a sister project of GO, to describe features and
attributes of gene sequences and gene products. In recent
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years, the development of bio-ontologies has been very
rapid [35,36]. As an essential part of OBO collection, GO
development principles have been extended to many
other biological domains and give an opportunity to
introduce more ontology and annotations into GORouter
to enrich the content of semantic relationships.

Gene Ontology is itself dynamic [37]. The development of
GO terms and annotations reflects the current status of
biological knowledge. For instance, the GO consortium
has partially completed the subsumption hierarchy (a set
of high-level terms) for the cellular component ontology,
and the project is expected to be completed in 2007. The
Plant-Associated Microbe Gene Ontology (PAMGO,
http://pamgo.vbi.vt.edu/) Interest Group introduced a
new set of terms representing pathogenic and symbiotic
processes. Alongside the continuous improvement of GO
ontology content, increasing model organism databases
and genome annotation groups contribute annotation
sets using GO terms.

In summary, all these changes indicate that the content of
GORouter needs to be correspondingly augmented,
refined and reorganized. These requirements provide two
challenges: one is to improve model flexibility and the
other is to adapt performance to the continual increase in
size. By using multiple semantic web technologies and
tools, we believe that GORouter can overcome these prob-
lems.

Methods
Metadata and data
Most of the original files come from the Gene Ontology
Consortium, including MySQL relational data, the OBO
format data of GOSlim, tab-delimited annotation files,
and RDF XML format data with or without annotation.
We encoded these heterogeneous resources in uniform
RDF format, and created a set of RDF datasets (Reference
YeastHub project). Each dataset consists of two RDF files,
metadata and data.

In order to increase the usability and portability, metadata
RDF files (Figure 1A) are encoded with RSS1.0 (Rich Site
Summary, http://web.resource.org/rss/1.0/), including
standard properties coming from the Dublin Core Meta-
data (DCM) vocabulary http://dublincore.org/docu
ments/dcmi-terms/. Each resource of metadata is known
as a channel and its contents as a 'RSS feed'. RSS applica-
tions can access these RSS-enabled sites and collect their
feeds, therefore, these properties can be easily shared by
various biological research domains. In metadata RDF
files, we provided all standard definitions of properties as
follows:

(1) Symbol: is a standard gene product symbol.

(2) Synonyms: a RDF sequence container for storing the
synonyms of genes and gene products.

A metadata and data RDF file of the Candida Genome Database (CGD) annotation datasetFigure 1
A metadata and data RDF file of the Candida Genome Database (CGD) annotation dataset. (A) The CGD meta-
data RDF file is encoded with RSS1.0, which can be easily shared by various biological research domains. (B) There is a CGD 
data RDF file associated with (A). We assign a unique LSID to each URL.
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(3) GOA: is a RDF omitting blank node with two sub-
property elements: go and evidence, which indicates the
GO Annotation. A gene product may have more than one
annotation.

(4) GO: is a LSID, which refers to an accession number of
GO term.

(5) Evidence: is a RDF omitting blank node with two sub-
property elements: ec and reference, which refers to the evi-
dence supporting the annotation. For a given annotation,
more than one evidence may be associated with it. In
GORouter, we only focus on credible evidence, such as
Inferred by Curator (IC), Inferred from Direct Assay
(IDA), Traceable Author Statement (TAS), and so on.

(6) EC: indicates the evidence code for the annotation.

(7) Reference: is a reference cited to support the annota-
tion.

Each metadata RDF file has a data RDF file (Figure 1B)
associated with it. We assign only one unique Life Science
Identifier [38] (LSID) to each URL of data RDF files. Cur-
rently, only few databases provide LSIDs for their data.
Therefore, we decided to assign these identifiers ourselves.
Each LSID consists of up to five parts (URN:LSID:Author-
ity:Namespace:Object: [Revision-ID]), in which
URN:LSID is a mandatory prefix; Authority is the Internet
domain of the organization which assigns the LSID to the
resource; Namespace constrains the scope of the object;
Object is an alpha-numeric describing the object; Revi-
sion-ID is the optional version of the object. For an exam-
ple, there is a CGD (Candida Genome Database) gene
whose database accession number is 'CAL0000849'. Thus,
the LSID will be written as: 'urn:lsid:life-
center.scbit.org:cgd:CAL0000849:1' or as a simpler style:
'urn:lsid:lifecenter.scbit.org:cgd:CAL0000849'.

