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Abstract

Poor sleep quality in Autism Spectrum Disorder (ASD) individuals is
linked to severe daytime behaviors. This study explores the relationship
between a prior night’s sleep structure and its predictive power for next-day
behavior in ASD individuals. The motion was extracted using a low-cost
near-infrared camera in a privacy-preserving way. Over two years, we
recorded overnight data from 14 individuals, spanning over 2,000 nights,
and tracked challenging daytime behaviors, including aggression, self-injury,
and disruption. We developed an ensemble machine learning algorithm to
predict next-day behavior in the morning and the afternoon. Our findings
indicate that sleep quality is a more reliable predictor of morning behavior
than afternoon behavior the next day. The proposed model attained an
accuracy of 74% and a F1 score of 0.74 in target-sensitive tasks and 67%
accuracy and 0.69 F1 score in target-insensitive tasks. For 7 of the 14,
better-than-chance balanced accuracy was obtained (p-value<0.05), with
3 showing significant trends (p-value<0.1). These results suggest off-body,
privacy-preserving sleep monitoring as a viable method for predicting next-
day adverse behavior in ASD individuals, with the potential for behavioral
intervention and enhanced care in social and learning settings.
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1 Introduction
Autism Spectrum Disorder (ASD) is a diverse group of conditions affecting at least
1% of the world’s population [12]. Struggles with social interaction, recurring
behaviors, and issues with speech and nonverbal communication characterize
it. These individuals’ cognitive and intellectual abilities can vary drastically,
thus leading to differing degrees of support needed in their daily routines [10].
Furthermore, ASD often co-occurs with other disorders, with sleep disruption
being a significant concern in both children [36, 41, 4] and youth [18, 38, 40].
This issue affects about 40-80% of people with ASD, compared to 10-40% of
people without ASD [6, 9, 45].

Previous studies suggested that poor sleep quality can have detrimental
effects on brain maturation [17], biological energy transfer [32], memory consoli-
dation [25] and neurobehavioral functioning [46]. This issue is further compli-
cated in individuals with ASD [42, 3, 1, 31]. These studies also revealed that
individuals with severe forms of autism often experience more frequent and
persistent disruptions in their sleep-wake cycles compared to their less impacted
counterparts [48, 50]. Another study, showed that children who slept fewer
hours per night had lower verbal skills, adaptive functioning, socialization, and
communication skills [53].

Research into the relationship between sleep and challenging behaviors in
ASD can be categorized into subjective and objective methodologies. Subjective
methodologies employ tools such as sleep logs, diaries [30], and questionnaires [39,
49]. In contrast, objective methodologies utilize technological instruments like
polysomnography (PSG) [33], actigraphy [47, 35], wearable devices, and mobile
applications [55, 29, 34].

While subjective methods provide first-hand accounts of sleep patterns and
behaviors, thereby offering valuable insights into personal experiences, they
are subject to personal biases and recall limitations, potentially compromising
their reliability. On the other hand, objective methods furnish a more concrete,
quantifiable measure of sleep quality, yielding data-driven insights less susceptible
to individual interpretation. However, these objective techniques often require
the use of on-body sensors or wearable devices, which may result in discomfort
that could adversely affect sleep quality. Additionally, on-body sensors may not
be well-tolerated in those with ASD who present with sensory sensitivities. As
the result, typically, these two approaches were employed in conjunction for
more comprehensive results [43, 22, 37].

Findings across these studies consistently suggested a correlation between
sleep quality and behavioral issues. They revealed that poor sleep is associated
with more restricted and repetitive behaviors [22], showed improvements in
daytime behavior following sleep interventions [37], indicated that sleep variables
account for variances in daytime functioning [43], highlighted that individuals
with severe sleep issues display higher levels of challenging behaviors [2], and
even proposed that the severity of ASD can be predicted based on the hours of
sleep per night [49].

Although research established that children with ASD often face severe sleep
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Figure 1: Diagram illustrating the workflow for collecting movement data using
a Raspberry Pi 4 Model B equipped with a 5MP OV5647 infrared camera. The
camera has a resolution of 2592× 1944 and a frame rate of 60fps. Frames are
downsampled to 5x4 superpixels (with 4 superpixels wide and 5 superpixels high),
and the frame rate is resampled to 1.5Hz for analysis. Both Global Difference
Sum(GDS) and Local Difference Sum(LDS) are calculated. These features are
aggregated for each time frame to generate a multidimensional time series. The
resulting data is then securely uploaded to a HIPAA-compliant cloud. In the
days following data collection, the behaviorist logs resident labels during two
sessions (morning and afternoon) for three distinct target adverse behaviors:
aggression, disruptive behavior, and self-injurious behavior (SIB).

issues that exacerbate their daytime behavioral challenges, such as aggression,
disruptive behavior, and self-injurious behaviors [28, 23, 13], the prospect of
predicting next-day behavior using sleep studies remained largely unexplored in
both academic literature and clinical guidelines. Existing treatment protocols
for managing ASD-related behaviors frequently either neglected sleep issues
or provided only a cursory overview. One factor contributing to this research
and guideline gap could be the limitations inherent in current sleep assessment
tools, which may struggle to accurately capture the nuanced sleep disturbances
commonly observed in both children and adults with ASD.

