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Exact exchange-correlation potentials from
ground-state electron densities
Bikash Kanungo1, Paul M. Zimmerman 2 & Vikram Gavini 1,3*

The quest for accurate exchange-correlation functionals has long remained a grand challenge

in density functional theory (DFT), as it describes the many-electron quantum mechanical

behavior through a computationally tractable quantity—the electron density—without

resorting to multi-electron wave functions. The inverse DFT problem of mapping the ground-

state density to its exchange-correlation potential is instrumental in aiding functional

development in DFT. However, the lack of an accurate and systematically convergent

approach has left the problem unresolved, heretofore. This work presents a numerically

robust and accurate scheme to evaluate the exact exchange-correlation potentials from

correlated ab-initio densities. We cast the inverse DFT problem as a constrained optimization

problem and employ a finite-element basis—a systematically convergent and complete basis

—to discretize the problem. We demonstrate the accuracy and efficacy of our approach for

both weakly and strongly correlated molecular systems, including up to 58 electrons, showing

relevance to realistic polyatomic molecules.
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Density functional theory (DFT)1,2 is an essential method for
describing electronic states in all manner of nanoscale
phenomena, including chemical bonds in molecules, band

structures of materials, electron transfer, and reactive metal clusters
of proteins. In principle, an exact theory, DFT in practice3–8, has
remained far from exact due to the unavailability of exact exchange-
correlation (xc) potentials (vxc), which are responsible for describing
the quantum mechanical behavior of electrons. Fortunately, vxc is a
unique functional of the electron density (ρðrÞ), so there exists a
one-to-one relationship from vxcðrÞ to ρðrÞ and vice versa. This
observation presents a possible route forward to construct accurate
xc functionals via the transformation of the electron density into
vxcðrÞ through the so-called inverse DFT problem9–13 (refer to the
schematic in Fig. 1). The inverse problem not only provides a route
for finding the sole unknown quantity in DFT, it is also central for
describing quantum mechanics without resorting to complicated
multi-electron wave functions.

Given the large importance of this problem, there have been
several attempts to solve the inverse DFT problem, employing
either iterative updates10,11,14–16 or constrained optimization
approaches9,12,17,18. However, these approaches have suffered
from ill-conditioning, thereby resulting in non-unique solutions or
causing spurious oscillations in the resultant vxcðrÞ. This ill-
conditioning has been largely attributed to the incompleteness of
the Gaussian basis sets that were employed to solve the inverse
DFT problem18–20. Recent efforts21–23 have presented a different
approach, which utilizes the two-electron reduced density matrix
to remedy the non-uniqueness and the spurious oscillations in the
obtained vxcðrÞ. However, this does not represent the solution of
the inverse DFT problem, i.e., the vxc obtained from this approach
is not guaranteed to yield the input electron density23. Thus, the
inverse DFT problem has, heretofore, remained an open challenge.

In this work, we present an advance that provides an accurate
solution to the inverse DFT problem, enabling the evaluation of the
exact vxc from an ab-initio density. Specifically, the approach uses a
finite-element (FE) basis that is systematically convergent and
complete, thereby eliminating ill-conditioning in the discrete solu-
tion of the inverse DFT problem. Our approach is tested on a range
of molecular systems, both weakly and strongly correlated,
showing robustness and efficacy in treating realistic polyatomic
molecules. The proposed approach therefore unlocks the door to
constructing accurate xc functionals that provide precise energies

and electronic properties of a huge range of chemical, materials, and
biological systems. To elaborate, we envisage the inverse DFT
problem to be instrumental in generating fρðiÞ; vðiÞxc g pairs, using
ρðiÞ’s from correlated ab-initio calculations. Subsequently, these can
be used as training data to model vxc½ρ� through machine-learning
algorithms24,25, which are designed to preserve the functional
derivative requirement on vxc½ρ�26. Furthermore, the xc energy
(Exc½ρ�) can be directly evaluated through line integration on vxc½ρ�.