Ontology mapping
Given two ontologies O1 and O2, for each term A (A ∈ O1),
the ontology mapping algorithms attempt to find the
most similar term B (B ∈ O2). We describe this mapping
as "A mapping-to B". Nowadays, there are over 23,700 GO
terms, including approximately 7,800 Molecular Function
terms, 2,000 Cellular Component terms and 13,900 Bio-
logical Process terms. Manual GO subontology mapping
is not reliable, and it is therefore crucial to use algorithms
and computational tools to assist experts to generate these
mappings.

In this paper, we apply the GLUE system (as shown in Fig-
ure 2) to semi-automatically generate 6 types of mapping
paths and translate them into a set of GORouter Mapping
Datasets.

The core issue of mapping algorithms is how to measure
the similarity between two terms. The GLUE system is
based on the observation that many practical measures of
similarity can be defined based solely on the join probabil-
ity distribution of the terms involved. In the Similarity Esti-
mator module, we use the Jaccard Similarity function
(Formula 1) to calculate a similarity measure for any pair
of terms coming from different GO subontologies.

GLUE System ArchitectureFigure 2
GLUE System Architecture. There are four modules are 
included in the GLUE system. The Distribution Estimator mod-
ule uses multiple machine learning strategies to generate a 
join probability distribution P(A, B). The Similarity Estimator mod-
ule uses the Jaccard Similarity function to construct a similarity 
matrix. The Relaxation Labeler module uses domain con-
straints and heuristic knowledge to improve the match accu-
racy. Finally, after validation by experts, the Translator module 
encodes the mapping paths with uniform RDF format and 
loads them into GORouter.
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The value of P(A, B) can be computed as the fraction of the
instance universe that belongs to both A and B. In general,
we cannot compute this fraction, because we do not know
every instance in the universe. Hence, we estimate P(A, B)
based on the data we have, namely, the GO annotations.
We denote by Ui the set of annotations given for GO sub-

ontology Oi, by N(Ui) the size of Ui and by  the

number of annotations in Ui that are annotated by both

terms, A and B. With these assumptions, P(A, B) can be
estimated, using the following equation:

Similarly, we can estimate the value of P(A, ) and P( ,
B), and calculate the Jaccard Similarity between the term A
and B. The output of the Similarity Estimator module is a
similarity matrix of any pair of terms in the two taxono-
mies.

For quality consideration, those annotations without
credible evidence, such as Inferred from Electronic Anno-
tation (IEA), Non-traceable Author Statement (NAS), No
biological Data available (ND), and Not Recorded (NR),
are not be included. 512,721 annotations were used for
the eventual construction of the similarity matrix.

To improve the match accuracy, the GLUE system uses a
Relaxation Labeler, which searches for the match configura-
tion that best satisfies the given domain constraints and
heuristic knowledge. The key idea behind this approach is
that the label of a node is typically influenced by the fea-
tures of the node's neighborhood in the graph. For instance,

if there are mappings between all children nodes of MFte-

lomerase activity (GO:0003720) and CCtelomerase catalytic core complex
(GO:0000333), then the chance of "MFtelomerase activity map-
ping-to CCtelomerase catalytic core complex" will be increased. Two
domain constraints were introduced into our project. One
is that "If term A matches term B, then A also matches all
parents of B" and the other is that "If all children of term
A match term B then A also matches B". Based on the
GLUE report, when the relaxation labeler was applied, the
accuracy typically improved substantially in the first few
iterations, and then gradually dropped. Because of this,
we stopped the Relaxation Labeler operation after the first
two iterations and generated a set of match candidates.

After validation, 15,232 one-to-one mappings were gener-
ated, covering almost half of all GO terms. As shown in
Table 1, 3,882 (46%) terms of MF, 5,629 (39%) terms of
BP and 1,233 (58%) terms of CC are involved in the map-
pings. Among them, 8401 (55%) paths focus on the rela-
tionships between Molecular Function and Biological
Process (including MF2BP and BP2MF), while only 2014
(13%) paths start with Cellular Component (including
CC2MF and CC2BP). The distribution of mapping types
reflects the biased nature of current GO annotations.

