
sensors

Article

Policy-Gradient and Actor-Critic Based State
Representation Learning for Safe Driving of
Autonomous Vehicles

Abhishek Gupta , Ahmed Shaharyar Khwaja, Alagan Anpalagan *, Ling Guan
and Bala Venkatesh

Department of Electrical, Computer and Biomedical Engineering, Ryerson University,
Toronto, ON M5B2K3, Canada; abhishek1.gupta@ryerson.ca (A.G.); Akhwaja@ryerson.ca (A.S.K.);
lguan@ee.ryerson.ca (L.G.); bala@ryerson.ca (B.V.)
* Correspondence: Alagan@ee.ryerson.ca; Tel.: 416-979-5000 (ext. 6079)

Received: 1 September 2020; Accepted: 12 October 2020; Published: 22 October 2020
����������
�������

Abstract: In this paper, we propose an environment perception framework for autonomous driving
using state representation learning (SRL). Unlike existing Q-learning based methods for efficient
environment perception and object detection, our proposed method takes the learning loss into
account under deterministic as well as stochastic policy gradient. Through a combination of
variational autoencoder (VAE), deep deterministic policy gradient (DDPG), and soft actor-critic
(SAC), we focus on uninterrupted and reasonably safe autonomous driving without steering off the
track for a considerable driving distance. Our proposed technique exhibits learning in autonomous
vehicles under complex interactions with the environment, without being explicitly trained on driving
datasets. To ensure the effectiveness of the scheme over a sustained period of time, we employ a
reward-penalty based system where a negative reward is associated with an unfavourable action and
a positive reward is awarded for favourable actions. The results obtained through simulations on
DonKey simulator show the effectiveness of our proposed method by examining the variations in
policy loss, value loss, reward function, and cumulative reward for ‘VAE+DDPG’ and ‘VAE+SAC’
over the learning process.

Keywords: state representation learning; variational auto encoder; deep deterministic policy gradient;
soft actor-critic; autonomous driving; Markov decision process

1. Introduction

Self-driving cars, also known as autonomous vehicles (AV), driverless cars, smart transportation
robots (STR) or robocars have a potential to change the way we commute [1]. Autonomous vehicles
incorporate integration with digital infrastructure and smart cities and form a critical component of
the connected and autonomous vehicles (CAV) and internet of vehicles (IoV) framework [1].

A long-standing goal of artificial intelligence (AI) has been to drive a vehicle in a safe manner [2].
Recent advances in deep learning (DL) and state representation learning (SRL) have intensified research
to develop autonomous agents with human-level capabilities [2]. Deep reinforcement learning (DRL),
a combination of DL and reinforcement learning (RL), has been widely used as a baseline format for
the self-driving vehicles [1]. This has led to a surge in research activities to achieve the quality and the
speed needed to simulate, test, and run autonomous vehicles using various DL paradigms.

With ubiquitous availability of cloud based processors such as Google Cloud Platform (GCP)
and Amazon Web Services’ (AWS) Elastic Compute-2 (EC2), the complex process of fine-tuning and
optimizing neural network architectures in SRL has been extensively simplified [3]. An enhanced

Sensors 2020, 20, 5991; doi:10.3390/s20215991 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8728-5146
http://dx.doi.org/10.3390/s20215991
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/21/5991?type=check_update&version=2

Sensors 2020, 20, 5991 2 of 20

and robust representation of driving environment leverages variational inference, stochastic gradient
descent, and variational Bayes encoding in partially/completely observable driving environment [3].
Furthermore, SRL is imperative for stabilizing long-term driving behavior in autonomous vehicles
as DRL based transition models may lead to divergence of the Markov states under complex
Markovian transitions [4]. Assuming that the vehicle state-transitions may vary over each time-stamp,
variational autoencoder (VAE) is used to learn the mappings in the driving environment followed
by deep deterministic policy gradient (DDPG), and soft actor-critic (SAC) for inferring the latent
state-action-reward tuples [4]. The state transition variation over each time stamp refers to transitions
in vehicle states, modeled according to Markov Decision Process (MDP, introduced in Section 4).
Each time-stamp refers to the duration of driving episode that is studied, before moving to next
episode. The different timestamps also enable to find those state-action pairs that lead to abrupt
variations, without affecting the continuous state-space of MDP.

In this paper, VAE+DDPG and VAE+SAC are proposed that combine DRL with SRL by mapping
an input state vector to an action, solving the autonomous driving task. Simulation results show that the
VAE+DDPG and VAE+SAC can learn reasonable continuous control policies from high-dimensional
observations that contain robust task-relevant information. One of the earliest works in applying DRL
to autonomous driving has been presented in Reference [5]. This work was enhanced by Reference [6]
where some of the instabilities in policy training encountered by Reference [5] were addressed using
VAE. Our work builds on the lines of these works and compares the performance of VAE+DDPG and
VAE+SAC in autonomous driving.

Deep reinforcement learning has been widely applied to various problems, predominantly in game
playing [7,8]. Deep reinforcement learning has also been extensively applied to resource allocation
and channel estimation problems in wireless communication, autonomous routing and self-healing
in networking, localization and path-planning in unmanned air vehicles (UAV), smart-drones and
underwater communications. As wireless networks and applications become more decentralized
and autonomous, the network nodes are required to make decisions locally in order to maximize
the system performance in a dynamic and uncertain environment. Obtaining an optimal policy in
reasonable time, taking decisions and actions under large state-spaces using DRL have been applied
to network access, wireless caching, cognitive spectrum sensing, and network security. Some of the
more recent DRL applications include modeling multiple experience pools for UAV autonomous
motion planning in complex unknown environments [9], learning output reference model tracking
for higher-order nonlinear systems with unknown dynamics [10], and pick and place operations in
logistics using a mobile manipulator controlled with DRL [11]. The DRL paradigm has been extended
to domains such as autonomous vehicles and has opened new research avenues [12]. Model-free DRL
technique known as Q-learning offers a compelling technique to further explore the problem of
autonomous driving without explicitly modelling the driving environment [13]. The paper explores
the role of SRL to complement the autonomous driving problem modeled using an MDP. The results
provide a significant groundwork for considering solutions to some autonomous driving problems
using standalone SRL-DRL framework. The current work considers a simple driving environment,
consisting of a single-lane straight-line driving trajectory. There are no obstacles on the driving path
and the roads are devoid of any sharp turns, bends, and curvatures. In the future, the driving scenario
is expected to emulate more real-world driving complexities, extended to multiple vehicles in the
driving lane, vehicles on the oncoming lane, traffic lights, intersections, and curvatures in the driving
trajectory. Our results outperform some data-driven models based on the accuracy, maximum error-free
drive-time before deviating off the track and policy losses [14]. The state-of-the-art developments
in DL and RL were the principal motivation behind this work. The contributions of this paper are
summarized as follows:

• Proposing a SRL based solution using VAE, SAC, and DDPG to solve the autonomous driving
problem formulated as a MDP. We propose a SRL algorithm that combines the feature extraction
capabilities with the fast and powerful batch RL approach of VAE [15].

Sensors 2020, 20, 5991 3 of 20

• Analysis of the autonomous driving behavior, verification of the proposed SRL-DRL scheme,
and performance comparison of VAE+DDPG and VAE+SAC approaches. This is done by the
implementation of VAE, DDPG, and SAC based autonomous driving in DonKey simulator [16,17],
that closely approximates real-world driving conditions.