Results
Constrained optimization for inverse DFT. We cast the inverse
DFT problem of finding the vxcðrÞ that yields a given density
ρdataðrÞ as the following partial differential equation (PDE)-con-
strained optimization:

arg min
vxcðrÞ

Z
wðrÞ ρdataðrÞ � ρðrÞ� �2

dr; ð1Þ

subject to

� 1
2
∇2 þ vextðrÞ þ vHðrÞ þ vxcðrÞ

� �
ψi ¼ ϵiψi; ð2Þ

Z
jψiðrÞj2 dr ¼ 1 : ð3Þ

In the above equation, wðrÞ is an appropriately chosen weight to
expedite convergence, vextðrÞ represents the nuclear potential,
vHðrÞ is the Hartree potential corresponding to ρdataðrÞ, and ψi and
ϵi denote the Kohn–Sham orbitals and eigenvalues, respectively.
For simplicity, we restrict ourselves to only closed-shell systems

and, hence, the Kohn–Sham density ρðrÞ ¼ 2
PNe=2

i¼1 jψiðrÞj2.
Equivalently, the above PDE-constrained optimization can be
solved by minimizing the following Lagrangian,

L vxc; fψig; fpig; fϵig; fμig
� � ¼

Z
wðrÞ ρdataðrÞ � ρðrÞ� �2

dr

þ
XNe=2

i¼1

Z
piðrÞ Ĥ � ϵi

� �
ψi drþ

XNe=2

i¼1
μi

Z
jψiðrÞj2 dr� 1

� �
;

ð4Þ
with respect to all its constituent variables—pi, μi, ψi, ϵi and vxc.
In the above equation, Ĥ ¼ � 1

2∇
2 þ vextðrÞ þ vHðrÞ þ vxcðrÞ is

vxc(r)

Inverse
DFT

C
on

fig
ur

at
io

n
in

te
ra

ct
io

n

Many-body wavefunction

Ψ(r1, r2, ..., rNe
)

PDE-constrained
optimization
Complete finite-
element basis
Cusp correction
Correct asymptotics

vxc[ρ(r)]

ρ(r)

Fig. 1 Schematic of the inverse DFT problem. The exact ground-state many-body wavefunction (Ψðr1; r2; ¼ ; rNe
Þ) and, hence, the ground-state electron

density (ρðrÞ) is obtained from configuration interaction calculation. The inverse DFT calculation evaluates the exact exchange-correlation potential (vxcðrÞ)
that yields the given ρðrÞ. The ability to accurately solve the inverse DFT problem, presented in this work, presents a powerful tool to construct accurate
density functionals (vxc½ρðrÞ�), either through conventional approaches or via machine learning. The schematic shows the ground-state density and the
exact exchange-correlation potential for H2O obtained in this work

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12467-0

2 NATURE COMMUNICATIONS |         (2019) 10:4497 | https://doi.org/10.1038/s41467-019-12467-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the Kohn–Sham Hamiltonian, pi is the adjoint function that
enforces the Kohn–Sham eigenvalue equation corresponding to
ψi, and μi is the Lagrange multiplier corresponding to the
normality condition of ψi. The optimality of L with respect to pi,
μi, ψi, and ϵi are given by:

Ĥψi ¼ ϵiψi; ð5Þ
Z

jψiðrÞj2 dr ¼ 1; ð6Þ

ðĤ � ϵiÞpiðrÞ ¼ giðrÞ; ð7Þ
Z

piðrÞψiðrÞ dr ¼ 0; ð8Þ

where giðrÞ ¼ 8wðrÞðρdataðrÞ � ρðrÞÞψi � 2μiψi. We remark that
the operator Ĥ � ϵi in Eq. 7 is singular with ψi as its null vector.
However, the orthogonality of gi and ψi (consequence of Eq. 7)
along with the orthogonality of pi and ψi (Eq. 8) guarantee a
unique solution for pi. Having solved the above optimality
conditions in Eqs. 5–8, the variation (gradient) of L with respect
to vxc is given by

δL
δvxc

¼
XNe=2

i¼1
piψi: ð9Þ

This constitutes the central equation for updating vxcðrÞ via any
gradient-based optimization technique.

Summing up, the proposed approach involves: (i) obtaining
ρdataðrÞ from correlated ab-initio calculations (i.e., configuration
interaction (CI) calculations); (ii) using an initial guess for vxcðrÞ;
(iii) solving Eqs. 5–8 using the current iterate of vxc; (iv) updating
vxc using Eq. 9 as the gradient; (v) repeating (iii)–(iv) until ρðrÞ
converges to ρdataðrÞ. We note that the general idea of PDE-
constrained optimization has been explored recently in ref. 13.
However, its utility had only been demonstrated on non-
interacting model systems in one dimension.

