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Abstract

In 2013, Magnetic Resonance Fingerprinting (MRF) emerged as a method for

fast, quantitative Magnetic Resonance Imaging. This paper reviews the current

status of MRF up to early 2020 and aims to highlight the advantages MRF can

offer medical imaging professionals. By acquiring scan data as pseudorandom

samples, MRF elicits a unique signal evolution, or ‘fingerprint’, from each tissue

type. It matches ‘randomised’ free induction decay acquisitions against pre-

computed simulated tissue responses to generate a set of quantitative images of

T1, T2 and proton density (PD) with co-registered voxels, rather than as

traditional relative T1- and T2-weighted images. MRF numeric pixel values retain

accuracy and reproducibility between 2% and 8%. MRF acquisition is robust to

strong undersampling of k-space. Scan sequences have been optimised to

suppress sub-sampling artefacts, while artificial intelligence and machine learning

techniques have been employed to increase matching speed and precision. MRF

promises improved patient comfort with reduced scan times and fewer image

artefacts. Quantitative MRF data could be used to define population-wide

numeric biomarkers that classify normal versus diseased tissue. Certification of

clinical centres for MRF scan repeatability would permit numeric comparison of

sequential images for any individual patient and the pooling of multiple patient

images across large, cross-site imaging studies. MRF has to date shown promising

results in early clinical trials, demonstrating reliable differentiation between

malignant and benign prostate conditions, and normal and sclerotic hippocampal

tissue. MRF is now undergoing small-scale trials at several sites across the world;

moving it closer to routine clinical application.

Introduction

Magnetic Resonance Imaging (MRI) techniques exploit the

response of protons in a strong external magnetic field

(B0), to a radiofrequency (RF) pulse. The times taken for

relaxation of proton spin precession in the longitudinal

and transverse planes are called T1 and T2, respectively.

These are tissue-specific and can serve as biomarkers.

In current MRI techniques, the signal in each voxel is

T1 or T2 weighted and shows a shade of grey reflecting its

relative signal intensity, which can be described as

‘hyperintense’ or ‘hypointense’.1 Hardware and software

differences can cause differing signal values in each voxel,

thus current imaging techniques are largely qualitative.

This poses a challenge for large-scale longitudinal MRI

studies, early detection and progress-tracking of disease.2

Quantitative MRI aims to measure parameters like T1

and T2 in a reproducible manner and generate images

with standardised contrasts. This will better reflect

pathology at a cellular level,3 reduce subjectivity, enable

direct comparison of images,4 and help radiologists

characterise lesions and make more informed diagnoses.5

Current quantitative MRI methods require long

acquisition times which are not clinically practical.2

Instead of preparing the system to obtain steady-state

signals as in conventional MRI, magnetic resonance

fingerprinting (MRF) uses pseudorandom acquisition

parameters for radiofrequency flip angles (FA) and
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repetition times (TR) to best elicit the full range of

combined T1, T2 and proton density (PD) information

obtained as the scan progresses. The transient-state

signals or ‘fingerprints’ are characteristic of tissue types.

They are captured as undersampled images per time

point,6 and matched with a dictionary,3,5 which is akin to

a large look-up table of pre-computed templates of signal

responses (Fig. 1). The dictionary contains profiles of all

likely resonance signals simulated using the Bloch

equations or extended phase graph formalism.3,7 This

choice assigns absolute T1, T2 and PD values, facilitating

quantitative tissue characterisation.

Undersampling k-space for each time point enables

scan acceleration without compromising image quality.1

MRF has some tolerance to undersampling and motion

artefacts, which are not translated to the final image

provided the samples are spatiotemporally incoherent.

Other artefacts are also tolerated if they do not mimic a

valid ‘fingerprint’ or cause ambiguous matching with

dictionary parameters.1,5

Beyond altering the MRI signal acquisition sequences,

moving from current standard MRI protocols to adopt

MRF imaging will require several procedural changes.

MRF data from each patient must be matched to a

dictionary, which needs to be computed rapidly,

accurately and reliably. Accelerated image acquisition

under MRF protocols means different types of image

artefacts may arise. This needs to be monitored and

suppressed by suitable techniques where possible.