The rest of this paper is organized as follows—in Section 2, a brief literature review on the topic
of autonomous vehicles and application of current deep learning technologies to autonomous vehicles
is presented. In Section 3, the system model is introduced. The problem formulation describing
autonomous driving in continuous state-space as MDP and proposed SRL solution approaches
comprising VAE+DDPG and VAE+SAC are presented in Section 4. The proposed solution approach
based on MDP and Bellman optimality equations is presented in Section 5. The experimental setup
in DonKey simulator to capture real-time driving images for VAE pre-processing to select robust
features is presented in Section 6. Simulation results and discussions are elaborated in Section 7 with a
comparison of performance characteristics of VAE+DDPG and VAE+SAC approaches. Finally, Section 8
provides concluding remarks and some directions for future work.

2. Literature Review

2.1. Recent Advances and Bottlenecks in Realizing Self-Driving Vehicles

Analysis of the behavior and strategies frequently employed by safe human drivers is essential
in the development of AV [18]. Considerable research has gone into extracting the driving strategies
adopted by drivers and to model their behavior without human intervention in varying situations [18].
In the last decade, machine learning (ML) algorithms such as fuzzy logic control, predictive and
adaptive control, hybrid dynamical models and Markov chain models have been used to model the
driving behavior. The predictive control based theories successfully predicted and reproduced human
driving behavior under constrained environments [19]. However, the method relied heavily on data
collection and representation as prior knowledge about the rule base was essential. The accuracy of
Markov chain models depends on the prior knowledge about the state transition probability between
each state pairs [15]. In realistic scenarios, the diverse driving conditions to be encountered are
unlikely to be entirely known in advance. With rapid breakthroughs in DL, attempts to learn driving
behavior directly from the driving data without prior knowledge of the driving conditions have gained
prominence in recent years [3].

Deep learning techniques have gained increased attention as their design requires minimal prior
knowledge and the models can be fine-tuned to scale to different environments [20]. These models
have been enhanced using recurrent neural networks (RNN) that memorize long-term dependencies
and tackle autonomous driving as partially observable Markov decision processes (POMDP) [21].
This is a significant improvement over traditional methods such as Bayesian decision process based
on Markov assumption [22]. The POMDPs formulate the autonomous vehicle control problem as
an optimization task, and rely on assumptions to optimize an objective [21]. The RL seems to be
promising for planning and control aspects and scales to very complex environments and unexpected
scenarios [2].

Recently, researchers have tried to divide the autonomous vehicle problem into sub-problems
for categories such as object-detection, scene-segmentation, visual odometry and combine the results
together [1]. However, the sub-problems might be more complicated than the autonomous driving task
itself. For example, object detection using single shot multibox detector (SSD) in driving environment
is redundant, as human drivers do not detect and classifiy all the objects; rather, they classify the
most relevant objects [23]. Moreover, the motion of the vehicle introduces a Doppler shift which
causes dynamic contraction of the visual zone [24]. Furthermore, the solutions to the isolated
sub-problems could be optimum, fine-tuned and well-solved, but might not integrate so as to result in
a cohrerent solution [25].

Sensors 2020, 20, 5991 4 of 20

Deep reinforcement learning addresses these issues by introducing a reward signal that correlates
current driving and future planning to arrive at optimum driving [6]. The reward is positive for a
correct/favourable action, and negative for an incorrect/unfavourable/disastrous action [26]. As the
reward involves driving manoeuvres frequently encountered in a real-time driving environment,
training a DRL system on a simulated vehicle acts as a bridge to study the implications in real-world
scenarios [24].

2.2. State Representation Learning and Deep Reinforcement Learning

As a combination of DL and RL, DRL does not require prior training on labelled data as in
supervised learning, and tries to learn an optimal strategy from the environment through repeated
corrective actions [23]. Based on deep Q-networks (DQN), considerable advances and breakthroughs
have been achieved in the domain of gaming [21]. Many gaming applications utilize discrete
asynchronous advance-actor critic (A3C) to train the agent [27]. However, it is impractical to
switch steering, adjust speed, or take braking actions in binary levels comprising of two discrete
values [2]. Realistically, the outcomes depending on continuous actions are more applicable to driving
scenarios [28].

Deep reinforcement learning provides the ability to output continuous action using DDPG and
SAC for driving behavior [3]. Both DDPG and SAC can be further enhanced when instead of being
trained on raw input, they are trained on outputs obtained through VAE with pre-defined loss
functions [29]. For instance, the steering actions in a vehicle fluctuate a lot when the agent is trying to
maintain its position in a lane or while making a turn [30]. In this paper, we investigate the applicability
of VAE, DDPG, and SAC for autonomous driving. Moreover, we show that our approach using VAE,
SAC, and DDPG reduces the learning time and leads to longer episodes of uninterrupted driving.
As the existing inference frameworks pose challenges for learning optimal policies, the application of
probabilistic models to RL leads to optimization through variational inference [27]. A brief comparison
of data-driven and DRL based approaches to autonomous driving is depicted in Figure 1.

(a) Data-driven approach to autonomous
driving

(b) Deep reinforcement learning based
approach to autonomous driving

Figure 1. A comparison of data-driven and deep reinforcement learning based approaches to
autonomous driving [31,32].

Sensors 2020, 20, 5991 5 of 20

In the existing literature, the driving environment is usually Rayleigh distributed [8]. Actor-critic
methods have achieved incredible performance on RL problems such as games, but they are prone to
instability due to frequent interaction between the actor and critic during learning [7]. An inaccurate
step taken at one stage might adversely affect the subsequent steps, destabilizing the learning. To avoid
such issues, rewards were introduced to regularize the learning objective of the actor by penalizing the
error of the critic [33]. This improves stability, as large steps in the actor update are prevented when
the critic is inaccurate [27]. A brief comparison of VAE+DDPG and VAE+SAC techniques is depicted
in Figure 2.

(a) VAE + DDPG approach

(b) VAE + SAC approach

Figure 2. Block diagrams representing variational autoencoder (VAE) + deep deterministic policy
gradient (DDPG) and VAE + soft actor-critic (SAC) approaches.

3. System Model

Let Xt represent the image dataset, Xt = {xt−n+1, xt−n+2, ..., xt} where xt denotes the t-th frame
image in the dataset consisting n frames associated with states of the vehicle at a given time, given by
St = {st−n+1, st−n+2, ..., st}, and the actions taken At = {at−n+1, at−n+2, ..., at} based on the features
learnt by the VAE feature extractor [21]. In order to analyze the different positions of the vehicle
in a given time-stamp, the vehicle while trying to maximize the reward function seeks to execute
certain actions. The actions can be to accelerate, to decelerate, maintain the same velocity, to turn
right, turn left, or continue in the same direction [21]. Given that the vehicle transition from one
state to another is often a continual process, a MDP is proposed in this paper to model the vehicle
transitions [1].

