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Objective: Cold stress is an important current issue and implementing control strategies
to limit its sometimes harmful effects is crucial. Cold is a common stressor that can
occur in our work and our occupational or leisure time activities every day. There are
substantial studies on the effects of chronic stress on memory and behavior, although,
the cognitive changes and anxiety disorders that can occur after exposure to chronic
intermittent cold stress are not completely characterized. Therefore, the present study
was undertaken with an aim to investigate the effects of chronic intermittent cold stress
on body weight, food intake and working memory, and to elucidate cold stress related
anxiety disorders using cognitive and behavioral test batteries.

Methods: We generated a cold stress model by exposing rats to chronic intermittent
cold stress for 5 consecutive days and in order to test for the potential presence of sex
differences, a comparable number of male and female rats were tested in the current
study. Then, we measured the body weights, food intake and the adrenal glands weight.
Working memory and recognition memory were assessed using the Y maze and the
Novel Object Recognition (NOR) tasks. While, sex differences in the effects of chronic
stress on behavior were evaluated by the elevated plus maze (EPM), open field maze
(OF), and Marble burying (MB) tests.

Results: We found that 2 h exposure to cold (4◦C) resulted in an increase in the
relative weight of the adrenal glands in male rats. Given the same chronic stress
5 days of cold exposure (2 h per day), increased weight gain in male rats, while
females showed decreased food intake and no change in body weight. Both sexes
successfully performed the Y maze and object recognition (OR) tasks, indicating intact
spatial working memory performance and object recognition abilities in both male and
female rats. In addition, we have shown that stress caused an increase in the level
of anxiety in male rats. In contrast, the behavior of the female rats was not affected
by cold exposure.
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Conclusion: Overall, the current results provide preliminary evidence that chronic
intermittent cold stress model may not be an efficient stressor to female rats. Females
exhibit resilience to cold exposure that causes an increase in the level of anxiety in male
rats, which demonstrates that they are affected differently by stress and the gender is
an important consideration in experimental design.

Keywords: chronic intermittent cold stress, working memory, anxiety-like behavior, body weight, food intake,
sex difference

INTRODUCTION

Stress is a long-observed physiological reaction that occurs when
there is pressure or aggression in our environment and has
become popular in recent years. The local servomechanisms
as well as the precise and delicate interactions between several
systems including the behavioral, neuroendocrine and autonomic
responses induced by stressful situations serve to maintain or
restore a dynamic equilibrium called homeostasis. However,
when the physiological response to stress becomes excessive and
prolonged, homeostasis is disturbed and the functioning of body
systems is affected, that could trigger adverse health problems
related to stress (McEwen, 2000, 2004).

Exposure to a stressful situation affects almost all body
systems, especially behavior and physiology. Many studies have
demonstrated that stress has a powerful effect on cognitive
processes and memory and it may also induce behavioral changes
and influence exploratory behavior (Hoffman et al., 2011; Suresh
et al., 2013; Santori et al., 2020). Various physiological and
behavioral changes following stress have been documented in
humans (van der Kolk, 1996) and animals (Bowman et al., 2003).

Changes in exposure temperature may alter the Homeostatic
responses. Exposure to extreme temperatures, hot or cold, can
produce stress. Cold stress especially has a significant negative
impact on the performance and behavior (Solianik et al., 2014)
of humans. Extreme Cold exposure affects cognitive function
(Lieberman et al., 2009; Shansky and Lipps, 2013) and motor
performance (Drinkwater, 2008; Racinais and Oksa, 2010).
Moreover, it was reported that even moderate cold stress (0–
10◦C) may lead to impaired cognitive function (Palinkas, 2001;
Mäkinen et al., 2004, 2005, 2006).

Stress can enhance, impair or have no effects on memory.
Thus, memory is not considered to be a unitary system
and stress can affect it in different ways depending on the
memory type tested.

Working memory is considered as the mental structure
responsible for temporarily holding and manipulating
information and knowledge over brief time periods (Repovs and
Baddeley, 2006) and it is also a part of executive functioning
necessary for filtering or selecting relevant and inhibiting
irrelevant, or no-longer relevant, information (Kane and Engle,
2002), a function that can be especially important in stressful
situations. The results concerning the influence of stress on
working memory are quite heterogeneous with impaired (Oei
et al., 2006; Schoofs et al., 2009), enhanced (Duncko et al., 2009;
Cornelisse et al., 2011), or unaffected (Hoffman and al’Absi,
2004; Smeets et al., 2006) working memory capacity.

Exposure to chronic stress may affect memory processes in
complex ways depending on the type, duration and intensity
of the stress condition or stressor (acute stressors differ from
chronic factors), the moment of exposure to stressful stimuli,
the specific memory task involved and the age and gender of
the subjects (Shors, 2006; Sandi and Pinelo-Nava, 2007; Joëls and
Baram, 2009; Bangasser and Shors, 2010).

Most recently, there has been burgeoning interest in the link
between stress and anxiety. Chronic stress is thought to be related
to a number of mood disturbances (Gold et al., 1988; Sheline,
2000) and might increase the risk of developing depression and
anxiety-related disorders (McEwen, 1998; Boscarino and Chang,
1999; Segerstrom and Miller, 2004; Horstmann and Binder, 2011;
Popoli et al., 2011; Slavich and Irwin, 2014; Yu, 2016).