Several review papers5,8-11 have been published on

MRF in recent years, summing up the advances and

refinement of the technique.

This paper considers the advances in MRF image

acquisition, developments in image matching,

reconstruction and artefact suppression, clinical

applications and near-term potential impact of MRF. We

aim to bring medical imaging professionals up to date

with this technique, which could see clinical

implementation in the near future.

Methodology

For this literature review, papers were obtained from

Scopus database searches between July 2018 and January

2020. Inclusion criteria were: articles in English containing

key words including ‘magnetic resonance fingerprinting’,

‘MR fingerprinting’ and ‘MRF’. Papers citing the original1

MRF article were also examined. While emphasis was

placed on papers published in 2018 or later, earlier papers

that described either important acceleration techniques or

clinical applications were also included. Papers covering

technical advances, such as sequence optimisation and

dictionary search optimisation techniques, were excluded

from this review, regardless of age.

MRF research has grown rapidly (Fig. 2). As of 22

January 2020, 438 papers have referenced the original

paper, placing it in the 99th percentile for papers in

Medicine over the same period.12 MRF research published

since 2013 has consolidated and covered in depth a range

of topics, including sequence optimisation, artefact

reduction, accuracy and clinical applications.

Acquisition Approaches

Overview

The original MRF sequence was based on balanced

steady-state free precession (bSSFP) but had banding

artefacts caused by B0 inhomogeneities.1 Later studies

overcame these artefacts using MRF-Fast Imaging with

Steady state Precession (FISP) with an unbalancing

gradient moment after each TR to retain signal coherence

(Fig. 3).3,5 MRF-FISP is fast and accurate, scanning a 256

x 256 slice in 13s and deviating less than 1% from gold

(A) (B)

Figure 1. (A) An example of the undersampled images from MRF-FISP. (B) A representative time course of one pixel, as indicated by the white

circle in (A) and its matched dictionary entry. The estimated T1 and T2 values of this pixel are 750 ms and 65 ms, respectively. The longitudinal

axis represents the fraction of the full magnetisation that is equal to one. FISP, fast imaging with steady-state precession; MRF, magnetic

resonance fingerprinting. Reproduced with permission from Jiang et al.3
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standards for T1 and T2. It has since been used as a basis

for several MRF sequences trialled for clinical use.13-19

Overcoming RF field (B1
+) inhomogeneity

and implant-associated issues

B1
+ and B0 inhomogeneities are a common cause of

artefacts and can cause inaccuracies in quantitative

parameter estimation. B1
+ and B0 inhomogeneities may

be caused by inherent imperfections in MR equipment,

and the latter in particular can be amplified by in vivo

metallic implants.

B1
+ inhomogeneity causes varying effective FA in the

region of interest, resulting in inaccurate parameter

quantification at higher field strengths.20-22 One measure

to counter this used a FISP-based MRF sequence with

abrupt FA changes and included a B1
+ dimension in the

dictionary simulation to improve T2 accuracy.
7

Plug-and-Play MRF used heterogeneous but

complementary RF fields to eliminate B1
+ voids,

producing detailed property maps in the presence of a

titanium orthopaedic implant.23 The B1
+ distribution was

co-encoded into the MR fingerprints, enabling their

spatial variations to be factored out in a single image

reconstruction process.

In another approach, the Quick Echo Split Imaging

technique was combined with MRF to scan with fewer,

low amplitude RF pulses.4 It accurately quantified T1, T2

and PD with minimal RF power deposition, paving the

way for the use of MRF in ultra-high fields, or in patients

with metallic implants.

Undersampling, scan acceleration and
volume acquisition

k-space sampling trajectories tested in MRF include

spiral,1,3,4,16,17 radial,24 echo-planar imaging,25

Cartesian7,26 and music27 (Fig. 4).

While many MRF acquisitions, including the original

study,1 undersample k-space at rates from 4 up to 14415 to

accelerate scans, others like perfusion28 and vascular

studies29 do not, for image stability and artefact reduction.5

3D FISP-MRF15 added phase-encoding lines along the

kz direction to 2D MRF for scan acceleration, with

correction for B1
+ inhomogeneities. Whole-brain

quantitative 3D maps with a resolution of 1.2 9 1.2 9 3

mm3 were obtained in 4.6 min, with validation of T1 and

T2 against the International Society for Magnetic

Resonance in Medicine/National Institute of Standards

and Technology (ISMRM/NIST) phantom.