Recent research has demonstrated the possibility of predicting next-day
adverse behaviors using night-to-night variation in sleep timing and duration
in individuals with ASD [14]. The study used support vector machine (SVM)
classifiers to analyze an extensive dataset of over 20,000 nightly sleep observa-
tions matched with subsequent daytime behaviors. Sleep metrics such as total
sleep time and sleep efficiency were utilized to gauge sleep quality. The study
established 58%-60% balanced accuracy for different target behaviors across
individuals and achieved a statistically significant predictive relationship in 81%
of the subjects. A key limitation is the method’s heavy reliance on caretaker
observations, which require monitoring the individuals at 15-minute intervals
throughout the night, thereby introducing potential observer bias and raising
concerns about scalability.

More recently, studies have shown the potential of bed sensors as a more
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feasible solution for predicting daytime behaviors in children with ASD [5].
The study achieved accuracies of 78% and 79% for predicting daytime adverse
behavior using SVM and artificial neural network (ANN) classifiers, respectively.
However, the study was based on a sample size of just two individuals with
ASD. Given the heterogeneous nature of ASD, where symptoms and responses
can vary significantly among individuals, such a limited sample size precludes
drawing any generalizable conclusions. Moreover, bed sensors come with inherent
limitations. They are typically placed under the mattress, which can result in
high false positive rates[44], as they may be easily affected by other movements
or environmental factors.

The disproportionate focus on individuals with mild forms of autism in sleep
research overlooks a critical demographic, those with more severe and complex
presentations [13], who often experience the most severe sleep disruption and
behavioral problems that remain under-explored. Conventional sleep assessment
tools like actigraphy and polysomnography often hinge on the individual’s ability
to communicate and cooperate, limiting their applicability in cases of severe
autism. This research gap signifies an urgent need for developing alternative sleep
monitoring approaches that are tailored to individuals with severe autism. Such
approaches should minimize the reliance on the individual’s communication skills
or the constant presence of a care partner, thereby providing a more inclusive
and accurate understanding of sleep disturbances across the autism spectrum.

In our study, utilizing a low-cost near-infrared camera, we extracted motion
data in a privacy-preserving manner, computing statistics at the edge to assess
sleep quality in individuals with severe autism. Over more than a year, we
gathered data that offers a broader context for understanding sleep patterns
and related behaviors in ASD. This longitudinal dataset, including overnight
movement signals and behavioral labels, aids in analyzing the relationship
between sleep quality and daytime behaviors such as self-injurious behavior,
aggression, and disruptive behavior. Our proposed model was formed by an
ensemble of seven machine learning models to create a robust model to predict
the next day’s behavior in the morning and the afternoon using 1-7 previous
sleep data.

2 Data Collection

2.1 Participants
The study took place at The Center for Discovery (TCFD) in New York State,
which provides educational, medical, clinical, and residential care to individuals
with severe and complex disabilities including ASD. The participants in this study
required a residential level of care having been unsuccessful in a less restrictive
environment due to the severity and complexity of their conditions. The center
has an internal Institutional Review Board that reviewed and approved of this
study protocol.

Fourteen individuals previously diagnosed with ASD ages 15 to 22 (Mean ±
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Standard Deviation (SD): 18.23± 1.84) participated in this study. The sample
consisted of 11 white (accounting for 78.6%), two Asian (14.2%) and one African
American (7.1%). In terms of gender, 12 were males (85.7%) and 2 were females
(14.2%).

The Autism Spectrum Rating Scales (ASRS) [24] is a standardized, norm-
referenced instrument that measures behaviors associated with ASD and aligns
with criteria from the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5) [51]. Because the ASRS is not normed for participants
over the age of 18, the last administered ASRS was included for those over 18
during the data collection period. T-scores from 60-64 are in the Slightly Elevated
classification; 65-69 Elevated classification; 70-85 Very Elevated classification.
As referenced in Table 1, the number and pattern of symptoms associated with
ASD as measured by the ASRS DSM-5 Scale was in the Elevated range for three
participants and Very Elevated for 11. All participants met DSM-5 criteria for a
Level 1 or Level 2 severity for ASD, requiring “substantial” to “very substantial”
support based on clinical judgment by a licensed psychologist.