Verification with LDA-based densities. To assess the accuracy
and robustness of the proposed approach, we use ρdata obtained
from local density approximation (LDA)27,28-based DFT calcu-
lations, discretized using the FE basis—a systematically impro-
vable and complete basis constructed from piecewise
polynomials. This verification test allows us to compare the vxc
obtained from the inverse DFT calculation against vLDAxc ½ρdata�. As
remarked earlier, most of the previous attempts at this verifica-
tion test have suffered from either non-unique solutions or had
resulted in unphysical oscillations in vxc, owing to the incom-
pleteness of the Gaussian basis employed in these works. Figure 2
presents the comparison of vLDAxc ½ρdata� against the vxc obtained
from the inverse calculation, for various atomic systems (also see
Supplementary Fig. 2). We also provide, in Fig. 3, the vxc for 1,3-
dimethylbenzene (C8H10) obtained from the inverse calculation
with LDA-based ρdata (cf. Supplementary Fig. 3 for the error in
vxc), highlighting the efficacy of our approach in accurately
treating large systems. We note that all the inverse DFT calcu-
lations have been performed in three dimensions and the L2 norm
error in the density, jjρdata � ρjjL2 , is driven below 10�5. As evi-
dent from these figures, the vxc determined from the inverse DFT
calculation is devoid of any spurious oscillations and is in
excellent agreement with vLDAxc ½ρdata�. In addition, the Kohn–Sham
eigenvalues computed using the inverted vxc are in excellent
agreement (i.e., jϵLDAi � ϵij<1 mHa), further validating the accu-
racy of the method. Although we have reported the verification of
our method for LDA-based densities, similar accuracy was
obtained using generalized gradient approximation (GGA)-based

densities. We refer to the Supplementary Discussion for a
comparison of these verification results against similar studies
conducted using existing methods.

Removing Gaussian basis-set artifacts. We next turn to
employing the proposed method with input densities generated
from CI calculations. All the CI calculations reported in this work
are performed using the incremental full-CI approach presented
in ref. 29 and discretized using the universal Gaussian basis set
(UGBS)30 or polarized triple zeta (cc-PVTZ) Gaussian basis set31.
It is known that Gaussian basis-set densities, owing to their lack
of cusp at the nuclei as well as incorrect far-field decay, induce
highly unphysical features in the vxcs obtained from inverse cal-
culations. To this end, we provide two numerical strategies,
which, for all practical purposes, remedy the Gaussian basis-set
artifacts and thereby allow for accurate evaluation of the exact
vxcs from CI densities. It is to be noted that the following
numerical strategies are only necessitated due to the unphysical
asymptotics in the Gaussian basis-set densities and not due to any
inadequacy of the proposed inverse DFT algorithm.

To begin with, the CI density obtained from a Gaussian basis has
wrong decay characteristics away from the nuclei (i.e., Gaussian
decay instead of exponential decay). This, in turn, results in
incorrect asymptotics in the vxc obtained from an inverse DFT
calculation. Thus, to ensure the correct asymptotics in vxc, we
employ the following approach. First, we use an initial guess for vxc
that satisfies the correct �1=r decay. In particular, we use the
Fermi–Amaldi potential (vFA)32. Next, we enforce homogeneous
Dirichlet boundary condition on the adjoint function (pi) in the
low-density region (i.e., ρdata<10

�6), while solving Eq. 7. In effect,
this fixes the vxc to its initial value in the low-density region, thereby
ensuring correct far-field asymptotics in the vxc. This approach is
also crucial to obtaining an agreement between the highest occupied
Kohn–Sham eigenvalue (ϵH) and the negative of the ionization
potential (Ip), as mandated by the Koopmans’ theorem33,34.