Dictionary Generation and Pattern
Matching

Most MRF studies use the dictionary method proposed

by Ma et al.1 to translate scan data into images, but

Figure 2. Number of papers referencing Ma et al.1 to 22 Jan 2020 organised by year, used as a proxy to measure interest in MRF. Statistics

obtained from Scopus Metrics.12
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promising, rapid non-dictionary methods are also being

explored.

As image reconstruction consists of matching signal

evolutions from each voxel with simulated tissue properties

in the dictionary, its accuracy is dependent on the MRF

signal model used for dictionary simulation. The dictionary

stores values quantised into variable-sized steps across each

parameter and must cover a comprehensive range of

Figure 3. (A) A pulse sequence diagram of the MRF-FISP sequence. An adiabatic inversion pulse is followed by a series of FISP acquisitions. (B) A

sinusoidal variation of flip angles and repetition times in a Perlin noise pattern, are used in the MRF-FISP sequence. (C) One interleaf of a variable

density spiral is used in each repetition. The spiral trajectory is zero-moment compensated. It needs 24 interleaves to fully sample the centre of

the k-space, and 48 interleaves for 256*256. The trajectory rotates 7.5 degrees every repetition. Reproduced with permission from Jiang et al.3

Figure 4. Examples of k-space sampling trajectories used by different MRF sequences. (A) Cartesian. (B) Radial. (C) Trajectory generated from a

music file (Yo Yo Ma playing Johann Sebastian Bach’s Cello Suite No. 1) for the MRF-Music design. (D) Variable density spiral. For each time

point, the trajectory changes to generate undersampling artefacts that are incoherent with the tissues’ fingerprints. Adapted with permission from

Mehta et al.5
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relevant combinations of tissue properties.5 Since the

addition of each dimension causes an exponential increase

in dictionary size,30 the desire to account for as many

properties as possible must be balanced against dictionary

size. As pattern matching can be time-consuming with large

dictionaries, efforts have been made to streamline this

through optimisation methods.

The original MRF publication1 used a vector-dot

product of the signal with each simulated fingerprint in a

straightforward template matching process. The dictionary

entry with the highest dot product was deemed the best

match, and the parameters associated with that entry were

assigned to the voxel.8 However, dot product-based

measures may be susceptible to artefact-induced matching

errors,31 so stable acquisition sequences should be used.

Optimising Image Reconstruction

Dictionary methods

Reducing reconstruction time is important for clinical

implementation of MRF as current unoptimised methods

may take several minutes per slice.

In their comprehensive technical review, Mehta et al.5

covered the many methods to optimise and accelerate the

dictionary-matching process, including single value

decomposition, low-rank approximation, fast group

matching and compressed sensing.

Non-dictionary image reconstruction
methods

Unlike dictionary-based grid search, non-dictionary

reconstruction methods estimate a continuum of MR

parameters and do not suffer from grid quantisation

bias32 or the ‘curse of dimensionality’.30 Several protocols

employ faster scan times, although computing

requirements and reconstruction times vary. Approaches

tested include using a Kalman filter,33 treating

quantitative MRI as a nonlinear tomography problem,30

kernel ridge regression,32,34 and Deep Learning.11,35-44

Deep Learning in particular has shown promise,

reducing errors in relaxometry estimates,39,40,42 and

optimising the dictionary-matching process,36,41,43 In one

study, a four-layer neural network utilising rapid feed-

forward processing was trained on simulated MRI data

and tested on numerical and ISMRM/NIST MRI

phantoms. Image reconstruction was accurate and

demonstrated image reconstruction up to 5000 times

faster, vast storage savings and robustness to noise as

compared to conventional MRF dictionary-matching.36

Hamilton and Seiberlich11 have published an overview

of current research that combines MRF and machine

learning, and how machine learning can speed up

dictionary generation for cardiac MRF. McGivney et al.

have also covered Deep Learning in MRF in their review,9

indicating that the original MRF authors are aware of the

potential of Deep Learning for future development of the

technique.

The power of Deep Learning stems from the quality,

size and breadth of the data sets used for training.