Learning to maintain a straight line path on the road can be defined as estimating the function
F : R40×120×3×n × Rn × Rn → R40×120×3 that identifies the Markovian states and predicts xt+1 =

F(Xt, St, At). Using SRL dimensionality reduction and robust feature retention, as depicted in Figure 3,
the images captured by the autonomous driving agent in the driving environment are distributed into
a Gaussian space, with the image output size represented by 40× 120× 3, where the dimensionality
was chosen experimentally and the Gaussian assumption was in accordance with Bayes variational
autoencoding [12]. The driving environment under consideration consists of a road, a navigating
vehicle, and an obstacle (optional). A section of the driving scene with the road and vehicle is
represented in Figure 4. At xt+1 frame of the dataset, the vehicular agent determines its next
possible set of S states depending on selecting an action from the set of A possible actions [34].
The function F : R40×120×3×n × Rn × Rn → R40×120×3 represents state-representation-learning
approach, where driving environment images are down-sampled to only include more robust
features, termed as SRL dimensionality reduction. The numbers 40× 120 represent the scene size in
2 dimensions (2D), or the number of pixels in an image in 2D, experimentally chosen to retain sufficient
image clarity, and multiplying by the number 3 indicates red, green, and blue (RGB) component of

Sensors 2020, 20, 5991 6 of 20

colors in the driving images [35,36]. The images in 3 dimensions (3D) are further downsampled to
2-dimensional (2D) images as this reduces processing power required while retaining robustness of
features. The function F is learned in a piecewise manner so that the efficiency and performance
can be improved separately [5]. The action values are continuously encoded as DDPG and VAE are
suitable for continuous action spaces. In Section 5.2, Table 1, it is briefly described how these values
continuously vary until vehicle stabilizes. Moreover, these values are seen to change depending
on different initial reward functions, so the abstract values of these variables do not give a strong
interpretation of vehicle behaviour, rather the vehicle behaviour is studied using parameters defined
in Table 2.

timestamps
︸ ︷︷ ︸lo

ca
ti

on
s

︸
︷︷

︸

in
ter

vals︸ ︷︷ ︸
F : R40×120×3×n ×Rn ×Rn

· · ·

SRL
dimensions

reduction
⇒

R40×120×3

Figure 3. State representation learning (SRL) dimensionality reduction.

(a) Simulation setup at a given timeframe (b) Simulation setup at a subsequent
timeframe

Figure 4. Driving manoeuvres in generated road driving environment in Donkey simulator at a given
timeframe [16].

Table 1. The initial values for states and transition probabilities.

P(sd
1|ac1) = 0.99995 `11 = −10, 000

P(sd
2|ac1) = 0.00005 `12 = +0.9

P(sd
1|ac2) = 0 `21 = 0

P(sd
2|ac2) = 1 `22 = 0

Sensors 2020, 20, 5991 7 of 20

Table 2. Features considered in the simulation.

Feature Name Description

policy_entropy An initial measure of randomness of vehicular agent’s decisions

policy_loss Mean magnitude of Q-function, q∗π (s, a), calculated using Bellman optimality Equation (13)

serial_timesteps Total timesteps for which image frames are sampled

time_elapsed Time taken for vehicular agent to achieve stability and stay on the intended path

value_loss The total loss function, v∗π(s), calculated using Bellman optimality Equation (12)

n_updates The number of iterations of VAE+DDPG and VAE+SAC algorithm

Performance Analysis

The system model is represented in Figure 5. In high dimensional dense spaces, the problem of
action conditioned transitions and intermediate representations is important, because convergence
probabilities and consequent control actions tend to become unstable at higher dimensions [4].
Moreover, highly nonlinear input data comprising spatio-temporal dependencies such as driving image
sequences need to be iterated in large timesteps to achieve realistic long-term prediction. The goal is to
obtain a model that best reflects a set of observed states [19,32].

Figure 5. Deep reinforcement learning (DRL) for self-driving cars.

4. Problem Formulation

The problems of autonomous driving scene perception, environment cognition, and decision
making are investigated in this paper. The vehicle is represented as an agent which receives sensory
inputs and performs driving actions (maneuvres) in an environment. The vehicular agent acts on
rewards, penalties, and policy losses from the environment with the goal to maximize the rewards
it receives, while minimizing the policy losses [37]. The agent learns an action based on the policy
function, loss function and state-action-reward model. A state St is Markov if and only if a future
action is independent of the past actions and depends on the present state and actions [1]. We address
the following issues pertaining to autonomous driving:

1. To generate realistic and safe autonomous driving using SRL-DRL and related techniques [22].
2. To improve the autonomous driving policies based on continuous state space, continuous action

space, and pixel space [38].

Sensors 2020, 20, 5991 8 of 20

3. To learn the driving behavior and environmental conditions without manual input,
using SRL-DRL [33].

4. To reduce the inaccuracies, and improve loss function, entropy, policy, loss, and learning rate
using improved VAE, DDPG, and SAE [27].

5. To maintain the trade-off between policy loss and learning rate [39].

An initial vehicle state can lead to a set of further movements and approaches to inform transitional
probabilities of a Markov process over a driving state-space. Furthermore, the Markov process provides
an assessment of the path through the driving environment with an expected policy loss function.
When the autonomous vehicle adjusts its behaviour to make optimal decisions or to take actions that
minimize an expected loss, the probability of the vehicle undergoing different state-action-reward
tuples is given as:

P[St+1|St] = P[St+1|S1, ..., St], (1)

where P defines the probability distribution of the vehicle state at a given timeframe. The state
transition matrix P defines the transition probabilities from states s to successor states s′ after taking
action a. A MDP is defined as a tuple < S, A, P, R, γ > [34] where S is a finite set of states, A is a finite
set of actions, P is a state transition probability matrix, R is a reward function, and γ is a discount
factor, γ ∈ [0, 1]. The reward function is a measure of entropy in state-action pair and it decides how
well an action contributes to help an agent reach the best possible next state. The learning policy π is
given as [24]:

π(a|s) = P[At = a|St = s]. (2)

The objective of the vehicle is to drive maximum possible distance on the road, staying in the lane
without deviating off the track [12]. The driving action is terminated once the vehicle deviates off the
track or trudges on the other lane, represented as

min
<Vr ,S>

Vr, (3)

where Vr represents the parameter values, that is, the set of velocities in a given timestep, at present
time and past instances for a given state S.

Vr = {Vr(t0), Vr(t1), ...Vr(tN−1)} , (4)

where N indicates the Nth time frame. All past and present states are in the continuous state-space [34].
The parameter values, that is, the set of velocities in a given timestep, at present and past instances for
a given state S are obtained for the trajectory followed by the vehicle described by [20,40]:

xc(ti) = xc(ti−1) + vx(ti−1)∆t +
1
2

vx(ti−1)− vx(ti)∆t, ∀i (5)

yc(ti) = yc(ti−1) + vy(ti−1)∆t +
1
2

vy(ti−1)− vy(ti)∆t, ∀i,

i = 0, 1, 2.....N − 1, ti = i∆t,
(6)

where ∆t is the difference between two subsequent timeframes while the vehicle navigates the trajectory.
These parameters are used to calculate the optimal value function v∗π(s) and optimal Q-value q∗π(s, a).
In SRL, a reward function directly influences the behavior adopted by an an agent. Reward function
refers to the feedback obtained from the environment to evaluate the viability of the actions taken.
In autonomous driving, a reward function is formulated as a linear model based on the velocity of the
car v, the angle between the road and car’s heading θ, and the distance from the middle of the road d.

Sensors 2020, 20, 5991 9 of 20

The reward r, given by (7) prevents the vehicle from deviating off the track while allowing the vehicle
to maintain its position on the road [24].

r = v(cos θ − d). (7)

We propose an extra penalty as Ψ *|st+1 − st|, where st represents the state at time step t arrived
due to action a and Ψ is the corresponding constant empirical coefficient. The experimental results
show better smoothness with the new penalty and the whole reward function is given in (8) as [24]:

r = v(cos θ − d−Ψ ∗ |st+1 − st|). (8)

We set Ψ to 2 or 3 as driving smoothness tends to reduce with increase in throttle value. This fact
conforms to human driving behavior where the faster the car runs, the harder it is to control it,
indicated by failure to recognize turn/curve at high speed.