Furthermore, the Gaussian basis-set-based CI densities lack the
cusp at the nuclei, which, in turn, leads to undesirable oscillations
in the vxc near the nuclei in any inverse DFT calculation35–37. We
demonstrate this in the case of equilibrium H2 molecule (bond-
length RH�H ¼ 1:4 a.u.), henceforth denoted as H2ðeqÞ. Figure 4
shows the vxc profile for H2ðeqÞ corresponding to the ρdataðrÞ
obtained from a CI calculation, discretized using UGBS. As
evident, we observe large unphysical oscillations in the vxc near
the nuclei. We remedy these oscillations by adding a small
correction, ΔρðrÞ to ρdataðrÞ, so as to correct for the missing cusp
at the nuclei. The ΔρðrÞ is given by

ΔρðrÞ ¼ ρDFTFE ðrÞ � ρDFTG ðrÞ; ð10Þ
where ρDFTFE ðrÞ is the ground-state density obtained from a forward
DFT calculation using a known xc functional (e.g., LDA and GGA)
and discretized using the FE basis, and ρDFTG ðrÞ denotes the same,
albeit obtained using the Gaussian basis employed in the CI
calculation. The key idea here is that ρDFTFE ðrÞ, obtained from the FE
basis, contains the cusp. Thus, one can expect Δρ to reasonably
capture the Gaussian basis-set error near the nuclei. In addition,R
ΔρðrÞ dr ¼ 0, preserving the number of electrons. A conceptually

similar approach has been explored in ref. 37, wherein one post-
processes the vxc instead of pre-processing the ρdata, to remove the
oscillations arising from the lack of cusp in ρdata. We illustrate the
efficacy of the Δρ correction with the H2ðeqÞ molecule as an
example. Figure 5 presents the vxc corresponding to the cusp-
corrected density (i.e., ρdata þ Δρ) for H2ðeqÞ, with two different Δρ:
ΔρLDA evaluated using an LDA functional27,28 and ΔρGGA evaluated
using a GGA functional38. As evident, both ΔρLDA- and
ΔρGGA-based cusp correction generate smooth vxc profiles. More
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importantly, both the profiles are nearly identical, except for small
differences in the bonding region between the H atoms. Further, a
comparison of both these vxcs against the LDA-based xc potential
(vLDAxc ) elucidates the significant difference between the exact vxc
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and vLDAxc even for a simple system that is not strongly correlated.
Lastly, for both the vxcs, we obtain the same ϵH of �0:601 Ha,
which, in turn, is in excellent agreement with the �Ip (listed in
Table 1). We remark that the agreement of ϵH with �Ip is a
stringent test of the accuracy of the inversion and is particularly
sensitive to the vxc in the far field.

Exact vxc from CI densities for molecules. We now combine the
above numerical strategies to evaluate the exact vxc for four other
benchmark systems—two stretched H2 molecules and two polya-
tomic systems (water and ortho-benzyne molecules). The CI cal-
culations for all the molecules, excepting ortho-benzyne, are
performed using the UGBS. For ortho-benzyne, we used the cc-
PVTZ basis. Given the weak sensitivity of the inverted vxc to the
choice of xc functional used in Δρ, we employ ΔρLDA for per-
forming the cusp correction in all our calculations. Further, for all
the systems, the inverse problem is deemed to have converged when
jjρdata � ρjjL2<10�4. We remark that the L2 error norm is a natural
convergence criterion, given the form of the objective function in
Eq. 1. However, given that previous works on this inverse pro-
blem have reported the L1 error, we provide the same in the Sup-
plementary Table 2, for all the benchmark systems considered.
Figure 6 compares the vxc for two stretched H2 molecules—H2ð2eqÞ
(RH�H ¼ 2:83 a.u., roughly twice the equilibrium bond length) and
H2ðdÞ (RH�H ¼ 7:56 a.u., at dissociation). We emphasize that these
are prototypical systems where all existing xc approximations per-
form poorly, owing to their failure in handling strong correlations.
We could successfully solve the inverse DFT problem for these
systems (jjρdata � ρjjL2 � 8 ´ 10�5), thereby suggesting that our