Training will benefit from regular updates as the breadth

of patient cases grows with the increasing uptake of

clinical MRF.

Artefact Reduction

Despite MRF’s overall robustness to artefacts, partial

volume and motion artefacts can still occur.

Partial volume artefacts

Partial volume artefacts, which also occur in other

volumetric acquisition methods such as computed

tomography and conventional MRI, can be diminished with

multicompartment models.2,45,46 In particular, Nagtegaal

et al.46 used compressed sensing optimisation and sparsity

techniques to model voxels of multicompartment tissue

without making restrictive assumptions. This resulted in a

robustness to noise that enabled tighter classification

bounds on compartment fractions.

Motion artefacts

Motion artefact reduction would improve cost and

throughput in the clinical implementation of MRF by

limiting the need for sedation or repeat scans.47 In-plane

and through-plane motion during different parts of the

scan had varying effects on T1 and T2 maps.6,48 While

end-scan movements had less effect on parameter maps,

this caused more relaxometry data points to fall outside

the 95% confidence interval.6

Methods used to mitigate rigid body motion artefacts

include an iterative reconstruction-based retrospective

motion approach dubbed ‘MORF’47, and a combination

of sliding window reconstruction, rigid body image

registration, k-space motion correction and low-rank

reconstruction in MC-MRF48.

MORF47 effectively removed in-plane rigid body

motion artefacts: images closely resembled non-motion

control images even when 54% of acquisition data was

corrupted (Fig. 5). However, both MORF and MC-MRF

showed limited image correction with through-plane

motion artefacts47,48.

Regularly Incremented Phase Encoding-MRF (RIPE-

MRF)26 attempted to mitigate pulsatile and respiratory
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motion artefacts using altered k-space trajectories to add

temporal incoherence to motion artefacts, and used view-

ordering to minimise the impact of motion on quantitative

maps. Compared to standard Cartesian MRF, RIPE-MRF

produced significantly reduced artefact-to-noise ratios,

visibly fewer artefacts and improved uniformity. Despite

bias in T1 and T2 estimates, RIPE-MRF could eliminate the

need for physiological gating and/or triggering to obtain

artefact-free quantitative maps.

Clinical Applications

MRF has been trialled in brain,14,19,45,49 abdomen,16

prostate,50,51 vascular,18,28,29,52,53 cardiac,17,54

musculoskeletal,55,56 eye57 and breast58 applications. While

initial results have shown that MRF-generated quantitative

relaxometry maps can differentiate between healthy and

diseased tissues,14,16,19,45,49,50,56-58 most of these studies

involved fewer than 100 subjects. Studies of larger cohorts of

normal and pathological cases will be necessary for MRF to

be validated for population-relevant clinical

implementation. Additionally, MRF can be performed in far

less time than conventional MRI, which can reduce patient

discomfort and increase scanner throughput. The speed of

MRF demonstrated by the quantification of T1 and T2 values

within a 19-second breath hold16 make it highly applicable

to abdominal imaging or even restless patients.

Brain

Small-scale MRF studies on the brain have been

conducted on epilepsy,14,45 tumours19,59 and dementia49

and demonstrate the potential for tissue characterisation

and tumour classification.

A study comparing 2D MRF with conventional MRI

epilepsy protocols found the former significantly faster,

more accurate and more sensitive to subtle changes than

conventional MRI (Fig. 6).14 Another epilepsy study45

used 3D FISP-MRF to construct isotropic 1.2 mm3

voxels in 13.5 min, halving the scan time while also

identifying subtle lesions not previously noted on

conventional MRI.

Atrophied tissue in brain regions associated with

dementia was found to have longer tissue relaxometry

values than normal. The same study also found a possible

correlation of the degree of deviation from normal

relaxometry values with disease duration and severity.49

Cardiac tissue

Acquisitions are performed during breath holds in cardiac

MRF (cMRF). It also uses electrocardiogram-triggering to

minimise motion artefacts,17 introduces delays between

acquisition periods in each heartbeat54 and uses extensive

preparation pulses before each acquisition. Unlike MRF in

Figure 5. Reconstruction results from a prospectively motion corrupted in vivo experiment. For this experiment the subject was requested to

move randomly according to his/her will. First column: IMS reconstruction maps from a separate scan without subject motion. Second column:

IMS reconstruction maps using data with subject motion. Third column: MORF reconstruction maps using data with subject motion. Fourth

column: Temporally averaged frame of the raw MRF data with subject motion. Fifth column: Synthetic T2w-TSE image generated from maps

reconstructed using MORF from data with motion. IMS results present a severe amount of motion artefacts not only in the T1 map but also in

the T2 map. MORF results present significantly fewer artefacts compared with IMS and closely resemble the results from scan without motion.