Inference rulebases
By introducing a set of inference rulebases, the GORouter
will be able to provide semantic inference services. In
addition to the two internal RDF and RDFS rulebases, the
Oracle NDM also supports user-defined rulebases and
uses them in specialized inferences across various RDF
datasets.

In this paper, we use two types of inference rulebases: True
Path Rulebase (as shown in Figure 3A) and Ontology Map-
ping Rulebases (as shown in Figure 3B). The True Path Rule-
base reflects the organization principle (i.e. "true path
rule") within the GO Subontology Datasets. The Ontology
Mapping Rulebases cover all permutations and combina-
tions between GO Subontology Datasets and Ontology Map-
ping Datasets.

Jaccard sim A B P A B P A B
P A B

P A B P A B P A B
− = =

+ +
( , ) ( ) / ( )

( , )

( , ) ( , ) ( , )
∩ ∪

(1)

N Ui
A B( ),

P A B
N U A B N U A B

N U N U
( , )

( , ) ( , )

( ) ( )
=

+
+

1 2
1 2

(2)

B A

Table 1: The distribution of one-to-one mappings.

Mapping Relation Count MF BP CC

MF2CC be-performed-in 2592 1397 (16%) 554 (33%)
CC2MF performs 785 487 (6%) 347 (20%)
MF2BP be-involved-in 5723 1822 (23%) 3327 (30%)
BP2MF involves 2678 1304 (17%) 1045 (10%)
BP2CC takes-on 2225 1019 (9%) 550 (33%)
CC2BP undertakes 1229 1433 (13%) 372 (21%)
Total 15232 3882 (46%) 5629 (39%) 1233 (58%)

There are six types of mapping between the pairs of GO-terms coming from the three independent subontologies, covering almost half of all the 
GO terms.
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In the rulebases, each rule consists of three parts: an IF
side pattern as the antecedents; an optional filter condi-
tion that further restricts the subgraphs matched by the IF
side pattern; and a THEN side pattern for the consequents.
To simplify the expression, we use the "→" character to
separate the IF side pattern from the THEN side pattern,
while optional filter conditions are omitted.

Given two ontologies O1 and O2 (Figure 4), a sentence of
the form "a mapping-to b" (where a ∈ O1, b ∈ O2 and "map-
ping-to" stands in for one of six mapping types) can thus
be conceived as expressing general statements about the
mapping between different GO subontologies. For any
child node ai of a (the form "ai is-child-of a", where "is-
child-of" stands for "is-a" or "part-of" expressions), we can
infer that "ai maps-to b". Similarly, for any parent node bj
of b (where "b is-child-of bj") we can infer that "a mapping-
to bj". Furthermore, for any child node ai of a and any par-
ent node bj of b, the assertion of "ai mapping-to bj" is also

valid. By introducing inference rulebases, GORouter can
infer a total of sixty results, which obey the same mapping
from node a to node b.

GORouter architecture
By integrating heterogeneous original data with uniform
RDF format, creating additional mappings between pairs
of terms coming from different GO subontologies, and
introducing a set of reasoning rulebases across various
RDF datasets, we produced the RDF model GORouter (As
shown in Figure 5). In total, 31 RDF datasets and 7 RDF
rulebases have been integrated into the GORouter.

Compared with the single term-centric XML-RDF data file,
the RDF datasets are organized with a three-tier frame-
work: 1) Core Tier: consists of 3 GO Subontology Datasets
and 5 GOSlim Datasets (including GOSlim_Generic,
GOSlim_GOA, GOSlim_Plant, GOSlim_Prokaryotic and
GOSlim_Yeast). 2) Mapping Tier: consists of the 6 Ontology
Mapping Datasets generated by the GLUE system. 3) Anno-
tation Tier: consists of 17 GO Annotation Datasets; filtering
of the annotation files is provided by GO collaborating
groups.

Refining the set of mapping types simplifies the search
statements. In the GORouter, we normalized the defini-
tion of relationships between the RDF datasets. Further-
more, when creating mappings, we used more restricted
domain constraints. Hence, these mappings enrich the
relationships and have the ability to provide complex
semantic query and inference services.