In most cases, cognitive testing was not able to be conducted due to language
limitations and inability to respond to test items. As such, level of intellectual
disability was determined based on scores on adaptive behavior measures. As part
of standard practice, TCFD school psychologists administer either the Adaptive
Behavior Assessment System (ABAS) [27] or Vineland Adaptive Behavior Scale-
3rd Edition (VABS-3) [26]. The ABAS yields a “General Adaptive Composite”
(GAC) score that represents a norm-referenced score for the individual. The
VABS-3 provides an “Adaptive Behavior Composite” norm-referenced score based
on five domains measured. As can be seen in Table 1, all participants functioned
in the moderate or severe range of intellectual disability with adaptive scores in
the lowest classification range designated for the particular measure (Low for
the VABS-3 and Extremely Low for the ABAS).

Participants had behavior intervention plans to address target behaviors that
interfered with functioning. For the purposes of this study, only aggression (e.g.,
hitting, biting, kicking, scratching), self-injurious behaviors (SIB) (e.g., hitting
body parts on objects or with hands, biting self) and disruption (e.g., screaming,
throwing objects, dropping) were included in the analysis given their frequency
in the sample. The Aberrant Behavior Checklist [8] is a measurement tool that
assesses maladaptive behaviors in children and adults with intellectual disabilities.
It yields scores in five areas: Irritability/Agitation, Lethargy/Social Withdrawal,
Stereotypic Behavior, Hyperactivity/Noncompliance, and Inappropriate Speech.
As shown in Table 1, 11 of the participants had at least one subscale on the
ABC that was above the 75th percentile, indicating more extreme behavioral
presentations compared to a normative sample of peers with disabilities in
community-based special education programs [7].

2.2 Data sources
Board Certified Behavior Analysts (BCBAs) at TCFD prescribe and implement
BIPs, and behavior data for the challenging behaviors is collected continuously
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by trained direct care staff across three shifts in a 24-hour period: morning
(7:00-3:00) afternoon (3:00-23:00), and overnight (23:00-7:00). Additionally,
Raspberry Pi based sensor units with infrared cameras were installed in each
participant’s bedroom to record movement across the evening period (19:00-
8:00). To preserve privacy, no images were recorded; movement was captured
by comparing and recording changes in light intensity, pixel by pixel, from one
frame to the next across the recording period. Overnight sensor data was paired
with the corresponding participant’s behavior data for this analysis.

The study was approved by the Emory Institutional Review Board and is
registered under the project title "Utilizing Technology to Accurately Track
Sleep and Predict Adverse Behaviors in Autism" (IRB00003823).

Table 1: Participant Characteristics Indicating Severity
Participant # ASRS DSM-5 Scale Score Adaptive Behavior Score Adaptive Behavior Classification Target Behaviors Aberrant Behavior Checklist Subscales above 75%ile

1 81 47* Extremely Low Aggression Irritability, Lethargy, Stereotypy, Hyperactivity
2 72 47* Extremely Low SIB, Aggression, Mouthing Objects Irritability, Lethargy, Stereotypy, Hyperactivity
3 75 50* Extremely Low Aggression, Elopement, Disruption Irritability, Lethargy, Stereotypy, Hyperactivity, Inappropriate Speech
4 75 20** Low Aggression, SIB, Disruption Irritability, Lethargy, Stereotypy, Hyperactivity
5 71 47* Extremely Low Aggression, SIB, Disruption Irritability, Stereotypy, Hyperactivity, Inappropriate Speech
6 77 47* Extremely Low Aggression, SIB Irritability, Lethargy, Hyperactivity
7 78 21** Low SIB, Disruption, Elopement Inappropriate Speech
8 69 22** Low Aggression, SIB, Inappropriate Sexual Behavior, Elopement Irritability, Lethargy, Inappropriate Speech
9 74 20** Low Aggression, Self-Mutilation, SIB, Disruption Irritability, Lethargy, Stereotypy, Hyperactivity
10 79 50* Extremely Low Aggression, SIB Irritability, Lethargy, Stereotypy
11 75 30** Low Aggression, Property Destruction None
12 65 48* Extremely Low SIB, Disruption Irritability
13 69 22** Low Aggression, Property Destruction None
14 73 48* Extremely Low SIB None

*General Adaptive Composite score on ABAS

**Adaptive Behavior Composite on VABS

2.3 Sensing pipeline
We employed a Raspberry Pi 4 IR camera (RPi-IR) for data acquisition. The
detailed process of movement data acquisition and analysis is illustrated in
Figure 1. Our system also incorporates a 5MP OV5647 infrared camera, which
has a native resolution of 2592 × 1944 pixels and a 60 Hz frame rate. For
computational efficiency and privacy preservation, we downsampled the captured
frames to 5× 4 pixels and down sampled the frame rate to 1.5Hz.

