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Accuracy is an important parameter of a diagnostic test. Studies that attempt to determine a test’s accuracy can suffer from various
forms of bias. As radiology is a diagnostic specialty, many radiologists may design a diagnostic accuracy study or review one to
understand how it may apply to their practice. Radiologists also frequently serve as consultants to other physicians regarding the
selection of the most appropriate diagnostic exams. In these roles, understanding how to critically appraise the literature is
important for all radiologists.+e purpose of this review is to provide a framework for evaluating potential sources of study design
biases that are found in diagnostic accuracy studies and to explain their impact on sensitivity and specificity estimates. To help the
reader understand these biases, we also present examples from the radiology literature.

1. Introduction

+e accuracy of a diagnostic test refers to how well a test can
correctly identify a specific disease. +erefore, it is a crucial
parameter to consider when making a decision to perform
that test in a clinical setting. Inaccurate diagnostic tests can
lead to over- or undertreatment, inflated healthcare costs,
and potentially patient harm [1]. Diagnostic accuracy studies
attempt to evaluate a test’s performance by comparing it to a
gold standard. +ese studies can suffer from biases (e.g.,
spectrum bias and verification bias) that are different from
those affecting studies designed to test the efficacy of
therapeutic interventions. Awareness of these biases and
how they can impact diagnostic accuracy measures is im-
portant. Several studies have quantitatively shown that
specific biases can lead to an overestimation or underesti-
mation of accuracy measures [2, 3]. Given that diagnostic
accuracy studies help experts and policymakers to create
guidelines and establish standard-of-care measures [4], it is
imperative that readers be aware of these biases and how
they can be addressed.

As practitioners of a diagnostic specialty, it is important
for radiologists to understand how to appraise diagnostic
accuracy studies. Radiologists are frequently consulted by
other physicians on which imaging test to order for specific
indications and serve to educate and inform others about
current standards of care for the diagnostic work-up of many
patients. In the era of evidence-based medicine, radiologists
are encouraged to keep up with the literature as well as know
how to appraise the quality of a diagnostic accuracy study.
Moreover, it is equally important to know how applicable
the results of a particular diagnostic accuracy study are to the
radiologist’s own clinical practice [5].

Guidelines and checklists often serve as useful tools to
help one be comprehensive and achieve consistency. As
such, the Cochrane Collaboration and Agency for Health-
care Research and Quality has recommended the use of
checklists such as the Quality Assessment of Diagnostic
Accuracy Studies 2 (QUADAS-2) tool [6]. +is tool helps to
assess the risk of bias in diagnostic studies and is organized
into 4 key domains. +ese domains include evaluating as-
pects of study design related to (1) patient selection, (2) the
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index test, (3) reference standard, and the (4) flow and
timing of subjects in a study [7]. Within each domain are
specific types of study design biases that should be
considered.

In this paper, we use the QUADAS-2 framework to
review the study design biases within each domain (see
Table 1). We will also present examples from the radiology
literature.

2. Basic Concepts

+e framework for developing a research question in ev-
idence-based medicine follows the PICO model. In diag-
nostic accuracy studies, PICO stands for P (population), I
(index test), C (comparator or reference standard), and O
(outcomes). A diagnostic accuracy study compares the
index test (the test under investigation) with an established
reference test on a specific population and provides out-
comes for comparison [8]. +e degree to which the out-
comes of the study represent true findings among similar
individuals outside the study is determined by the validity.
+ere are two main types of validity: internal and external
(see Figure 1) [9].

2.1. Internal Validity. +e extent to which the observed
results are not due to methodological errors is defined as
internal validity. +e internal validity of a study can be
threatened by bias and imprecision (see Figure 2). Bias is
considered to be any systematic deviation of an estimate
from the true value. If a diagnostic accuracy study suffers
from bias, its sensitivity and/or specificity will be consis-
tently under- or overestimated compared to the true value.
+is means that the error introduced by bias will not balance
out upon repetition. Imprecision is the random error that
occurs with multiple estimates of a parameter and refers to
how far these estimates are from each other, not how far they
are from the true value. Because of the random deviation of
the estimates towards opposite directions, repetition will
eventually balance out this error [11].