Application
A variety of applications that provide visualization and
query capabilities for the GO are available. For example,
the AmiGO http://www.godatabase.org/cgi-bin/amigo/
go.cgi, GoFish [39] and EP http://ep.ebi.ac.uk/EP/GO/
browsers all use web interfaces to implement searching
and displaying the ontology, term definitions and associ-
ated annotated gene products for the entire spectrum of
contributing GO collaborating databases. Apart from the
basic functions, however, there are profound differences
between the various applications. For instance, GoFish
provides Boolean queries of combinations of GO
attributes, and the EP GO Browser provides clustering,
analysis and visualization services. Unfortunately,
although many applications use the GO subontologies or
the gene associations, as well as similar development
architectures, so far their integration has been problematic
[40].

Stein et al., have suggested using two technologies, ontol-
ogy and globally unique identifiers for the integration of
biological databases. In constructing GORouter, we have
followed this suggestion. We believe that this RDF model

User-defined: two types of inference rulebases of GORouterFigure 3
User-defined: two types of inference rulebases of 
GORouter. (A) The True Path Rulebase (RULE_GO) with 
two rules running on the GO subontologies dataset. (B) Each 
Ontology Mapping Rulebase (RULE_BP2MF) with four rules 
crossing three RDF dataset: BP, MF and BP2MF.

An illustration of semantic inference running on the mapping directed from node a to bFigure 4
An illustration of semantic inference running on the 
mapping directed from node a to b. Given two ontolo-
gies O1 and O2, the sentence "a mapping-to b" (a ∈ O1, b ∈ O2) 
can be inferred by a reasoning engine. For any child node ai of 
a, we can infer that "ai maps-to b". Similarly, for any parent 
node bj of b, we can infer that "a mapping-to bj". Furthermore, 
for any child node ai of a, any parent node bj of b, the asser-
tions of "ai mapping-to bj" are also valid.
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can partially overcome the problems described above,
thus promoting information sharing and exchange
among different research domains. Based on GORouter,
we developed a prototype application to provide semantic
query and inference services.

Loading and tuning
In order to improve performance, we chose Oracle 10g
NDM as the native RDF data repository and used table
function RDF_MATCH [41] to seamlessly integrate multi-
ple RDF datasets, RDF rulebases and traditional relational
datasets into a rich SQL statement. As a result, the scale of
GORouter is minimized and the speed of RDF retrieval is
increased dramatically (as shown in Table 2). Data not
involved in semantic inference are directly stored in Ora-
cle relational tables. We believe that this is an effective
way to partly overcome the bottleneck of conventional
semantic web applications.

At present, the GORouter is about 210 MB (~5.5 million
triple statements), including the essential annotations

and their relationships. In comparison, the size of tradi-
tional relational data, such as GO term definition, gene
product sequence, not creditable annotations, etc is over
4 GB. It took about 10 hours to convert and load these
data into the Oracle database, most of which was spent in
the initial loading of RDF datasets into the Oracle NDM
repository.

We used a web server, running Red Hat Enterprise Linux
AS release 3 (Taroon Update 2) with dual 1.66 GHz proc-
essors and 2 GB main memory. In order to attain better
performance times, we created a set of indexes for RDF tri-
ples and in particular function-based indexes for RDF
rulebases, adjusted the Java Virtual Memory heap size and
Oracle SGA size, extended the size of temporary
tablespace, and used the DBMS_STATS package to gather
statistics about the physical storage characteristics of
tables and indexes. As a result, the speed of semantic que-
ries and inferences performed either on par with or
slightly better than traditional relational queries.

Examples of usage
Our example queries demonstrate how to use two types of
inference rulebases to provide semantic query and infer-
ence services. In the following use cases, we attempt to
show some improvement over the traditional GO query
tools. To simplify RDF_MATCH search pattern across
multiple RDF datasets, RDF rulebases and relational
tables, we developed a set of APIs to translate user input
from web form into rich SQL statement.

Case 1
This use case applies True Path Rulebases to replace tradi-
tional 'graph_path' table of AmiGO to provide reasoning
services of transitive correlations. Figure 6 shows a query
form that fetch annotations for fly gene products associ-
ated to BPdefense response (GO: 0006952) or any of its children
with 'is-a' relationship. We believe this solution provides
greater flexibility for users. For example, we can remove
rulebases from query statement to see direct correlations
of GO-terms. Furthermore, we can use certain GOSlim
Dataset to replace GO Subontology Dataset to limit the
scope of query.