3 Methods
The objective of this study was to assess the predictive association between
movements during prior night of sleep, serving as an indicator of sleep quality,
and challenging behavior exhibited during daytime.

3.1 Preprocessing
Under certain assumptions, our algorithms calculate both the Global Difference
Sum (GDS) and Local Difference Sum (LDS) [52] for each frame at a distinct
time t with pixel resolution M ×N . The assumptions were as follows:

6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 24, 2024. ; https://doi.org/10.1101/2024.01.23.24301681doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.23.24301681
http://creativecommons.org/licenses/by-nc/4.0/


1. We have only one person in the entire video.

2. The background is static; the only moving object is either the person or
an object attached to them.

3. The video is free from corruption and noise.

Given a frame Ft and its preceding frame Ft−1, the difference frame Dt is
Dt = Ft −Ft−1. The GDS is mathematically expressed for each difference frame
Dt as:

GDS[t] =
M∑
i=1

N∑
j=1

|Dt[i, j]| (1)

Similarly, for LDS calculations, the difference frame Dt is partitioned into
K × L equally sized local blocks DLt,s, where we set K = 5 and L = 4. The
LDS is then given by:

LDS[t, s] =
∑

i∈[1,m]

∑
j∈[1,n]

|DLt,s[i, j]| (2)

These GDS and LDS values are aggregated over each time frame to produce
a multidimensional time series. This resulting data was securely uploaded to a
HIPAA-compliant cloud for further analysis. In a parallel process, trained staff
record labels for resident behaviors during two separate sessions (i.e., morning
and afternoon), focusing on three adverse behaviors: aggression, disruptive
behavior, and SIB.

3.2 Feature extraction
The methodology employed in this study is schematically depicted in Figure 2,
feature extraction is the initial phase of our methodological approach. We
extract five features for each dimension-modality (i.e., 20 for GDS and one for
LDS). This process generates a 5-dimensional feature vector for GDS signals
and a 100-dimensional feature vector for LDS signals, culminating in a combined
105-dimensional feature vector. The five crafted features are as follows:

1. 1-norm (Sum of Absolute Values): This measure captures the overall
fluctuations within the data series and can be indicative of restless sleep or
sleep quality. Larger values may signify frequent movements or disruptions.

∥x∥1 =
n∑

i=1

|x[i]| . (3)

Here, x[i] represents a single dimension of either GDS or LDS in the ith
time stamp. Let n denote the number of timestamps recorded in a single
night for a resident.
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2. Standard Deviation (σ): Standard deviation gauges the variability in
the data, which can be useful for detecting anomalies in sleep patterns.

σ =

√√√√ 1

N

N∑
i=1

(x[i]− µ)2. (4)

Here, µ is the mean of x and N (see Fig 1) is the total length of the signal
over a night.

3. Number of Peaks (NumPeaks): Peaks in the data can represent
moments of heightened activity or agitation, which could be of relevance
in diagnosing sleep disorders like insomnia or sleep apnea.

NumPeaks = |{i : x[i− 1] < x[i] > x[i+ 1]}| (5)

4. 2-norm (Energy): 2-norm provides an overall sense of changes in consec-
utive frames. In this context, a high-energy signal can indicate restless or
disrupted sleep.

Energy =

N∑
i=1

x[i]2 (6)

5. Entropy (Hglobal): To quantify the complexity or unpredictability of
sleep, we calculate the global entropy (Hglobal). Higher entropy values
might suggest irregular sleep patterns.
The global entropy is computed as an average of local entropies across the
signal.

Hglobal =
1

N − w + 1

N−w+1∑
i=1

Hlocal,i (7)

In this equation, w is the window size used to calculate each local entropy
(Hlocal,i). Specifically, for each window of size w starting at index i in the
time series x[i], we calculate a local entropy using the following formula:

Hlocal,i = −
m∑
j=1

Pj log2 Pj (8)

where Pj represents the empirical probability of the j-th bin in a histogram
constructed from the windowed segment of the signal, spanning from x[i]
to x[i + w − 1]. This histogram is divided into m bins. The empirical
probability Pj is calculated as the proportion of samples falling into the j-th
bin within the window, thus defining an empirical probability distribution
based on the observed values of x[i] over each window. In this study, we
set w=100.
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3.3 Prediction Models
Upon extracting features mentioned in Section 3.2, seven predictive models were
applied as depicted in Figure 2. These algorithms include the support vector
machine (SVM) [15], logistic regression [16], random forests [11], gradient boost-
ing [20], AdaBoost [19], k-nearest neighbors (kNN), and multilayer perceptrons
(MLP) [21]. Finally, a voting algorithm consolidates the predictive outcomes
from all seven models, enhancing the system’s robustness and reliability by
opting for the majority vote as the final prediction label.