Although there may be more than one optimal policy, in autonomous driving situations, it is
imperative to determine if there exists at least one optimal policy for a specific driving environment.
The optimal state value function is given as [2]:

V∗(s) = max
π

Vπ(s) , ∀s. (9)

In this paper, the autonomous driving problem is formulated as a MDP, on the lines of the work
of Reference [5]. The MDP is then solved using policy gradient mechanism DDPG and actor-critic
mechanism SAC, accompanied by VAE at initial solution stages [6]. The following questions pertaining
to scene perception, environment cognition, and decision making are investigated in this paper:

1. To generate realistic and safe autonomous driving using DRL and related techniques [30].
2. To improve the autonomous driving policies based on continuous state space, continuous action

space, and pixel space [12].
3. To learn the driving behavior and environmental conditions without manual input, using DRL [37].
4. To solve the inaccuracies, improving loss function, entropy, policy, loss, and learning rate using

improved VAE, DDPG, and SAE [31].
5. To maintain the trade-off between policy loss and learning rate [41].

5. Proposed Solution

Autonomous driving is modelled as a multi-objective control problem with high-dimensional
feature space, agent (vehicle) states, and a mono-dimensional discrete action space [32]. We use
VAE to map the vehicle state at a given time and the dynamics of the environment not directly
influenced by the vehicle. We repeat this procedure iteratively in a semi-batch approach to bootstrap the
algorithm, starting from a fully random exploration of the driving environment. Beginning randomly,
the vehicle is trained to learn how to take better decisions over repeated attempts, reducing errors
based on a reward function [24,42]. The proposed solution using VAE, DDPG, and SAC aims to
use reward-function to learn policies for multiple state-action-reward tuples. The solution enables
the optimal policy to generalize the continuous actions for states that are yet to be traversed by the
vehicular agent. The proposed solution is represented in Figure 6.

• Let’s say the vehicular agent has a choice of taking one of k possible actions a1 . . . ak.
• Assume that the environment can be in one of m different states s1, . . . , sm.
• Upon taking an action ai in the environment in state sj the vehicle incurs a loss `ij.
• Given the observed data D and prior background knowledge B, the vehicular agent’s beliefs

about the state of the driving environment are denoted by p(s|D, B).
• The optimal action is the one which is expected to minimize loss and maximize utility.

Sensors 2020, 20, 5991 10 of 20

Figure 6. Proposed solution approach.

After every action, the vehicle transitions from one state to another. The initial state of an
autonomous vehicle is then updated to best adapt to the current state of the driving environment.
This is done through constant adjustment of acceleration (and consequently speed) so that the
vehicle trajectory is aligned with the road/lane trajectory. The alignment of trajectories for extended
timeframes of vehicle navigation is an indicator that the vehicle is able to follow a lane and does not
deviate off the track. To simplify the problem, we assume that the vehicle has an unobstructed and
unoccluded visual access to the driving environment where any curves, turns, and obstacles in the
vicinity are clearly visible to the vehicle. To ameliorate the problem complexity, and to overcome
non-uniform, skewed, or intractable image distributions, we implemented learning action-prediction
with a policy gradient architecture, (DDPG) and an actor-critic architecture, (SAC) both preceded by a
variational auto encoder (VAE). The DRL approaches used are:

• VAE for efficient driving environment analysis,
• DDPG for optimal policy calculation and,
• SAC for faster arrival at optimal policy, without having to repeatedly train the DRL network for

all the timeframes.

5.1. Solution Approach

This paper implements a feature extractor, VAE, to compress the images captured during driving
to a lower dimensional space [23]. The weights that provide gradients with similar magnitudes indicate
that each feature has been kept relevant. The first step of extracting the relevant information from raw
data is done by VAE by compressing the search space. This also accelerates the training in later stages
by learning the control policy from the lower dimensional image space [4,15].

The second step after the features have been extracted is to use a DRL algorithm. This paper
investigates DDPG and SAC algorithms. The DDPG policy gradient algorithm learns a control policy
using VAE features as input and the policy is updated after each episode [30]. A distinguishing feature
offered by DDPG is the replay buffer, which is memory to store the interactions with the environment.
These interactions can be played when needed at a later time, so that the self-driving car can update
the policy without explicitly interacting with the environment in real-time again [32].

In our experiments, the vehicle is trained to maximize the distance travelled before it steers
off the track. The episode ends as soon as the vehicle steers off the road. The episode termination
also prevents the vehicular agent from exploring regions that do not contribute at all to effectively
learn the driving task [40]. If a VAE feature extractor is trained after each episode, the distribution
of features is not stationary. As the features change over time, this introduces instabilities in the
learning policy [28]. Moreover, on low power CPU machines, traning a VAE after each episode is time

Sensors 2020, 20, 5991 11 of 20

consuming and a slow process. To address these issues, in this work, a VAE is pre-trained and a fixed
set of features are collected beforehand [1]. Next, these features are provided as input to DDPG to
learn and update the policy. Also, to speed up the process, we trained feature extractors using Google
Colab notebook. Lastly, the DDPG algorithm is known to be inherently unstable in cases where its
performance degrades during training and fails to tune if there are multiple factors that affect the
learning outcome [23]. The SAC algorithm that provides much stable performance and is easier to tune
in case of multiple parameters is applied and its performance comparison with DDPG is analyzed.

5.2. Solving MDPs Using Bellman Expectation Equations

The policy gradient DRL methods and the actor-critic methods can be solved using Bellman
equations mentioned below. The parameterized policy defines how the autonomous vehicle selects its
actions and the critic appraises each action taken by the vehicular agent in the driving environment.
The appraisal is associated with a positive or negative reward function according to which the
parameters of the actor are updated [24]. Similarly, the actor’s parameters can be updated with a policy
gradient that does not necessarily have a critic component [1]. The policy gradient methods such as
DDPG adjust the policy parameters based on a sampled reward measured against a baseline value [28].
In DDPG, this baseline is a stationary value that does not update with experience. In SAC, a baseline
is estimated from experience, making the method an actor-critic method where the vehicle updates
its parameters after each step taken in the driving environment [40]. The Bellman equations allow
comparing the results of taking a different action in each state and assist in negating the wrong step,
causing the agent to strengthen how it selects the apparent best action. In SAC, the critic components
make the gradient point in the apparent best direction without sampling other actions [24].

vπ(s) = ∑
a∈A(s)

π(a|s) ∑
s′∈S ,r∈R

p(s′, r|s, a)(r + γvπ(s′)), (10)

qπ(s, a) = ∑
s′∈S ,r∈R

p(s′, r|s, a)(r + γ ∑
a′∈A(s′)

π(a′|s′)qπ(s′, a′)). (11)

The Bellman optimality equation is given as [5]:

v∗π(s) = max
a∈A(s)

∑
s′∈S ,r∈R

p(s′, r|s, a)(r + γv∗(s′)) (12)

q∗π (s, a) = ∑
s′∈S ,r∈R

p(s′, r|s, a)(r + γ max
a′∈A(s′)

q∗(s′, a′)). (13)

Given the optimal value function, V∗, a popular technique to get optimal policy π∗ is the greedy
algorithm. This algorithm specifies that for a vehicle in a current state S and an optimal value function
V∗, the actions A that appear best after a one-step search will be optimal. The greedy algorithm makes
a choice to select an action that seems to be the best at that state, making a locally-optimal choice and
verifying its suitability as a globally-optimal solution. V∗ turns a long-term reward into a measurable
quantity which is locally and immediately available. Q∗ is used to get the optimal policy [5]. The policy
improvement theorem justifies an optimal action in a given state [43]. In Equations (14) and (15),
the vehicular agent is characterized by policy π∗(s, a), Vπ(s) describes how good it is for a vehicle
to be in a given state s depending on policy π∗(s, a), and Qπ(s, π′(s)) describes how good it is for a
vehicle to choose an action a after being in a given state s.