Table 2: The loading and querying performance analysis of three semantic web prototype applications.

Application Environment Repository Triples Storage Query Time

GORouter Dual processors of 1.66 GHz, 2 GB RAM Oracle 10g NDM 5.5 M Disk + Memory 0.74 s
AllegroGraph Dual processors of 1.8 GHz, 16 GB RAM AllegroGraph 6.88 M Disk 172 s
YeastHub Dual processors of 2 GHz, 2 GB RAM Sesame 1.4 M Memory 38 s

Performance analysis of three semantic web prototype applications:GORouter, AllegroGraph and YeastHub. In this table, the AllegroGraph http://
www.franz.com/products/allegrograph/ project used the disk approach to query "LUBM50, Lehigh U. Benchmark" datasets (about 6.88 million 
triples). The retrieval speed is about 0.04 million triples per second. The YeastHub http://yeasthub.gersteinlab.org project uses the main memory 
approach to query the UniProt data file (about 1.4 million triples).

The framework of GORouterFigure 5
The framework of GORouter. GORouter organized with 
three-tier framework: 1) Core Tier: consists of 3 GO Subontol-
ogy Datasets and 5 GOSlim Datasets (GOSlim_Generic, 
GOSlim_GOA, GOSlim_Plant, GOSlim_Prokaryotic and 
GOSlim_Yeast not display in this figure). 2) Mapping Tier: 
consists of the 6 Ontology Mapping Datasets generated by the 
GLUE system. 3) Annotation Tier: consists of 17 GO Annotation 
Datasets; filtering of the annotation files is provided by GO 
collaborating groups.
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Using True Path Rulebases to provide semantic inference servicesFigure 6
Using True Path Rulebases to provide semantic inference services. The screen shot consists of three components: 
(A) the query forms, (B) the partial output of example query, (C) the RDF_MATCH search pattern. Notice that, (C) is not 
shown on the GORouter website. This use case applies True Path Rulebases (GLUE_GO) to replace traditional 'graph_path' 
table of AmiGO to provide reasoning services of transitive correlations.

Using Ontology Mapping Rulebases to provide semantic inference servicesFigure 7
Using Ontology Mapping Rulebases to provide semantic inference services. The screen shot consists of two compo-
nents: (A) the query forms, (B) the partial output of example query. This use case across three RDF datasets (MF, CC, and 
MF2CC) and one Ontology Mapping Rulebase (RULE_MF2CC), that fetch gene products of Rat Genome Database (RGD) asso-
ciated with MFprotein dimerization activity (GO:0046983) and CCintegral to membrane (GO:0016021).
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Case 2
This use case applies Ontology Mapping Rulebase to provide
inference service across various GO Subontology Datasets.
In the study of rattus norvegicus, we are interested to find
out what type of dimerization activity is taken place. Fig-
ure 7 shows a query form, crossing three RDF datasets (MF,
CC, and MF2CC) and one Ontology Mapping Rulebase
(RULE_MF2CC), that fetch gene products of Rat Genome
Database (RGD) associated with MFprotein dimerization activity
(GO:0046983) and CCintegral to membrane (GO:0016021). The
result shows that the interactions between the gene prod-
ucts, Clcn3, could involve an association between identi-
cal proteins (homomers) or non-identical proteins
(heteromers). As we know, both MFprotein heterodimerization activity
(GO:0046982) and MFprotein homodimerization activity
(GO:0042803) are belonging to MFprotein dimerization activity.
The inference could be beneficial to the experiment design
for future researches. In contrast, through the same query
we also find some other gene products, for example,
Eltd1, which performs only protein dimerization activity
and can be retrieved by the traditional tools.

List of abbreviations used
MF – Molecular Function Subontology.

BP – Biological Process Subontology.

CC – Cellular Component Subontology.

MF2BP – The mapping dataset directed from MF to BP
which relation is "be-involved-in".

BP2MF – The mapping dataset directed from BP to MF
which relation with "involves".

MF2CC – The mapping dataset directed from MF to CC
which relation is "be-performed-in".

CC2MF – The mapping dataset directed from CC to MF
which relation is "performs".

BP2CC – The mapping dataset directed from BP to CC
which relation is "takes-on".

CC2BP – The mapping dataset directed from CC to BP
which relation is "undertakes".
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