The subject ended up moving in the beginning ~ 17% of the acquisition as well as at the ending ~ 37% of the acquisition with a total of ~ 54%

of data being motion corrupted. Adapted with permission from Mehta et al.47
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other body parts, generation of subject-specific dictionaries

is required to account for heart rate variations.17

A FISP-based cMRF sequence was shown to acquire

relatively accurate T1, T2 and PD maps in four heartbeats

(Fig. 7).17 However, dictionary generation took 12s for

each acquisition, and iterative reconstruction took almost

8 min per slice; this at present is not fast enough for

clinical use. Nonetheless, initial clinical validation results

are promising, with reliable differentiation between

normal and diseased tissue, reduced artefacts and good

reproducibility.60

A comprehensive overview of recent developments in

cMRF can be found in Cruz et al.’s paper.60

Potential Implementation and Future
of MRF

Repeatability and reproducibility in MRF

MRF parameter estimates must be repeatable and

accurate, so that variations from the norm in that tissue

can be confidently attributed to pathology.

Figure 6. (A) Coronal position of T1-weighted magnetisation-prepared rapid gradient echo (MPRAGE), T2-weighted fast spin echo (TSE), fluid-

attenuated inversion recovery (FLAIR), and T1 and T2 maps obtained by MR fingerprinting (MRF) in a typical patient with unilateral hippocampal

sclerosis (HS; S14; 22-year-old man). Arrows on the T1 and T2 maps indicate the possible HS lesions. (B) Box-and-whisker plots of HS lesion and

contralateral hippocampus (hippo). ms = msec. Reproduced with permission from Liao et al.14
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The ISMRM/NIST system phantom was imaged over

34 days using FISP-MRF in one study.61 The relaxometry

estimates were consistent with SE ones and demonstrated

less than 5% variation throughout the experiment, except

for short T2 times, which had less than 8% variation

(Fig. 8). MRF parameter maps also had superior spatial

resolution to SE.

In vivo studies have also indicated good reproducibility

of MRF results. A study15 of six brain regions in five

volunteers using 3D FISP-MRF demonstrated the stability

of T1 and T2 values obtained across subjects.

Separate in vivo MRF studies on hip cartilage,55 brain,62,63

cardiac tissue64 and breast65 showed good repeatability and

reproducibility across scanners. In particular, repeatability

coefficients of variation for T1 and T2 in the brain study

were below 8% and 14%, respectively,62 while it was better

in breast tissue, ranging from 3 to 4% for T1 and 5 to 7% for

T2.
65 Another repeatability study in the brain63 found more

variation of relaxometry values in cerebrospinal fluid

compared to solid brain tissue, indicating that additional

optimisation work may be needed for T1 and T2
quantification in pulsating fluids.

As all the reproducibility and repeatability studies

involved relatively small samples, it would be essential to

conduct further studies on larger groups, to generalise

findings to the wider population. Additionally, there is

still some way to go to achieve 1% consistency in

parameter values, to make tissue relaxometry a reliable

biomarker.

Phantoms, standards and centre
accreditation

To be a truly quantitative measure of tissue relaxometry

properties, MRI quantitative values must be accurate and

consistent between subjects, sites, scanners, protocols and

over time.66 However, factors including hardware and

software differences between scanners affect the accuracy

of relaxometry measurements. Subject and tissue factors

may also cause multi-exponential or non-exponential

relaxation. Thus, pragmatic definitions are needed for

relaxation times to be used as biomarkers for tissue type

and pathology.66

Existing MRI phantoms like the American College of

Radiology (ACR) phantom were designed for use with

qualitative MRI and are not suited for use with MRF as

their long-term stability was not monitored.