π∗(s, a) = 0 ∀a s.t. Q∗(s, a) 6= max
a′

Q∗(s, a′), (14)

Qπ(s, π′(s)) ≥ Vπ(s) ∀s =⇒ Vπ′(s) ≥ Vπ(s). (15)

The vehicle at a given time in a given state has two possible actions to choose from:

Sensors 2020, 20, 5991 12 of 20

1. ac1: accelerate, and
2. ac2: don’t accelerate.

In an ideal scenario, if acceleration would lead to an unsafe action such as drifting off the track,
or deviating on to the other lane intended for oncoming vehicles, there are two probable outcomes:

1. sd
1: safe driving, and

2. sd
2: unsafe driving.

The vehicular agent needs to arrive at an optimal action for this decision problem. Based on MDP,
the following variables are defined for the vehicular agent:

• States: st

• Actions: at

• Rewards: rt

The variable st defines the state of the driving environment and the vehicular agent at time t.
The vehicular agent takes action at and receives reward or penalty rt. The reward is assumed to depend
on the state and the action. The optimal policy is defined by the Equation (16).

π∗ = arg max
π

E[Rt|π]. (16)

The initial values for states and the transition probabilities are depicted in Table 1. For a continuous
dynamical driving environment, the initial probability components are non-negative entries and sum
up to 1. If P(sd

1|ac1) is a probability that represents the initial safe driving state of the vehicle, then as
per the Markov property of Equations (1) and (16), the subsequent components in Table 1 represent
the probability that the vehicle maintains the safe state. The transition probabilities emphasize the
variations in reward function. The driving behaviour might show abrupt variations in driving due
to changes that represent transitions that occur between subsequent states. Detection of abrupt
change points is useful in modeling and predicting driving behavior and the transition probabilities
enumerate, categorize, and compare the reward values. Under safe driving condition, if the probability
of acceleration is very high, then the loss is set to a high negative value, indicating a positive reward
for that action. Under unsafe driving condition, if the vehicle decides to accelerate, the associated
loss is a positive value, indicating negative reward, thus prompting the vehicle to refrain from taking
the accelerating action. Similarly, if the vehicle is driving in a safe state and decides not to accelerate,
the reward remains neutral, indicated by zero loss. Vice versa, if the vehicle is in an unsafe state and
decides not to accelerate, although the action will not deteriorate the vehicle’s state further, it will
not guarantee a return to safe driving either. This is implied through a zero reward. The appraisal is
associated with a positive or negative reward function according to which the parameters of the actor
are updated. Similarly, the actor’s parameters can be updated with a policy gradient that does not
necessarily have a critic component.

6. Experimental Setup

In this paper, the experiments are carried out on the Ubuntu operating system, DonKey simulator,
OpenAIgym, and Google Collaboratory [16,17]. Due to the property of learning by trial and error in
SRL, simulator plays an important role. Among various car simulators, the open racing car simulator
(TORCS) is widely used, providing both front view images and extracted features. TORCS requires
less hardware performance whereas DonKey provides flexibility and realism, hence we selected
DonKey [16,17]. The raw sensor-data and the camera frames files are easy to use in DonKey simulator
with the help of Docker, a container management software.

In DonKey simulator, driving environment consists of a road with two lanes, differentiated with a
lane marker. Although the road curvature needs the vehicle to make a slight change in steering angle

Sensors 2020, 20, 5991 13 of 20

to stay on the road, the road is devoid of any sharp turns and the major part of the trajectory is linear.
The specific inputs are gleaned as robust features from driving scenario mentioned and depicted in
Figure 4, and have been considered in Section 4. To stay on the road, the rewards for action at a specific
state are supposed to be high for preferable actions. However, once the vehicle is close to achieving
good position in the lane, the reward for next action is considerably lower than in the beginning. In the
simulation time over seven hours of driving, the captured frames are 160× 320 pixels in the region
depicting the vicinity of the middle of the road/lane.

We focus on the acceleration (speed), policy entropy, policy loss, and total timesteps. The acceleration
is considered in x and y directions, so that maintains the vehicle velocity and position along x and y
directions. Moreover, the acceleration along the y-axis takes the vehicle forward, whereas acceleration
along the x-axis aligns the vehicle on the lane. We also record the timestamps at which these parameters
were measured and the timestamps the camera frames were captured. We pre-processed the camera
frames by downsampling them to 40 × 120 and normalizing the pixel values between −1 and 1.
The self-driving vehicle needs to learn the road images, and a VAE encodes the road images into
probabilistic Gaussian space as well as decodes them to 3D space. DDPG receives random pixel
samples as input from the Gaussian distributed latent space and output of the VAE network. We trained
the VAE for 200 epochs. Each epoch consisted of 10, 000 gradient updates with a batch size of 64.
The parameter fine tuning was done during programming the scenarios, using tune.run() argument
and the optimal policy-loss values are obtained by hyper-parameter tuning. The DRL approach is
slightly advantageous compared to convolutional neural networks (CNN) based approach as the need
for explicit hyper-parameter tuning beforehand is bypassed.

7. Simulation Results

The simulation results are presented to show the performance of the proposed VAE+DDPG and
VAE+SAC schemes. First, the simulation parameters are introduced followed by the simulation results.
Next, the rewards and penalties for DDPG and SAC approaches are compared for driving environment.
Then, the performance of the proposed approach is studied in terms of learning rate and acquiring
stable driving state. Table 2 highlights the features and parameters considered in the simulation.

7.1. Performance Analysis

This section provides comparison of vehicle control algorithms using SRL based on policy
gradients (VAE+DDPG) and actor-critic (VAE+SAC). The section discusses the results highlighting
the probability of the autonomous vehicle transitioning into a new state, based on the cumulative
reward achieved at each timeframe and the execution of an action. Since the autonomous driving
problem is defined as first-order Markov decision problem, the state of the vehicle at next timeframe
is dependent only on the present state and not the past states. This section compares the viability
of VAE+DDPG and VAE+SAC approaches in ensuring that the autonomous vehicle arrives at the
current state. The variations in cumulative reward accumulated over each timeframe in the presence
of possible states in the VAE encoded driving environment is also discussed in this section.

Simulation Parameters

The parameters under consideration in this paper are described briefly as follows:

• Cumulative Reward: It describes the mean cumulative episode reward over all the states of
the agent over a specific timestamp. The value usually increases during a successful training
session. The general trend in reward is to consistently increase over time with some small ups
and downs based on the complexity of the task. However, a significant increase in reward may
not be apparent until the training process has undergone multiple iterations [44,45].

• Entropy: It is a measure of how random the decisions of the autonomous agent are. It should
gradually decrease during a successful training process. In case the entropy decreases too quickly

Sensors 2020, 20, 5991 14 of 20

or does not decrease at all, the DRL architecture’s hyper-parameters are reset to a different initial
value both in continuous as well as discrete action space [44,45].

• Episode Length: The mean length of each episode in the driving environment for the autonomous
vehicular agent [44,45].

• Learning Rate: It signifies the step size taken at a time by the training algorithm to search for the
optimal policy [44,45].

• Policy Loss: The policy is defined as the process for deciding actions that lead to optimal driving
in the given scenario. Policy loss describes the mean magnitude of policy loss function. This loss
correlates to how much the policy changes during an episode in a given timeframe [44,45].

• Value Estimate: It is the mean value estimate for all states visited by the autonomous agent.
It corresponds to how much future reward the agent expects to receive at any given state [44,45].

• Value Loss: It defines the mean loss of the value function update. It correlates to how well the
model is able to predict the value of each state. This should increase while the agent is learning,
and then decrease once the reward stabilizes. These values also increase as the reward increases,
and then decrease as the reward tends to becomes stable [44,45].