2.2. External Validity. External validity examines whether
the findings of a study can be generalized to the population
level. If the study’s sample is representative of the target
population, the results of the study can be generalized to the
population from which the sample was drawn and even
beyond that to other similar populations. +is is especially
important as it determines whether the results of the study
can be applied in daily clinical practice [12].

Applicability is also an important consideration when
evaluating diagnostic accuray studies. Careful evaluation of
the PIC (Population-Index-Reference) parameters of a study
will help determine the extent of applicability of a study to a
reader’s clinical practice. +e patient demographics, selec-
tion and use of the index test, and test interpretation should
be compared between the study and the reader’s practice. To
allow for this comparison, it is vital that diagnostic accuracy
studies report their methods with completeness and
transparency, preferably using standardized checklists such

as the Standards for the Reporting of Diagnostic Accuracy
studies (STARD) [13].

Using the PIC framework will help the reader assess the
external validity as well as gain insight into the applicability
of the study. For assessment of internal validity, critically
appraising the study design using a four-domain framework
is suggested [11]. We now review specific sources of study
design biases using the QUADAS-2 framework.

3. Domain 1: Patient Selection

+e goal of sampling is to ensure that the sample group is
representative of the population of interest.+e results of the
study are contingent on the studied sample. +us, sampling
methods are a critical part of a study design. Participants
should ideally be recruited from a population in a process
that ensures no over- or underrepresentation of certain
subpopulations [14].

3.1. Sampling Definition and Methods. Sampling is the
process of selecting a group of study subjects from the target
population. +ere are two main categories of sampling
methods: probability and nonprobability sampling.

In probability sampling methods, all eligible subjects in
the target population have equal chances to be selected (e.g.,
random sampling). +e challenge with this type of sampling
method is that it requires the presence of a comprehensive
list or registry of all eligible patients in the target population,
from which the subjects are randomly chosen using, for
instance, a random number generator [14]. As such regis-
tries are rarely available in practice, clinical studies more
frequently use nonprobability sampling [15].

In nonprobability sampling methods, the sample is se-
lected in a process that does not guarantee equal chances to
be selected for each eligible subject in the target population.
An example of nonprobability sampling is convenience
sampling, where patients are selected only based on ac-
cessibility and availability. +e selection process for con-
venience sampling can lead to over- or underrepresentation
of certain population attributes and therefore decreases the
generalizability of the study results (sampling bias). A special
form of convenience sampling, commonly used in clinical
research, is consecutive sampling. In this sampling method,
for a specified period of time, every subject who meets the
predefined inclusion and exclusion criteria is recruited for
the study. +is sampling method prevents the researchers
from “picking and choosing” subjects [15]. Analysis of 31
published meta-analyses showed that nonconsecutive
sampling tended to overestimate the diagnostic accuracy of
the test by 50% compared to consecutive sampling in di-
agnostic accuracy studies [16].

+e effect of consecutive over nonconsecutive sampling
can be seen in a study evaluating deep venous thrombosis
(DVT) of the lower extremities. Kline et al. recruited subjects
using a consecutive method to compare the diagnostic ac-
curacy of emergency clinician-performed compression ul-
trasonography for DVT of the lower extremities against
whole-leg venous ultrasonography and reported a sensitivity
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Table 1: Types of bias in diagnostic accuracy studies and how to address them.

Bias type How to address
Spectrum bias Perform random or consecutive sampling; avoid excluding subjects with ambiguous results

Information bias Implement blinding of the researchers to the results of the reference test when interpreting the index test;
predetermine the thresholds when designing a study

Misclassification bias Predict the direction and degree of deviation for the diagnostic accuracy in sensitivity analysis and adjust
accordingly; create a composite reference standard

Diagnostic review
bias Implement blinding of the researchers to the results of the index test when interpreting the reference test

Incorporation bias Address in the limitations section the possibility of overestimation of accuracy estimates and if possible, adjust
accordingly

Verification bias Use the same reference standard for all subjects and if not possible, acknowledge and measure the potential
accuracy estimate error