Thus, Keenan et al.66 recommended a standard system

phantom for quantitative MRI with SI-traceable

components, and verifiable long-term accuracy and stability.

Besides assessing system signal-to-noise-ratio, resolution,

geometric distortion and relaxation times, it would allow

comparison of results across manufacturers, field strengths

and hardware and software versions. To ensure scanners

meet standards, an accreditation process, similar to the ACR

MR Accreditation Program67 for qualitative MRI, may be

needed for sites planning to offer MRF.66

In addition to repeatability and reproducibility studies,

large-scale in vivo studies will be needed to set benchmarks

Figure 7. Maps from one volunteer of T1, T2 and M0 (PD) acquired with MRF (top row), MOLLI (bottom left) and a balanced SSFP sequence with

three T2 preparation times (bottom middle). Reproduced with permission from Hamilton et al.17
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for parameter precision at different field strengths,

standard time point lengths, k-space undersampling and

types of sequences suitable for clinical use.

Professional acceptance of MRF and
implications for radiographers

Full confidence in diagnoses based on quantitative

relaxometry measurements will require the establishments

of rigorous standards and a quality control framework to

consolidate the clinical use of MRF. Large coordinated

and standardised in vivo studies are needed to convince

the imaging community that MRF quantitative maps can

be used to make reliable diagnoses.

Radiologist input will be required for noise

characterisation and presentation of relaxometry

parameter maps. Implementing MRF would necessitate

instructing radiographers on scanning protocols and

optimisation methods, and training for radiologists to

correlate deviations in tissue relaxometry with pathology.

Quantitative MRF will present new challenges for

radiographers. Longitudinal or repeat examinations of a

patient may require accurate co-location of tissue voxels

from previous MRF scans to permit quantitative tracking

of time- or treatment-evolving tissue response. Rigid and

non-rigid 3D image registration methods, like those used

currently in fMRI, may become standard protocols.

Large-scale implementation of MRF can only occur

with sufficient buy-in from hospitals and radiologic

clinics. Stakeholders will need information on how it

works, and its advantages and shortcomings. Pooling of

expertise across hospitals and health systems, as well as

standardisation of protocols, should also be encouraged.

Early adoption of MRF would boost local clinical

experience in the technique.

Future of MRF

A recent paper by Assl€ander68 confirms our view that

MRF researchers still need to overcome some practical

and technical challenges before widespread

implementation can occur. However, Siemens have

provided many in the original MRF team with research

grants,16 and have been involved in recent

work.15,30,40,59,63 Philips46,48,49,69 and GE Healthcare41,62

researchers have published work relating to MRF,

indicating wider industry interest.

Machine learning computation has advanced greatly in

the last two years, opening avenues for researchers to

propose faster and more precise capture and matching of

MRF signals. Improved MRF methods to image smaller

voxels using shorter scan times, and better model the

response of voxels containing multiple tissue types, will

undoubtedly generate great interest among medical

imaging professionals.

In Australia, MRF is enabled on several scanners at the

University of Queensland, the Herston Imaging Research

Faculty, and the Commonwealth Scientific and Industrial

Research Organisation, where we believe preliminary

clinical trials are underway. To date, staff at the Florey

Institute of Neuroscience and Mental Health in Victoria

have contributed to several papers45,47 on MRF research.

Figure 8. Correlation plots (A, B) comparing T1 and T2 values averaged over 34 consecutive days of MRF measurements to the T1 and T2 values

obtained from the inversion recovery spin echo and multiple single-echo spin echo methods, respectively. The results show a strong linear

correlation (R2 = 0.999 for T1, R
2 = 0.996 for T2). Reproduced with permission from Jiang et al.61
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Conclusion

MRF is a promising fast quantitative MRI technique that

reliably differentiates between normal and diseased tissue.

Besides expanding its utility to other body systems and

pathology, protocols must be set for ensuring parameter

precision is achieved at different field strengths so

relaxometry values can be used as accurate biomarkers.

Standards in pathology identification should be

established through scanning large cohorts of healthy

individuals and patients, to maximise the real benefits of

clinical MRF. Finally, clinical centres offering MRF must

be accredited to ensure the fidelity of quantitative results

across sites.
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