7.2. Rewards vs. Timesteps

Figure 7 represents the variation in cumulative reward with number of timesteps covererd by
the vehicle in the simulated driving environment. For the first 20,000 timeframes, the cumulative
reward gradually increases. This gradual increase indicates that the vehicle begins with a randomly
defined initial state S, and selects a random action A with an aim to maintain its position on the
lane. After initial haphazard movements, from 20,000–40,000 timeframes, the cumulative reward
continues to increase at a similar rate for VAE+SAC approach, whereas the increase is steeper for
VAE+DDPG approach. Furthermore, the VAE+DDPG approach shows minor fluctuations in a specific
range, from 10,000–25,000 timeframes. This indicates that as the vehicle learns an optimum action,
the deviation from those set of actions attracts a higher penalty as compared to that in the beginning.
Consequently, the reward for successive favorable set of actions is less and indicates that the vehicle has
to process a smaller set of data to arrive at that action, resulting in nearly smooth cumulative reward.

Figure 7. Cumulative reward vs. no. of timeframes.

Figure 8 represents the variations in episode length with the number of timeframes in the driving
environment. The episode length defines how long the autonomous vehicle occupies the road before
returning to the original position. For the first 10,000 timesteps, the episode length traversed by the
vehicle is approximately 900 cm for VAE+SAC algorithm and 700 cm for VAE+DDPG algorithm.
This period indicates random initial learning by the vehicle that results in a haphazard motion.
After the iterations in the first 10,000 timesteps, the episode length traversed by the vehicle begins
to constantly increase. After 40,000 timesteps, the episode length does not show a large increase for

Sensors 2020, 20, 5991 15 of 20

both VAE+DDPG and VAE+SAC algorithms. This is congruous to the pattern followed by cumulative
reward, indicating that once the vehicle identifies a set of favourable actions, the vehicle is able to
remain on the road for longer episode lengths, before resorting to terminating action.

Figure 8. Episode length vs. no. of timeframes.

Figure 9 depicts the value loss versus the distance traversed by the vehicle before terminating
an episode. For the first 10,000 timeframes, the value loss for each successive timestamp indicates
that even when the reward function stabilizes, the value loss continues to increase in accordance with
the time spent by the vehicle in the driving environment. This implies that at every new timeframe,
the vehicle calculates a set of state-action-reward tuple to seek an optimum action. In addition, the
value loss tends to exhibit lesser variations based on the multiple state-action-reward cycles that allow
the vehicle to arrive at an optimal policy and learn future actions.

Figure 9. Value loss vs. no. of timeframes.

7.3. Learning Losses and Optimal Driving Policy

The losses describe the delay at arriving at optimal policy in VAE+DDPG and VAE+SAC.
The policy losses indicate how much the policy is changing at each timestep with subsequent actions.
During a successful learning phase, the vehicle after starting with random decisions must arrive at
more coherent pattern of state, action, and reward.

Figure 10 highlights the fact that at the time of prediction of next state and to choose an appropriate
action, the vehicle uses the cumulative reward in variation with policy loss to predict the next best
action to take in the driving environment. The input state is the Q-values for all actions and the
maximum cumulative reward for taking an action impacts the next reward predicted.

Sensors 2020, 20, 5991 16 of 20

Figure 10. Cumulative reward vs. no. of timeframes.

The optimal driving policy indicates that the optimal action is taken at a given state. At a given
state whether the action is optimal or not is plotted in policy loss vs. no. of timeframes as shown in
Figure 11. As the vehicle approaches optimal decision, the randomness in decisions tends to decrease.
During a successful scene understanding of the driving environment, decreasing randomness indicates
that the vehicle has learnt optimally. The higher policy loss in the beginning indicates that as the
vehicle moves in a haphazard direction, the algorithm traverses large number of states to adjust
vehicle behavior. However, as the vehicle learns more about the driving environment, the haphazard
motion is replaced by a more stable trajectory with less random movements, leading to gradually
decreasing policy loss. In DDPG and SAC, these losses are defined and synthesized from unlabeled
inputs (processed through VAE), and the variations in losses defined by the reward function.

Figure 11. Policy loss vs. no. of timeframes.

7.4. Performance Comparison for VAE+DDPG vs. VAE+SAC

This subsection compares the performance characteristics of VAE+DDPG and VAE+SAC
approaches for the autonomous vehicle to learn driving behavior. The vehicle arrives at an
optimal state-value function v∗π after a specific timestep encompassing different iterations of function
F(Xt, St, At) representing state-action tuple for the driving environment.

Figure 12 represents the plot of rewards vs. the number of timesteps in the driving environment.
As seen from the figure, for same number of timesteps, after the driving scenario images are processed
through VAE, both DDPG and SAC converge after approximately 3000 timesteps. However, the initial
randomness in vehicle motion is less in VAE+SAC as compared to VAE+DDPG. For upto 2000 timesteps
during training phase, the vehicle depicts more haphazard movement to arrive at an optimum action

Sensors 2020, 20, 5991 17 of 20

for VAE+DDPG and settles comparatively quicker with VAE+SAC approach. The reward becomes
constant after approximately 3000 timesteps, indicating that optimal value function v∗π and optimal
state-action value function q∗π(s, a) has been approximated by the vehicular agent. The gradual increase
indicates that the vehicle begins with a randomly defined initial state S, and selects a random action
A with an aim to maintain its position on the lane. After initial movement, the cumulative reward
continues to increase at a similar rate for VAE+SAC approach, whereas the increase is steeper for
VAE+DDPG approach. Furthermore, as the vehicle learns an optimum action, the deviation from those
set of actions attracts a higher penalty as compared to that in the beginning. Consequently, the reward
for successive favorable set of actions is lesser and indicates that the vehicle has to process a smaller
set of data to arrive at that action, resulting in nearly smooth cumulative reward.

Figure 12. Comparison of rewards vs. number of training steps for VAE+DDPG and VAE+SAC.

The VAE+SAC eliminates the need to retain the state-action information until episode termination
to compute value loss, being independent of cumulative rewards and other domain dynamics that
might render driving environment representation challenging. The rewards represent the entropy
of the learned policy giving an insight into how the vehicular agent learned to navigate the driving
environment as well as managed to keep the episode length high. The autonomous vehicle agent has to
choose from a set of possible actions, that is, accelerating, decelerating, or maintaining the same velocity.
The reward for the first 1000 timesteps indicates that the vehicle proceeds with a random direction,
so it has learned a policy with 0–80% probability of going haphazardly. From 1000–3000 timesteps,
the rewards reorganize, indicating a reset of state-action-reward pair. After 3000 timesteps to
5000 timesteps, the rewards are almost stationary for both VAE+DDPG and VAE+SAC approaches.
This indicates that the autonomous vehicle has learned the driving environment and has decided on
the optimal action. Also, the reward is slightly higher for VAE+DDPG as compared to VAE+SAC.

8. Conclusions and Future Work

In this paper, we applied state representation learning to object detection and safe navigation
while enhancing an autonomous vehicle’s ability to discern meaningful information from surrounding
data. The proposed method used VAE, DDPG, and SAC to implement and analyze a combination
of policy function, reward, and penalty to ensure that the autonomous vehicle stays on the track for
maximum time in a given timeframe. In a particular driving state, based on the past instances of
off-track deviations and episode terminations over several frames of previous iterations, the vehicle
reinforces its behavior to maximize the reward function.