Attrition bias Study the characteristics of subjects lost and how they differ from those that remain; perform sensitivity analysis to
calculate the range of diagnostic accuracy estimates as if all withdrawals tested positive or negative

Lack of
Bias

Precision

Internal
Validity

External
Validity

Population levelStudy level

Patient level

Application in
clinical setting

Figure 1: Internal and external validity. Precision and lack of bias dictate the internal validity of the study. External validity refers to the
process of applying the study results from the study level to the population level. Radiologists can use these results in their own clinical
practice for management of individual patients.
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Figure 2: Precision and bias. Increasing precision reduces the random error and decreasing bias is equivalent to decreasing systematic error.
+e higher the precision and the lower the bias, the higher the internal validity of the study. Adapted from ELife, 7, e35718, Brandmaier,
A. M. et al., Assessing reliability in neuroimaging research through intraclass effect decomposition (ICED) (2018) (modified) [10].
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of 70% and specificity of 89% [17]. By contrast, other studies
on the same topic reported almost perfect diagnostic ac-
curacy (sensitivity: 100% and specificity: 91.8–100%) using a
nonconsecutive sample. +ese higher accuracy measures
could be due to excluding complex cases, excluding patients
who may be difficult to perform ultrasound, or excluding
ambiguous results [18, 19].

3.2. Spectrum Bias. Spectrum bias is commonly used to
describe the variation in test performance across patient
subgroups. Studies that utilize a limited portion of the pa-
tient spectrum can be affected by this type of bias. For
example, a study that includes only high-risk patients may
provide different diagnostic accuracy estimates compared to
a study that includes only low-risk patients, as the test
performance varies in different populations [20, 21].

An obvious source of spectrum bias is a patient selection
method that leads to a sample that is not representative of
the target population. Local referral practices can also
remove cases from the initial distribution, narrow the
spectrum of patients, and lead to bias [11]. Understanding
spectrum bias is important as it can prohibit the general-
ization of the results from the studied sample to a wider
population, especially when studying heterogeneous pop-
ulations. It has been suggested that “spectrum effect” is a
more appropriate term, as the estimate from a narrow
spectrum of patients is valid for this specific subgroup [21].

An example of how diagnostic accuracy measurements
can be influenced by the patient spectrum is seen in a meta-
analysis that studied the accuracy of magnetic resonance
imaging (MRI) to detect silicone breast implant rupture.+e
authors found that the diagnostic accuracy of MRI in studies
that included patients with symptoms of implant rupture
was 14 times higher compared to studies that included only
asymptomatic patients and two times higher compared to
studies that used both symptomatic and asymptomatic
patients (screening sample) [2].

3.3. Case-Control and Cross-Sectional Study Design. In di-
agnostic accuracy studies, based on the way subjects are
recruited, the study design is usually a case-control, cross-
sectional, or cohort study design. In case-control designs,
patients are sampled separately from controls, which in-
troduces spectrum bias. +is is because patients tend to be
“the sickest of the sick,” which leads to sensitivity overes-
timation, and controls tend to be the “healthiest of the
healthy,” which leads to specificity overestimation (see
Figure 3). In cross-sectional and cohort designs, patients and
controls are sampled together from a population based on
the presence of a characteristic regardless of the presence of
disease [3, 22]. In a study by Lijmer et al., which reviewed
184 diagnostic accuracy studies for design-related bias, case-
control designs tended to overestimate the diagnostic per-
formance of the test by threefold compared to studies with
cohort design [3].

An area in radiology where the difference between case-
control and cohort has been studied is Artificial Intelligence
(AI). As noted by Park [23], utilizing a case-control design

for the clinical validation of AI algorithms forces a binary
distinction of outcomes that does not accurately represent
real-world situations, where disease-simulating conditions
and comorbidities may be present. As a result, the diagnostic
performance of an AI algorithm may be inflated, and
consequently, the generalization of study results to real-
world practice may be problematic. Nevertheless, case-
control studies are still typically used as initial validation
methods for deep learning algorithms, as they are more
convenient to perform and allow for establishment of a
reference standard [23, 24].