Each model is trained using the 105-dimensional aggregated feature vector
for prediction tasks, such as forecasting aggression. We repeated this analysis
for morning and afternoon for:

1. Target-sensitive Prediction: In this study, the predictive models were
designed to forecast both the occurrence and timing of specific forms of
adverse behavior at designated times of day. For instance, a single data
instance might be labeled with multiple behaviors such as aggression and
self-injurious behaviors. The model aims to accurately predict the absence
of a particular adverse behavior even when other adverse behaviors are
concurrently present.

2. Target-insensitive Prediction: Here, the focus was on predicting the
time and presence of any adverse behavior, regardless of its specific type,
at a particular time of day.

To develop these models, we allocated 80% of the data for training purposes
and reserved the most recent 20% to preserve temporal causality in each subject-
specific scenario, such as forecasting aggressive behavior by a specific resident
the following day.

3.4 Evaluation metrics
To assess the efficacy of our model, we utilized both conventional evaluation
metrics and significance testing against a prevalence-aware baseline.

3.4.1 Conventional evaluation metrics

We evaluated the proposed model using conventional metrics commonly employed
for predictive models. These include accuracy, which provides a general measure
of model performance; precision, which gauges the model’s ability to identify
positive cases correctly; recall, which measures the model’s ability to capture all
potential positive cases; and F1 score, which provides a balanced measure that
takes into account both precision and recall. All metrics were derived through
micro-averaging, which combine the individual counts of True Positives, False
Positives, and False Negatives across all classification categories to formulate a
consolidated measure. The benefit of utilizing micro-averaging lies in its sensitiv-
ity to the performance of each instance, thereby giving more weight to the classes
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Figure 2: Flowchart illustrating the two-stage methodological approach for sleep
analysis. The first stage involves feature extraction from Global Difference Sum
(GDS) and Local Difference Sum (LDS), resulting in a 105-dimensional feature
vector for each observation. Five specific features are extracted, each chosen
for its relevance in sleep analysis. The second stage employs an ensemble of
seven machine learning algorithms to make predictive assessments based on the
extracted features.

that are more populous in the dataset. For robust statistical representation, all
evaluation outcomes are conveyed as Mean±Standard Deviation over individuals.
These metrics serve as an initial yardstick for evaluating the effectiveness of our
predictive models.

3.4.2 Validation Through Permutation Testing

To assess the statistical significance of our model’s predictive accuracy beyond
mere random chance, we employed a permutation-based significance testing
approach. This method involved reshuffling the test set labels to create a
distribution of accuracy scores under the null hypothesis, where the model’s
performance is assumed to be no better than random guessing. Through this
process, we were able to compare the actual model accuracy against this distribu-
tion to ascertain whether the observed performance was statistically significant.
The approach is detailed in Algorithm 1.

The null hypothesis, H01, in this test, suggests that the observed accuracy is
not superior to that achievable by random chance, given the label distribution.
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Algorithm 1 Permutation Test
1: Generate a binary array from test set labels
2: Compute the model’s balanced accuracy Anorm on the test set
3: Permute test set labels m time (10000 times in this study), calculating

balanced accuracy each time
4: Determine the p-value as the frequency of:

permuted balanced accuracy ≥ Anorm

5: if p-value < 0.05:
Reject H01

3.5 Assessment of Temporal Sleep-Behavior Patterns
We explored the impact of incorporating data from previous nights to improve
the predictive accuracy of our models. This enhancement was accomplished
by progressively expanding the input feature set, incorporating data from 1
to 7 preceding nights, in addition to the original features obtained from a
single night’s data. To achieve this, we concatenated the feature vectors from
consecutive nights, thereby forming an extended feature set for each subsequent
night. Subsequently, we applied the model introduced in Section 3.3 to these
enhanced feature sets to predict the day time behavior.

3.6 Evaluation of Predictive Models
To evaluate the role of each AI-based model presented in Section 3.3. We trained
and evaluated each model with the composite 105-dimensional feature vector
(single night), derived from sleep data. The training procedure for these models
involved allocating 80% of the data for training, while the remaining 20% was
set aside for testing purposes. This approach was adopted to maintain the
temporal causality essential for predicting subject-specific behaviors, as detailed
in Section 3.3.

4 Results

4.1 Performance Analysis
Table 5 and Fig 3 show the morning and afternoon session performance metrics
for each prediction task. We computed the standard deviation and the mean
balanced accuracy, presenting the results as mean accuracy (MA)± standard
deviation (SD).