Applying SRL to autonomous driving has been proposed and implemented as an alternative
approach to conventional DRL algorithms that require a large number of training samples for learning,
which is infeasible and time-consuming in real-world driving scenarios. The application of VAE

Sensors 2020, 20, 5991 18 of 20

preprocessing enhanced the sample efficiency facilitating the learning process with fewer but robust
samples. In this paper, capturing and interpreting the driving environment and possible set of actions a
vehicle can take is effectively done using MDP for modeling the environment and generating complex
distributions using VAE. The interpretation of the gathered data to execute meaningful action is done
using policy gradient or actor critic based DRL methods.

The contribution of this paper is twofold. We proposed two DRL algorithms, VAE+DDPG and
VAE+SAC. The combination of these techniques leads to smooth policy update in value function
based DRL with enhanced capability of automatic feature extraction. Performing basic driving
manoeuvres using non-DRL methods requires direct access to state variables as well as well-designed
hand-engineered features extracted from sensory inputs. The DRL paradigm allows an autonomous
vehicular agent to learn complex policies with high-dimensional observations as inputs. The driving
environment images offer a suitable mechanism to learn to drive on a road in a manner similar to
human driving.

Some future research directions are proposed below:

• To enhance the performance speed of the SRL approach used in this paper, the autonomous vehicle
can be trained to learn a transition model in the embedded state-space using action conditioned
RNN and long short term memory (LSTM).

• We aim to extend the VAE to learn the pixel space defined by Gaussian framework to generate
realistic looking frames, images and videos predicting the autonomous vehicle behaviour.
This would be a step forward towards receiving feedback-based corrective action ahead of
the next timeframe.

• The driving environments can be subjected to real-world limitations, disturbances, and abrupt
variations in operating conditions.

• For an autonomous vehicles to increase the uninterrupted drive-time, DRL techniques can be
used in conjunction with probabilistic DL models to learn features from latent variables.

Author Contributions: Conceptualization, A.G. and A.S.K.; methodology, A.G. and A.S.K.; software, A.G.;
validation, A.G.; A.S.K. and A.A.; formal analysis, A.G. and A.S.K.; investigation, A.G.; resources, A.G.;
data curation, A.G.; writing–original draft preparation, A.G.; writing–review and editing, A.G.; A.S.K.; and A.A.
visualization, A.G. and A.S.K.; supervision, A.A.; L.G. and B.V. project administration, A.A.; funding acquisition,
A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A. Deep Reinforcement Learning: A Brief Survey.
IEEE Signal Process. Mag. 2017, 34, 26–38. [CrossRef]

2. Sigaud, O.; Stulp, F. Policy search in continuous action domains: An overview. IEEE Signal Process. Mag.
2019, 113, 28–40. [CrossRef]

3. Zhu, M.; Wang, X.; Wang, Y. Human-like autonomous car-following model with deep reinforcement learning.
Transp. Res. Part C 2018, 97, 348–368. [CrossRef]

4. Papathanasopoulou, V.; Antoniou, C. Towards data-driven car-following models. Transp. Res. Part C 2019,
55, 496–509. [CrossRef]

5. Kendall, A.; Hawke, J.; Janz, D.; Mazur, P.; Reda, D.; Allen, J.; Lam, V.; Bewley, A.; Shah, A. Learning to Drive
in a Day. arXiv 2018, arXiv:1807.00412v2.

6. Raffin, A. Learning to Drive Smoothly in Minutes: Reinforcement Learning on a Small Racing Car. 2019.
Available online: https://towardsdatascience.com/learning-to-drive-smoothly-in-minutes-450a7cdb35f4
(accessed on 15 September 2018).

7. Parisi, S.; Tangkaratt, V.; Peters, J.; Khan, M.E. TD-regularized actor-critic methods. Mach. Learn. 2019, 108,
1467–1501. [CrossRef]

http://dx.doi.org/10.1109/MSP.2017.2743240
http://dx.doi.org/10.1016/j.neunet.2019.01.011
http://dx.doi.org/10.1016/j.trc.2018.10.024
http://dx.doi.org/10.1016/j.trc.2015.02.016
https://towardsdatascience.com/learning-to-drive-smoothly-in-minutes-450a7cdb35f4
http://dx.doi.org/10.1007/s10994-019-05788-0

Sensors 2020, 20, 5991 19 of 20

8. Zhao, D.; Liu, D.; Lewis, F.L.; Principe, J.C.; Squartini, S. Special Issue on Deep Reinforcement Learning and
Adaptive Dynamic Programming. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2038–2041. [CrossRef]

9. Hu, Z.; Wan, K.; Gao, X.; Zhai, Y.; Wang, Q. Deep Reinforcement Learning Approach with Multiple
Experience Pools for UAV Autonomous Motion Planning in Complex Unknown Environments. Sensors 2020,
20, 1890. [CrossRef]

10. Radac, M.B.; Lala, T. Learning Output Reference Model Tracking for Higher-Order Nonlinear Systems with
Unknown Dynamics. Algorithms 2019, 12, 121. [CrossRef]

11. Iriondo, A.; Lazkano, E.; Susperregi, L.; Urain, J.; Fernandez, A.; Molina, J. Pick and Place Operations in
Logistics Using a Mobile Manipulator Controlled with Deep Reinforcement Learning. Appl. Sci. 2019, 9, 348.
[CrossRef]

12. You, C.; Lu, J.; Filev, D.; Tsiotras, P. Advanced planning for autonomous vehicles using reinforcement
learning and deep inverse reinforcement learning. Robot. Auton. Syst. 2019, 114, 1–18. [CrossRef]

13. Banks, V.A.; Stanton, N.A. Driver-centred vehicle automation: Using network analysis for agent-based
modelling of the driver in highly automated driving systems. Ergonomics 2016, 59, 1442–1452. [CrossRef]
[PubMed]

14. Haddad, H.; Bouyahia, Z.; Jabeur, N. Transportation Service Redundancy from a Spatio-Temporal Perspective.
IEEE Intell. Transp. Syst. Mag. 2019, 11, 157–166. [CrossRef]

15. Liang, L.; Ye, H.; Li, G. Toward Intelligent Vehicular Networks: A Machine Learning Framework.
IEEE Internet Things J. 2019, 6, 124–135. [CrossRef]

16. DonKey Simulator. Available online: https://github.com/autorope/donkeycar; https://github.com/
autorope/donkeycar/blob/dev/LICENSE (accessed on 20 February 2019).

17. Hamid, R.K. Hands-on Deep Q-Learning; Packt Publishing: Livery Place, 35 Livery Street, Birmingham,
UK, 2019.

18. Barkenbus, J. Self-driving Cars: How Soon Is Soon Enough? Issues Sci. Technol. 2018, 34, 23–26.
19. Ji, X.; He, X.; Lv, C.; Liu, Y.; Wu, J. Adaptive-neural-network-based robust lateral motion control for

autonomous vehicle at driving limits. Control Eng. Pract. 2018, 76, 41–53. [CrossRef]
20. Tran, L.; Kossaifi, J.; Panagakis, Y.; Pantic, M. Disentangling Geometry and Appearance with Regularised

Geometry-Aware Generative Adversarial Networks. Int. J. Comput. Vis. 2019, 127, 824–844. [CrossRef]
21. Biehl, M.; Guckelsberger, C.; Salge, C.; Smith, S.C.; Polani, D. Expanding the Active Inference Landscape:

More Intrinsic Motivations in the Perception-Action Loop. Front. Neurorobot. 2018, 12, 45. [CrossRef]
22. Nie, S.; Zheng, M.; Ji, Q. The Deep Regression Bayesian Network and Its Applications: Probabilistic Deep

Learning for Computer Vision. IEEE Signal Process. Mag. 2018, 35, 101–111. [CrossRef]
23. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous

driving. J. Field Robot. 2020, 37, 362–386. [CrossRef]
24. Matignon, L.; Laurent, G.J.; Le Fort-Piat, N. Reward function and initial values: Better choices for accelerated