Another limitation of the case-control design is that the
positive predictive value (PPV) (probability that subjects
with a positive test truly have the disease) and negative
predictive value (NPV) (probability that subjects with a
negative test truly do not have the disease) cannot be directly
measured, as the ratio of cases to control is set by the in-
vestigator and disease prevalence is not reflected in the data
(see Figure 4) [22].

4. Domain 2: Index Test

4.1. Information Bias. An important source of bias when
evaluating the index test is the lack of blinding of the in-
vestigators to the results of the reference standard for each
subject. Knowledge of the reference standard results may
influence the interpretation of the index test results.+is is also
known as information bias. +is type of bias can lead to larger
deviations when the index test is not an objective measure-
ment and depends on a rater’s subjective assessment [25].

Aside from blinding to avoid information bias, it is
important for diagnostic accuracy studies to prespecify the
threshold used for the index test interpretation. A posteriori
determination of a threshold in a data-driven way can lead to
overestimation of test performance, especially in studies
with a small number of subjects. +is is because an optimal
cutoff may be chosen based on the available results to favor
overly optimistic measures of diagnostic accuracy [26].

For example, Kivrak et al. performed a study comparing
computed tomography (CT) virtual cystoscopy with con-
ventional cystoscopy for the diagnosis of bladder tumors,
which they designed in a rigorous way to avoid introducing
information bias. +e authors report that the two experi-
enced radiologists, who independently interpreted the vir-
tual cystoscopy (the index test), were blinded to the findings
of conventional cystoscopy (the reference standard). Ad-
ditionally, the virtual cystoscopy was performed and
interpreted prior to the conventional cystoscopy, thereby
ensuring that the investigators were blinded to the results of
the reference test [27].

4.2. Indeterminate Index Test Results. Patients with inde-
terminate or ambiguous results should not be excluded
from the study, as this could limit the results to an un-
representative spectrum of extremes and potentially in-
troduce spectrum bias. In this case, it is preferable to
transform the 2× 2 table to a 3× 2 table and report positive,
indeterminate, and negative results separately. To ensure
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that diagnostic accuracy estimates are not overestimated, a
conservative “intention to diagnose” approach should be
followed; indeterminate cases that test positive with the
reference test are classified as false negative for the index.
Indeterminate cases that test negative with the reference
test are classified as false positive for the index (see Table 2).
In the scenario when the reference test also yields inde-
terminate results, the table may be extended to a 3× 3 table
to ensure transparent reporting [28].

A meta-analysis by Schuetz et al. [28] pooled coronary
CT angiography studies to compare how the handling of
nonevaluable results affects diagnostic accuracy estimates.
As CT angiography interpretation can involve nonevaluable
test results especially in areas with vessel calcifications [29],
the authors can consider nonevaluable vessel segments as
positive or negative, exclude them from analysis, or even
exclude patients with nonevaluable segments altogether.+e
authors in this study found that handling the test results with

Target population
with disease D+

prevalence of 10%

Cross sectional or cohort study design Case control study design

Sampling scheme The sample is chosen from the target
population without regard to the presence

of disease

The D+ and D- patients are sampled
separately from the target population

Resulting sample

Study sample has a ratio
of disease D+ to D- 1:10

equal to the target
population

Study sample has a ratio
of disease D+ to D-

chosen by the 
researchers (e.g., 40%)

Statistics that can
be measured

Sensitivity
Specificity

Positive predictive value
Negative predictive value

Sensitivity
Specificity

Figure 4: Cross-sectional and cohort designs allow for the calculation of a negative predictive value (NPV) and a positive predictive value
(PPV), as they incorporate meaningful prevalence data. D refers to disease status with D+ meaning disease is present and D-patients
meaning disease is absent.

D- D+

D- D+

Disease severity

Disease severity

Sample
subjects

Sample
subjects

Cross sectional or
cohort design:
D+ and D- distributions
are closer as the sample
includes the full 
spectrum of severity.

Case control design:
D+ and D- distributions
are further apart as mild
cases are likely to be
ignored.