approach works equally well for strongly correlated systems. As
indicated in Table 1, we get remarkable agreement between ϵH and
�Ip for H2ð2eqÞ. However, for H2ðdÞ, we obtain ϵH within 19mHa
of �Ip. We attribute this larger difference between ϵH and �Ip (as
compared with H2ðeqÞ and H2ð2eqÞ) to the use of vFA as the
boundary condition for vxc in the low-density region. To elaborate,
for a single-orbital system, vFA is the exact vx (exchange-only
potential) and, hence, represents the exact vxc in regions where the
correlations are negligible. Although for the H2ðeqÞ and H2ð2eqÞ
molecules the correlations are short-ranged, they are relatively
longer-ranged for H2ðdÞ. We highlight this in Fig. 7 by comparing
the vxc against vx for H2ðeqÞ, H2ð2eqÞ, and H2ðdÞ. As evident,
H2ðdÞ has strong correlations extending to a significantly larger
domain (in the far-field) in comparison with H2ðeqÞ and H2ð2eqÞ.
Thus, for H2ðdÞ, the use of vFA is warranted only in regions of
much lower density (i.e., ρdata � 10�6) than considered here.
However, at such low densities, the wrong far-field asymptotics of a
Gaussian basis-set density produces spurious oscillations in the far-
field vxc. Thus, for the want of more accurate densities, we are
restricted to using vFA in regions where ρdata<10

�6, at the cost of
incurring some error in ϵH.

We now turn to a polyatomic system—the H2O molecule.
Figure 8 compares the exact vxc against v

LDA
xc , on the plane of the

H2O molecule. In particular, Fig. 8c provides the comparison
along the O–H bond. For the exact vxc, we observe an atomic
inter-shell structure—marked by a yellow ring around the O atom
in Fig. 8b (as well as the local maxima and minima at around
r ¼ ± 0:4 a.u. in Fig. 8c). This atomic inter-shell structure is a
distinctive feature of the exact vxc

39,40 and is absent in the
standard xc approximations, as evident from vLDAxc . Further, we
observe a deeper potential around the O atom, as compared with
vLDAxc , thereby suggesting a higher electronegativity on the O atom
than that predicted by LDA. Moreover, we observe a distinct local
maximum at the H atom, as opposed to a local minimum in vLDAxc .
Lastly, as indicated in Table 1, we obtain striking agreement
between ϵH and �Ip for this polyatomic system.

Finally, we evaluate the exact vxc for the singlet state of the
ortho-benzyne radical (C6H4)—a strongly correlated species
that has previously served as a test for accurate wavefunction
theories41. Figure 9 compares the exact vxc against v

LDA
xc , on the

plane of the benzyne molecule. This example underscores the
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Table 1 Comparison of the highest occupied Kohn–Sham
eigenvalue (ϵH) and the negative of the ionization potential
(Ip) (all in Ha)

H2ðeqÞ H2ð2eqÞ H2ðdÞ H2O C6H4

ϵH �0:601 �0:482 �0:479 �0:452 �0:354
�Ip �0:604 �0:484 �0:498 �0:454 �0:355
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Fig. 6 Exact vxc for stretched H2 molecules. The exact vxc is provided for
two stretched hydrogen molecules: one at twice the equilibrium bond
length (H2ð2eqÞ) and the other at dissociation (H2ðdÞ). The H atoms for
H2ð2eqÞ and H2ðdÞ are located at r ¼ ± 1:415 a.u. and r ¼ ± 3:78 a.u.,
respectively
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efficacy of our approach in handling both large and strongly
correlated systems. As expected for the exact vxc, we observe an
atomic inter-shell structure—marked by a yellow ring around the
C atoms, which, on the other hand, are absent in the case of vLDAxc .
As is the case with H2O, we observe a deeper potential around the
C atom, as compared with vLDAxc , suggesting a higher electro-
negativity on the C atom than that predicted by LDA.
Furthermore, as indicated in Table 1, we obtain remarkable
agreement between ϵH and �Ip.

Discussion
We have presented an accurate and robust method to evaluate
the exact vxc, solely from the ground-state electron density. The
key ingredients in our approach are—(a) the effective use of FE
basis, which is a systematically convergent and complete basis,
and, in turn, results in a well-posed inverse DFT problem; (b)
the use of Δρ correction and appropriate far-field boundary
conditions to alleviate the unphysical artifacts associated with
Gaussian basis-set densities. We emphasize that the proposed
approach can easily drive the error in the target densities, i.e.,
jjρdata � ρjjL2 , to tight tolerances of Oð10�5 � 10�4Þ—which
represents a stringent accuracy (see the Supplementary Dis-
cussion for a comparison with existing methods). Notably, as
demonstrated through the 1,3-dimethylbenzene and the ortho-
benzyne molecules, our approach can competently handle