Goal-directed reinforcement learning. Lect. Notes Comput. Sci. 2006, 1, 840–849.
25. Divakarla, K.P.; Emadi, A.; Razavi, S.; Habibi, S.; Yan, F. A review of autonomous vehicle technology

landscape. Int. J. Electr. Hybrid Veh. 2019, 11, 320–345. [CrossRef]
26. He, L.; Chu, Y.; Shen, C. A Design of Reward Function in Multi-Target Trajectory Recovery with Deep

Reinforcement Learning. In Proceedings of the IEEE 8th Joint International Information Technology and
Artificial Intelligence Conference, Chongqing, China, 24–26 May 2019; pp. 286–293. [CrossRef]

27. Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational Inference: A Review for Statisticians. J. Am. Stat. Assoc.
2017, 112, 859–877. [CrossRef]

28. Yang, D.; Jiang, K.; Zhao, D.; Yu, C. Intelligent and connected vehicles: Current status and future perspectives.
Sci. China Technol. Sci. 2018, 61, 1446–1471. [CrossRef]

29. Miglani, A.; Kumar, N. Deep learning models for traffic flow prediction in autonomous vehicles: A review,
solutions, and challenges. Veh. Commun. 2019, 20, 100184. [CrossRef]

30. Lim, W.; Lee, S.; Sunwoo, M.; Jo, K. Hybrid Trajectory Planning for Autonomous Driving in On-Road
Dynamic Scenarios. IEEE Trans. Intell. Transp. Syst. 2019, 1–15. [CrossRef]

31. Zhang, C.; Kim, J. Multi-scale pedestrian detection using skip pooling and recurrent convolution.
Multimed. Tools Appl. 2019, 78, 1719–1736. [CrossRef]

http://dx.doi.org/10.1109/TNNLS.2018.2818878
http://dx.doi.org/10.3390/s20071890
http://dx.doi.org/10.3390/a12060121
http://dx.doi.org/10.3390/app9020348
http://dx.doi.org/10.1016/j.robot.2019.01.003
http://dx.doi.org/10.1080/00140139.2016.1146344
http://www.ncbi.nlm.nih.gov/pubmed/26912405
http://dx.doi.org/10.1109/MITS.2019.2939139
http://dx.doi.org/10.1109/JIOT.2018.2872122
https://github.com/autorope/donkeycar
https://github.com/autorope/donkeycar/blob/dev/LICENSE
https://github.com/autorope/donkeycar/blob/dev/LICENSE
http://dx.doi.org/10.1016/j.conengprac.2018.04.007
http://dx.doi.org/10.1007/s11263-019-01155-7
http://dx.doi.org/10.3389/fnbot.2018.00045
http://dx.doi.org/10.1109/MSP.2017.2763440
http://dx.doi.org/10.1002/rob.21918
http://dx.doi.org/10.1504/IJEHV.2019.102877
http://dx.doi.org/10.1109/ITAIC.2019.8785878
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1007/s11431-017-9338-1
http://dx.doi.org/10.1016/j.vehcom.2019.100184
http://dx.doi.org/10.1109/TITS.2019.2957797
http://dx.doi.org/10.1007/s11042-018-6240-x

Sensors 2020, 20, 5991 20 of 20

32. Raffin, A.; Hill, A.; Traoré, R.; Lesort, T.; Díaz-Rodríguez, N.; Filliat, D. Decoupling feature extraction
from policy learning: Assessing benefits of state representation learning in goal based robotics. arXiv 2019,
arXiv:1901.08651.

33. Chen, J.X. The Evolution of Computing: AlphaGo. Comput. Sci. Eng. 2016, 18, 4–7. [CrossRef]
34. Guo, X.; Hernández-Lerma, O. Continuous-Time Markov Decision Processes: Theory and Applications;

Springer: Berlin/Heidelberg, Germany, 2009.
35. Andrášik, R.; Michal, B. Efficient Road Geometry Identification from Digital Vector Data. J. Geogr. Syst. 2016,

18, 249–269. [CrossRef]
36. Karaduman, O.; Eren, H.; Kurum, H.; Celenk, M. Road-Geometry-Based Risk Estimation Model for

Horizontal Curves. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1617–1627. [CrossRef]
37. Rasouli, A.; Tsotsos, J.K. Autonomous Vehicles That Interact with Pedestrians: A Survey of Theory and

Practice. IEEE Trans. Intell. Transp. Syst. 2019, 21, 900–918. [CrossRef]
38. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision:

A Brief Review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [CrossRef] [PubMed]
39. Dairi, A.; Harrou, F.; Senouci, M.; Sun, Y. Unsupervised obstacle detection in driving environments using

deep-learning-based stereovision. Robot. Auton. Syst. 2018, 100, 287–301. [CrossRef]
40. Bernardini, S.; Fox, M.; Long, D. Combining temporal planning with probabilistic reasoning for autonomous

surveillance missions. Auton. Robot. 2017, 41, 181–203. [CrossRef] [PubMed]
41. Guo, J.; Gong, X.; Wang, W.; Que, X.; Liu, J. SASRT: Semantic-Aware Super-Resolution Transmission for

Adaptive Video Streaming over Wireless Multimedia Sensor Networks. Sensors 2019, 19, 3121. [CrossRef]
42. Yun, S.; Choi, J.; Yoo, Y.; Yun, K.; Choi, J.Y. Action-Driven Visual Object Tracking with Deep Reinforcement

Learning. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2239–2252. [CrossRef]
43. Mausam, A.K. Planning with Markov Decision Processes: An AI Perspective; Morgan and Claypool: San Rafael,

CA, USA, 2012.
44. U. Technologies. Using TensorBoard to Observe Training. Tensorboard-md. 2019. Available online: https:

//github.com/Unity-Technologies/ml-agents/blob/master/docs/Using-91 (accessed on 10 February 2019).
45. Aureliantactics. Understanding PPO Plots in TensorBoard. 2018. Available online: https://medium.com/

aureliantactics/understanding-ppo-plots-in-tensorboard-cbc3199b9ba2 (accessed on 12 February 2019).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MCSE.2016.74
http://dx.doi.org/10.1007/s10109-016-0230-1
http://dx.doi.org/10.1109/TITS.2015.2506609
http://dx.doi.org/10.1109/TITS.2019.2901817
http://dx.doi.org/10.1155/2018/7068349
http://www.ncbi.nlm.nih.gov/pubmed/29487619
http://dx.doi.org/10.1016/j.robot.2017.11.014
http://dx.doi.org/10.1007/s10514-015-9534-0
http://www.ncbi.nlm.nih.gov/pubmed/32355413
http://dx.doi.org/10.3390/s19143121
http://dx.doi.org/10.1109/TNNLS.2018.2801826
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Using-91
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Using-91
https://medium.com/aureliantactics/understanding-ppo-plots-in-tensorboard-cbc3199b9ba2
https://medium.com/aureliantactics/understanding-ppo-plots-in-tensorboard-cbc3199b9ba2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Recent Advances and Bottlenecks in Realizing Self-Driving Vehicles
	State Representation Learning and Deep Reinforcement Learning

	System Model
	Problem Formulation
	Proposed Solution
	Solution Approach
	Solving MDPs Using Bellman Expectation Equations

	Experimental Setup
	Simulation Results
	Performance Analysis
	Rewards vs. Timesteps
	Learning Losses and Optimal Driving Policy
	Performance Comparison for VAE+DDPG vs. VAE+SAC

	Conclusions and Future Work
	References