Figure 3: Cross-sectional study designminimizes spectrum bias as cases and controls are not sampled separately from the target population.
D refers to disease status with D+ meaning disease is present and D-patients meaning disease is absent.
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an “intention to diagnose” approach using a 3× 2 table
yielded lower diagnostic accuracy measures (Area Under
Curve 0.93) compared to the other approaches (Area Under
Curve 0.96–0.99) [28].

5. Domain 3: Reference Standard

+e reference test represents the gold standard to which the
index test is being compared. +e assumption is that the
reference standard is 100% accurate, so any disagreement
with the results of the index test is attributed to the limited
sensitivity or specificity of the latter. However, reference
standards that perfectly differentiate between patients with
and without the target condition are rare and, thus, some
patients will inevitably be misclassified [30].

5.1. Misclassification Bias. Misclassification bias, which is
also called imperfect gold standard bias, occurs due to errors
in the reference test. +e reference test may be susceptible to
errors either due to its interpretation or due to technical
limitations. For example, an imaging exam can give erro-
neous results because of inexperienced readers or due to
limited resolution. If pathology is used as a reference
standard, sampling error is an additional factor which could
lead to false-negative results. +e effect of this bias on the
diagnostic accuracy estimates can vary depending on
whether the reference and index tests tend to err in the same
direction on the same patients or the reference and index test
errors are independent of each other. As a result, sensitivity
and specificity can be over- or underestimated by this type of
bias [22].

An example of misclassification bias can be found in a
study by Ai et al. which determined the diagnostic accuracy
of chest CT for the diagnosis of Coronavirus Disease 2019
(COVID-19). +e reference standard was a Reverse Tran-
scription Polymerase Chain Reaction (RT-PCR) test, which
can give false-negative results in the early stages of the
disease. +e authors calculated the sensitivity of chest CTfor
the diagnosis of COVID-19 to be 97% and the specificity
25% but acknowledged in the limitations section that, due to
misclassification bias, the sensitivity may have been over-
estimated and the specificity may have been underestimated
by solely relying on the results of a single RT-PCR test [31].

Various methods have been proposed to correct for
misclassification bias. One suggestion is adjusting the ac-
curacy estimates based on external evidence about the degree
and direction of the reference standard misclassification.
Other ways to minimize this bias are to combine multiple
tests to a composite reference standard or validate the index
test usefulness by correlating directly with future clinical
events or other clinical characteristics [32].

5.2. Diagnostic Review Bias. Another important consider-
ation when evaluating the reference standard is whether it is
interpreted without the knowledge of the index test results.
A positive index test may drive raters to search the reference
studymore carefully for evidence of disease.+is is known as
diagnostic review bias [25]. As pointed out by Ransohoff
et al. [20], an example of this bias can be found in a study by
Meadway et al. [33] which evaluated the diagnostic per-
formance of Doppler ultrasound compared to venography.
No indication was provided that the venograms were ex-
amined independently of the Doppler studies and thus it is
possible that knowledge of the Doppler results affected the
venogram diagnoses.

5.3. Incorporation Bias. On some occasions, the index test
may be part of the reference standard. +e resulting bias is
called incorporation bias and leads to overestimation of the
sensitivity and specificity. Incorporation bias often occurs
when the reference standard relies on clinical judgment as
the clinician often uses the index test to arrive at a diagnosis.
+is bias will result in an overestimation of diagnostic ac-
curacy [34]. An example of this bias in the radiology lit-
erature can be found in a study by Mater et al. which
evaluated the diagnostic accuracy of shunt series radio-
graphs and CT to assess for cerebrospinal fluid shunt
malfunction. +e clinical decision to proceed to shunt re-
vision, which was used as the reference standard, was made
by the neurosurgeons after reviewing the radiograph and CT
imaging. Despite the introduction of incorporation bias, this
decision was reasonable in this study due to the lack of an
independent gold standard. +e authors also acknowledged
this concern in the limitations section by stating possible
overestimation of the sensitivity [35].

6. Domain 4: Patient Flow and Timing

Diagnostic accuracy studies should be designed taking into
account time-dependent changes of the disease on the
studied population and follow—as much as possible—a
homogeneous approach for all subjects. Intervals between
the index and reference test and disturbances in the flow of
the study, such as changes in the reference test or with-
drawals, are important sources of bias [7].