Table 5 presents model performance differences. In the morning, the target-
sensitive model had a macro average accuracy of 0.74 ± 0.15, compared to
0.67± 0.15 for the target-insensitive model. In the afternoon, these accuracies
changed to 0.74± 0.18 and 0.75± 0.21 for the target-sensitive and insensitive
models. However, the afternoon F1 scores were 0.17 ± 0.13 and 0.23 ± 0.19,
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indicating the inflated accuracy for predicting the presence of adverse behavior
in the afternoon.

Fig. 3 further illustrates the challenge in accurately predicting the presence
of adverse behavior in the afternoon sessions. The confusion matrices for the
morning, shown in Fig. 3 panels (a) and (c), reveal that the target-sensitive
model achieved a micro balanced accuracy of 71%, compared to 66% for the
target-insensitive model. Conversely, the afternoon session, depicted in panels
(b) and (d) of Fig. 3, demonstrates a decrease in balanced accuracy to 54.5% for
the target-sensitive model and 52.5% for the target-insensitive model.

Table 2: Performance Metrics for Target-sensitive and Target-insensitive Models
During Morning and Afternoon

Prediction
Task Time Precision Recall F1 Score Accuracy

Target-
Sensitive Morning 0.73± 0.34 0.75± 0.39 0.74± 0.35 0.74± 0.15

Target-
Insensitive Morning 0.61± 0.17 0.80± 0.34 0.69± 0.21 0.67± 0.15

Target-
Sensitive Afternoon 0.39± 0.26 0.11± 0.09 0.17± 0.13 0.74± 0.18

Target-
Insensitive Afternoon 0.44± 0.3 0.16± 0.27 0.23± 0.19 0.75± 0.21

Building on the earlier results of model performance in predicting adverse
behavior, Table 3 and Figure 4 offer an in-depth look at how these models perform
in identifying specific types of adverse behaviors during morning sessions. For
aggression, self-injurious behavior, and disruptive behavior, the models achieved
macro average balanced accuracies of 0.75± 0.19, 0.75± 0.33, and 0.76± 0.17
respectively. The corresponding macro average F1 scores were 0.74 ± 0.38,
0.74± 0.44, and 0.76± 0.4. In terms of micro average balanced accuracies, the
values were 0.70 for aggression, 0.73 for self-injurious behavior, and 0.72 for
disruptive behavior, accompanied by micro average F1 scores of 0.68, 0.8, and
0.75, respectively. These findings highlight the models’ overall effectiveness in
predicting different adverse behaviors.

Table 3: Performance Metrics for Different Adverse Behaviors in Morning
Adverse
Behavior Precision Recall F1 Score Accuracy

Aggression 0.73± 0.38 0.75± 0.44 0.74± 0.38 0.75± 0.19
SIB 0.68± 0.41 0.82± 0.5 0.74± 0.44 0.75± 0.33

Disruptive
Behavior 0.8± 0.37 0.73± 0.43 0.76± 0.4 0.76± 0.17
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Figure 3: Confusion matrices for target-sensitive and target-insensitive models
predicting the presence of adverse behavior at different times of the day: (a)
Morning using the target-sensitive model, (b) Afternoon using the target-sensitive
model, (c) Morning using the target-insensitive model, and (d) Afternoon using
the target-insensitive model.

4.2 Significance Analysis
Following the evaluation of our model, we carried out the significance tests
outlined in Section 3.4.2. These tests were applied to each resident for various
adverse behaviors. The resulting p-values are shown in Table 4. This table
highlights p-values falling below the 0.05 threshold in bold, denoting instances
where the null hypothesis can be rejected. This suggests significant findings
in contrast to the permutation test detailed in Section 3.4.2). For scenarios
where data points are absent for specific resident-task combinations, "N/A" is
indicated.

In predicting the type of adverse behaviors in the morning, the null hypothesis
was rejected for aggression predictions in 6 out of 14 instances. For SIB, significant
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Figure 4: Confusion matrices for predicting different adverse behaviors in the
morning time. Confusion matrix for predicting (a) Aggression, (b) Self-injurious
behavior, and (c) Disruptive behavior.

Table 4: Significance Testing Across Different Residents (p-values)
Resident ID Aggression SIB Disruptive Behavior Any

1 <0.001 0.041 N/A 0.016
2 0.267 N/A 0.400 0.097
3 0.702 N/A 0.751 <0.001
4 0.035 0.045 0.083 <0.001
5 0.548 0.751 N/A 0.082
6 <0.001 <0.001 N/A <0.001
7 0.912 0.248 N/A 0.246
8 <0.001 N/A <0.001 <0.001
9 0.801 0.952 <0.001 0.576
10 0.308 N/A N/A 0.879
11 <0.001 0.505 N/A 0.007
12 <0.001 0.278 0.299 0.536
13 0.971 0.528 N/A 0.093
14 0.568 <0.001 0.257 <0.001
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outcomes were observed in 3 out of 10 cases. In the case of disruptive behavior,
the permutation test indicated significance in 2 out of 7 instances. Additionally,
the permutation test contradicted the null hypothesis for predictions involving
target-insensitive adverse behaviors in 7 out of 14 scenarios.