system sizes, which have, heretofore, remained challenging for
other inverse DFT methods. Furthermore, for all the exact vxcs
obtained from CI densities, we obtain excellent agreement
between ϵH and �Ip (excepting in the case of H2ðdÞ), further
validating the accuracy and robustness of the approach. We
remark that the larger discrepancy between ϵH and �Ip in the
case of H2ðdÞ is a consequence of long-range (static) correla-
tions in this system coupled with incorrect far-field asymptotics
of Gaussian basis-set densities and can be remedied with
the availability of more accurate densities. The ability to eval-
uate the exact xc potentials from ground-state electron den-
sities, enabled by this method, will provide a powerful tool
in the future testing and development of approximate xc
functionals. Further, it paves the way for using machine
learning to construct the functional dependence of vxc on ρ,
i.e., vxc½ρ�, providing another avenue to develop density
functionals24,42,43 that can systematically improve both
ground-state densities and energies44 as well as satisfy the
known conditions on the exact functional45–47.

Methods
Discretization. We employ spectral FE basis to discretize all the spatial fields—vxc,
fψig, fpig. The FE basis is constructed from piecewise polynomials on non-
overlapping subdomains called elements. The basis, thus constructed, can be sys-
tematically improved to completeness by reducing the element size and/or
increasing the polynomial order48. We remark that the spectral FE basis are not
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orthogonal and, hence, result in a generalized eigenvalue problem as opposed to the
more desirable case of standard eigenvalue problem. To this end, we use special
reduced-order quadrature (Gauss–Legendre–Lobatto quadrature rule) to render
the overlap matrix diagonal and, thereby, trivially transform the generalized
eigenvalue problem into a standard one. For all the H2 molecules, we used
adaptively refined quadratic FEs to discretize the fψig and fpig, whereas for all
other systems we used adaptively refined fourth-order FEs. The vxc, in all the
calculations, is discretized using linear FEs. Most importantly, the form of the FE
basis is chosen carefully, so as to guarantee the cusp in ψis (and hence in ρ) at the
nuclei, which in turn is critical to obtaining accurate vxcs near the nuclei (refer to
the Supplementary Note 1 for more information).

Solvers. In order to efficiently solve the Kohn–Sham eigenvalue problem in Eq. 5,
we employ the Chebyshev polynomial-based filtering technique48–50. We remark
that, compared with a forward ground-state DFT calculation, the inverse DFT
calculation warrants much tighter accuracy in solving the Kohn–Sham eigenvalue
equation(s). However, the use of a very high polynomial degree Chebyshev filter
can generate an ill-conditioned subspace, akin to any power iteration-based eigen
solver. To circumvent the ill conditioning and attain higher accuracy, we employ
multiple passes of a low polynomial degree Chebyshev filter (polynomial order
� 1000) and orthonormalize the Chebyshev-filtered vectors between two succes-
sive passes. The number of passes is determined adaptively so as to guarantee an
accuracy of 10�9 in jjĤψi � ϵiψijjL2 .

The discrete adjoint function (pi) is solved by, first, projecting Eq. 7 onto a space
orthogonal to the corresponding ψi (or degenerate ψis) and then employing the
conjugate-gradient method to compute the solution. The discrete adjoint problem
is solved to an accuracy of 10�12 in jjðĤ � ϵiÞpi � gijjL2 .

The update for vxc is computed using limited-memory Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, a memory-efficient quasi-Newton solver, which
constructs approximate Hessian matrices using the history of the gradients51. In all
the calculations, we used a history of size 100 to construct the approximate Hessian.
We refer to Supplementary Discussion for details on the rate of convergence and the
factors affecting it.

Weights. To expedite the convergence of the nonlinear solver, we make use of two
different weights, wðrÞ ¼ 1 and wðrÞ ¼ 1=ραdata (1 � α � 2), in sequence. The latter
penalizes the objective function in the low-density region.

Ab initio densities. Accurate electron densities were generated using the incre-
mental full CI (iFCI) method29 in the Q-Chem software package52. This method
solves the electronic Schrödinger equation via a many-body expansion and
asymptotically produces the exact electronic energy and density as the number of
bodies in the expansion approaches the all-electron limit. For this study, electron
densities were provided in the all-valence-electron limit of iFCI, i.e., where the full
valence set is fully correlated and the core orbitals of H2O and C6H4 are treated as
uncorrelated electron pairs. Reference ionization energies were obtained at the
same level of theory, for each system with one less electron.
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