6.1. Timing of the Index and Reference Test. +e time interval
between the conduction of the index and the reference tests
should ideally be as short as possible. A long period between
the two could lead to misclassification bias, as the disease
might improve or deteriorate during the interval time. An
interval of a few days could be reasonable for chronic

Table 2: Various approaches for indeterminate index test results and their effect on sensitivity and specificity.

Indeterminate results Sensitivity Specificity
Excluded from analysis Increased Increased
Indeterminate results considered positive Increased Decreased
Indeterminate results considered negative Decreased Increased
“Intention to diagnose” approach Decreased Decreased
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diseases but would be problematic for acute diseases. For
reference tests that require follow-up to determine whether
the disease is present, an appropriate minimum follow-up
time should be set for all patients [6]. For example, a sys-
tematic review investigated the diagnostic accuracy of MRI
in the diagnosis of early multiple sclerosis using clinical
follow-up as reference standard. +e average follow-up
period in the included studies ranged from 7 months to 14
years and the authors found that studies with shorter follow-
up tended to overestimate the sensitivity and underestimate
specificity [36].

6.2. Verification Bias. Verification bias is a form of bias in-
troduced when not all patients receive the gold standard
(partial) or when some patients receive a different reference test
than the rest (differential) [3]. In partial verification bias, if the
decision is made to perform the gold standard only for positive
index test cases, the sensitivity will be overestimated (fewer false
negatives) and specificity will be underestimated (more false
positives) [37].+e effect of differential verification depends on
the quality of the different reference tests that are being used.
Using a superior reference test for the positive test results and a
different reference test for the negative results will overestimate
both sensitivity and specificity [3]. Notably, using the same gold
standard for all patients may not be clinically or ethically
appropriate. If verification bias cannot be eliminated by
choosing a proper study design, it should be at least ac-
knowledged or statistically corrected by the authors [38].

An example can be found in the Prospective Investi-
gation of Pulmonary Embolism Diagnosis (PIOPED) study,
which evaluated the diagnostic accuracy of Ventilation-
Perfusion (V-Q) scan using conventional angiography as a
reference standard. From the 131 patients with near normal/
normal results on the V-Q scan, only 57 received angiog-
raphy (gold standard). For the remaining 74, an alternative
reference standard was used: no evidence of pulmonary
embolism during one-year follow-up.+e authors calculated
that if those 74 patients were included in the analysis, the
NPV for near normal/normal scan would have been 96%
and if not, the NPV would have been 91%. So, they con-
cluded that the true NPV value is somewhere between those
two numbers but possibly closer to the first [39].

Another area in radiology where partial verification bias
has been described is Single Photon Emission Computed
Tomography (SPECT) for the diagnosis of coronary artery
disease [40–43]. +e decision to perform coronary angi-
ography, which is the gold standard for the diagnosis of
coronary artery disease, may be affected by the result of a
preceding SPECT which introduces verification bias (also
called posttest referral bias). Authors have utilized mathe-
matical formulas (e.g., Begg and Greenes [44] and Diamond
[45]) to adjust for this bias leading to significant changes in
calculated diagnostic accuracy parameters. Miller et al. [42]
reported an unadjusted sensitivity of 98% and specificity of
13% for SPECT in coronary artery disease. After correction
with the Begg and Greenes formula, the sensitivity dropped
to 65% and the specificity increased to 67% which indicates

Table 3: Direction of diagnostic accuracy estimates by type of bias.

Type of bias Sensitivity [3, 16, 22, 26] Specificity [3, 16, 22, 26]
RDOR from
Rutjes et al.

[16]

RDOR from
Lijmer et al.