4.3 Predictive Value of Prior Nights
Figure 5, panels (a) and (b), illustrate the models’ accuracy and F1 score,
respectively. The findings reveal a modest enhancement in performance with the
incorporation of multiple nights’ data. Specifically, the average accuracy for the
residents improved from 0.67 (using data from previous night) to 0.68 when data
from 7 prior nights was used. A more pronounced improvement was observed in
the mean F1 score, which increased from 0.69 (using data from previous night)
to 0.74 with the inclusion of data from 7 preceding nights.

Figure 5: Performance analysis of predictive models using different lengths of
historical nights’ data(a) F1 Score and (b) Accuracy across different residents
using various lengths of consecutive nights for prediction. The graphs showcase
the performance outcomes, represented by F1 score and accuracy, for different
residents when using varying lengths of consecutive nights’ data for prediction.
It is notable that utilizing data from a 7-day period yields the highest results for
both metrics, even slightly surpassing the performance achieved when only data
from a single preceding night is used.

4.4 Model Assessment
The Ensemble Voting model achieved an F1 score of 0.69± 0.21 and an accuracy
of 0.67± 0.15. This performance notably exceeds AdaBoost, Logistic Regression,
and MLP. However, while Random Forest, kNN, and SVM recorded F1 scores
of 0.7 ± 0.32, 0.7 ± 0.36, and 0.73 ± 0.38 respectively, the increased standard
deviations in their Accuracy and Recall metrics indicate less consistency and
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reliability. Our Ensemble Voting model offers an advantageous balance, providing
robust performance and reliability across various metrics in the target-insensitive
model category.

For the target-insensitive task, we observed comparable performance across
different metrics for both the SVM and Voting algorithms. These algorithms
outperformed the remaining models, achieving an accuracy of 0.71± 0.15. Fur-
thermore, the F1 scores registered were 0.76± 0.29 for the SVM and 0.75± 0.35
for the voting model.

Table 5: Metrics for Target-Insensitive and Target-Sensitive Models Across
Different Models in Morning

Prediction
Approach Model Precision Recall F1

Score Accuracy

Target-
Insensitive AdaBoost 0.6± 0.3 0.63± 0.35 0.61± 0.3 0.59± 0.19

Target-
Insensitive

Logistic
Regression 0.58± 0.28 0.72± 0.27 0.65± 0.26 0.59± 0.17

Target-
Insensitive MLP 0.57± 0.31 0.62± 0.41 0.6± 0.32 0.57± 0.22

Target-
Insensitive

Random
Forest 0.62± 0.32 0.81± 0.4 0.7± 0.32 0.64± 0.23

Target-
Insensitive SVM 0.61± 0.33 0.92± 0.49 0.73± 0.38 0.65± 0.19

Target-
Insensitive XGBoost 0.63± 0.27 0.71± 0.36 0.67± 0.29 0.62± 0.15

Target-
Insensitive kNN 0.62± 0.33 0.8± 0.42 0.7± 0.36 0.64± 0.2

Target-
Insensitive Voting 0.61± 0.17 0.80± 0.34 0.69± 0.21 0.67± 0.15

Target-
Sensitive AdaBoost 0.69± 0.32 0.56± 0.27 0.62± 0.27 0.63± 0.14

Target-
Sensitive

Logistic
Regression 0.67± 0.28 0.64± 0.29 0.66± 0.27 0.64± 0.12

Target-
Sensitive MLP 0.68± 0.25 0.73± 0.29 0.71± 0.25 0.67± 0.12

Target-
Sensitive

Random
Forest 0.74± 0.34 0.65± 0.33 0.7± 0.32 0.687± 0.13

Target-
Sensitive SVM 0.7± 0.29 0.82± 0.36 0.76± 0.29 0.71± 0.15

Target-
Sensitive XGBoost 0.77± 0.25 0.58± 0.28 0.66± 0.24 0.69± 0.15

Target-
Sensitive kNN 0.79± 0.32 0.77± 0.37 0.74± 0.34 0.7± 0.18

Target-
Sensitive Voting 0.73± 0.34 0.76± 0.39 0.75± 0.35 0.74± 0.15
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5 Discussion
The findings of this study suggest the potential for predicting next-day adverse
behaviors in individuals with ASD by monitoring the previous night’s activities
using a non-invasive, off-body sensor. This approach could offer a valuable daily
feedback mechanism for caregivers and healthcare professionals, enabling them to
optimize resource allocation and intervention strategies based on the monitored
data. The utilization of such a system promises to enhance the understanding
and management of behavior in the ASD population.