[3]
Sampling bias
(consecutive over
nonconsecutive
sampling)

Increases if complex cases are excluded Increases if complex cases are excluded 1.5, 95% CI
(1.0–2.1)

0.9, 95% CI
(0.7–1.1)

Decreases if clear-cut cases are
excluded

Decreases if clear-cut cases are
excluded

Spectrum bias
Increases when severe cases are

overrepresented in the patient sample
(“the sickest of the sick”)

Increases when healthy controls are
overrepresented in the patient sample

(“the healthiest of the healthy”)

4.9, 95% CI
(0.6–37.3)

3.0, 95% CI
(2.0–4.5)

Information bias: lack of
blinding Variable Variable 1.1, 95% CI

(0.8–1.6)
1.3, 95% CI
(1.0–1.9)

Information bias: post
hoc definition of cutoff Increases Increases 1.3 95% CI

(0.8–1.9) Not studied

Misclassification bias
(imperfect gold standard)

Increases if errors in index and
reference test are correlated

Increases if errors in index and
reference test are correlated Not studied Not studiedDecreases if errors in index and

reference test are independent
Decreases if errors in index and
reference test are independent

Incorporation bias Increases Increases 1.4, 95% CI
(0.7–2.8) Not studied

Verification bias:
differential (i.e., different
reference standards)

Increases if the gold standard is used
for positive index results and a different
reference test (e.g., noninvasive and
less expensive) is used for negative

index results

Increases if the gold standard is used
for positive index results and a different
reference test (e.g., noninvasive and
less expensive) is used for negative

index results

1.6, 95% CI
(0.9–2.9)

2.2, 95% CI
(1.5–3.3)

Verification bias: partial Increases Decreases 1.1, 95% CI
(0.7–1.7)

1.0, 95% CI
(0.8–1.3)

RDOR: Relative Diagnostic Odds Ratio. CI: confidence interval.
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that verification bias can have an effect on accuracy
estimation.

6.3. Attrition Bias. An important consideration is whether
all patients were included in the analysis. Withdrawals lead
to over- or underestimation of accuracy estimates (attrition
bias) if the patients lost to follow-up differ in some way from
those who remain. It is important for studies to report
withdrawals and evaluate their effect on accuracy estimates
[46]. An example of the effect of withdrawals on diagnostic
accuracy estimates can be found in a study by Kearl et al.
which investigated the accuracy of MRI and ultrasound in
the diagnosis of appendicitis. Of the 589 patients included,
the reference standards, which were pathology reports,
surgical diagnosis, or clinical decision for medical treatment
for appendicitis, were not available for 63 patients (10.7%)
due to loss to follow-up. +e authors acknowledged this
limitation and analyzed the effect on diagnostic accuracy. A
sensitivity analysis was performed, and the diagnostic ac-
curacy was calculated separately as if all withdrawals were
positive for appendicitis as well as if all withdrawals were
negative for appendicitis with the reference standard [47].

7. Direction of Accuracy Measures due to Bias

Knowing the direction of diagnostic accuracy measures is a
first step in countering the effect of bias in our interpretation
of study results. +e general direction towards which the
diagnostic accuracy estimates may deviate can be predicted
and depends on the specific type of bias. Rutjes et al. [16] and
Lijmer et al. [3] quantified the effect of several study design
biases on diagnostic accuracy measures (see Table 3). +ey
used the Relative Diagnostic Odds Ratio (RDOR) as a pa-
rameter to compare studies with a specific methodological
shortcoming to those without. An RDOR greater than one
indicates that diagnostic accuracy parameters are over-
estimated in the study, while an RDOR less than one in-
dicates that diagnostic accuracy parameters are
underestimated in the study. +e limitation with using
RDOR is that important biases that have opposing effects on
sensitivity and specificity may not cause significant direc-
tional changes in RDOR, which will remain close to one.
+is may be the explanation why both of these studies failed
to detect statistically significant changes in the RDOR for
some forms of bias [3] (see Table 3).

8. Conclusion

Diagnostic accuracy studies can suffer from many forms of
bias. QUADAS-2 provides a useful framework for thinking
about study design biases. Patient selection, index test,
reference test, and patient flow/timing are the four main
domains to be evaluated in each study, as they cover the
primary sources of systematic error in diagnostic accuracy
studies. Potential sources of bias should be acknowledged by
the authors and their effect on test performance should be
estimated and reported. We are encouraged to become fa-
miliar with the biases that can be found in diagnostic

accuracy studies and critically assess the studies before
applying the conclusions to their own clinical practice.
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