The proposed model demonstrated acceptable predictive performance, ev-
idenced by its statistical significance in the permutation test (Section 3.4.2)
for 7 out of 14 residents. Furthermore, the model indicated a trend towards
significance for 3 out of the 14 residents, with a p-value lower than 0.1, as detailed
in Table 4. To quantify the effect size, we calculated the Cohen’s d coefficient,
obtaining a value of 0.45± 0.18. This indicates a medium effect size and suggests
that while the prediction model did not uniformly predict adverse behavior
across the entire population, it was notably effective in a substantial subset.
This partial efficacy might be attributable to various factors such as differences
in medication (e.g., melatonin usage), distinct sleep movement patterns in the
ASD population (where certain adverse behaviors may not be detectable via
movement sensors and might require more invasive methods like Polysomnogra-
phy for identification), changes in the distribution of adverse behavior during
the training and testing phase (20% most recent nights) or limitations in the
scalability of the model to the entire population.

As presented in Table , there is a significant difference in model performance
between morning and afternoon sessions, which deserves consideration, given
that both models utilize data from the previous night’s sleep for their predictions.
This enhanced performance in the morning implies that sleep data may be a
more potent predictor of morning behaviors than those in the afternoon. Such
a pattern might relate to the direct influence of sleep quality on cognitive and
emotional states, which likely decreases as the day unfolds. This theory is
consistent with the research by Tzischinsky and Shochat [54], which found a
strong correlation between sleepiness, sleep-problem behaviors, depressed mood,
and the quality of life in adolescents, with a more pronounced effect observed in
the morning.

The mentioned factors contributing to the variability in the prediction accu-
racy of our model can be categorized into two types:

1. The model’s differing performance throughout the day, with higher accuracy
observed in the morning compared to the afternoon.

2. The varying predictive success across different residents.

To mitigate the first issue, we propose integrating the sleep monitoring-based
model with additional sensing technologies employed in this study through out
the daytime, such as Electrodermal Activity (EDA) wristbands and Heart Rate
Variability (HRV) monitoring, and vision pipelines. This combined approach
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aims to develop a more robust and scalable end-to-end predictor for adverse
behavior, enhancing its effectiveness beyond morning predictions and updating
the likelihood of adverse behavior based on sensory data collected throughout
the day.

Addressing the second challenge involves incorporating non-sleep data into
our model. This includes analyzing historical patterns of adverse behavior, con-
sidering the intensity and duration of such incidents, the history of absenteeism,
and medication usage. By integrating these diverse data sources, we aim to
refine our model’s predictive capabilities across a broader spectrum of residents.

In future works we also envision focusing on those who did not benefit much
from our prediction model. We will explore if their behavior, health conditions,
and medications differ from those who responded well. We also plan to improve
the accuracy of our labels, which are currently affected by human judgment
errors. This will help reduce inconsistencies and noise in our data.

Finally, it is important to highlight the inherent advantages of our proposed
end-to-end, privacy-preserving system, which leverages off-body sensing. This
methodology offers the potential for minimal intrusiveness when applied, trained,
and fine-tuned for the ASD population. It facilitates learning the likelihood
of certain behaviors by forming a closed feedback loop, continually updating
the system. A key attribute of this system is its adaptability, making it easily
integratable into larger healthcare facilities. This integration could significantly
enhance monitoring capabilities and resource management in these settings, with
additional applications in elopement, falls, and sleep interventions.

6 Conclusion
This article presented a novel approach for predicting adverse daytime behaviors
in children with ASD by examining the correlation between sleep quality and sub-
sequent daytime behavior. We employed temporally and spatially downsampled
footage from low-cost near-infrared cameras recorded during overnight sleep to
predict next-day adverse behaviors. An ensemble predictive model was developed
to address four scenarios: target-insensitive and target-sensitive predictions for
both morning and afternoon behaviors. The research presented in this work
provides the first evidence that off-body sensing during sleep can predict day-
time adverse behavior in individuals with severe forms of ASD. The described
approach is scalable, low-cost, privacy-preserving, and relatively simple to set
up and automate. The described system can serve as a novel monitoring tool,
allowing caregivers to implement preventative strategies such as reducing levels
of environmental stimulation, permitting more frequent breaks, and providing
increased access to activities that support emotional regulation. Challenging
behaviors can harm self, others, or property and can be socially stigmatizing for
the individual; therefore, taking steps to reduce the likelihood of their occurrence
is beneficial. This technology could be a valuable resource for caregivers and
clinicians who support those with ASD.
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