Several studies have been performed in order to determine the
role of different factors that contribute the most to stress and
influence the development of anxious behaviors (Chiba et al.,
2012). Among the mental disorders affecting the population,
anxiety disorders are the most common and prevalent. Anxiety
is associated with disturbances of the internal physiological
balance by inducing deleterious effects on the endocrine and
nervous systems, and it can also cause biochemical disorders
and adversely affect immune responses. Indeed, it has been
reported that exposure to stress may induce anxiety disorders
(Huynh et al., 2011; Chiba et al., 2012; Solomonow and Tasker,
2015). The biological bases of anxiety disorders depend partly
on disturbances in the hypothalamic—pituitary—adrenal axis
(HPA axis) (Boyer, 2000). The noradrenergic system has also been
implicated in anxiety behaviors (Charney, 2003).

Behavioral changes have been shown to be a significant
indicator of stress and have an important role in its assessment.
Different tests have been developed and frequently used to assess
the effect of stress; standardized behavioral models such as the
Open field maze, the Elevated plus maze, and Marble burying test
can determine effective changes after exposure to stress including
general locomotor activity and exploratory behavior. Although
chronic stress produces behavioral changes, animals exposed
to acute or chronic stress may exhibit anxiety like-behavior
depending on the type and duration of exposure.

Accumulating studies show that males and females exposed to
stressors, whether acute or chronic, tend to react and respond to
stress differently. Sex differences exist in many aspects, ranging
from physiological characteristics such as HPA axis biology,
stress response (Kudielka and Kirschbaum, 2005; Bale, 2006;
Babb et al., 2013) and chronic stress sensitivity (Kessler and
McLeod, 1984; Bebbington, 1996; Hostetler and Ryabinin, 2013);
to changes in memory function, learning process and behavior
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(Weinstock, 2011; Chiba et al., 2012; Suresh et al., 2013; Luine
and Gomez, 2015).

In this study, we focus on the sex differences in
neurobehavioral and physiological parameters observed in
male and female rats following chronic stress. In neurosciences,
the majority of animal researches are often conducted on males
and females are underrepresented (Beery and Zucker, 2011).
Therefore, several findings of the effects of stress can only be
provisional until they are confirmed by studies examining the
effect of stress on both sexes. However, male and female rats
might be affected differently by stress and female rats (show
resilient adaptation) are generally more resilient to the effects
of chronic stress which can lead to cognitive and behavioral
impairment in males.

Although the cognitive and behavioral performance of
stressed rodents depends on the type and intensity of stress,
cold has been relatively little used as a stressor. Chronic
intermittent cold exposure has been applied to induce stress in
laboratory animals in order to investigate its effects on different
aspects (Dorfman et al., 2009; Lapiz-Bluhm et al., 2009; Girotti
et al., 2011; El Marzouki et al., 2014), these studies mainly
focused on cognitive and electrophysiological parameters, cold-
induced thermogenesis and metabolic responses to cold stress.
To our knowledge, there is currently no study reporting the
sexually dimorphic effect of intermittent cold stress on working
memory and the development of anxiety-like behaviors in rats.
Therefore, the aim of the present study was to investigate
whether the effects of chronic intermittent cold stress on working
memory and behavior are sexually dimorphic, using standardized
behavioral models.

MATERIALS AND METHODS

Animals and Stress Exposure Modalities
Animal Models
In this study, we used 20 adult male and female rats (3–4 months
old) divided into two groups, the control group (n= 10, 5 males,
5 females) and the stressed group (n = 10, 5 males, 5 females),
with five litters per group and one animal per litter in the same
experiment group.

Animals were single- housed in Plexiglas cages (30 cm ×
15 cm × 12 cm) in a temperature maintained at 22 ± 2◦C and
a light/dark cycle of 12 h/12 h (8 h00–20 h00). All rats had free
access to food and water throughout the experiment.

Experimental procedures on animals were carried out
according to approved institutional protocols and in compliance
with the guiding principles for the care and use of laboratory
animals as described in the Scientific Procedures of Living
Animals (European Council directive: ACT: 86/609 EEC).

Type of Stress
The stress paradigm used in this study was chronic intermittent
cold stress as described previously (El Marzouki et al., 2014). Rats
in the cold stressed group were placed in their home cages in
a cold room and exposed to 4◦C for 2 h, then returned to the
housing facility for 5 consecutive days from 8:00 to 10:00 a.m. to
avoid corticosterone circadian rhythm. Control rats were kept in

their home cages in the housing room and remained undisturbed
during this period.

Physiological Measurements
Adrenal Glands Weight
After cold exposure, a series of 5 rats per group were sacrificed
by decapitation, the adrenal glands of each animal were removed
immediately by laparotomy and weighed in an analytical balance
to assess the influence of cold stress on the weight of these organs.
The weight of the adrenal gland was used in this study as a
parameter of indirect activation of the hypothalamic—pituitary—
adrenal axis in response to stress (Rezin et al., 2010).

Determination of Plasma Corticosterone Levels
Blood samples were collected from control and stressed male and
female rats. Plasma was extracted by centrifugation (3,000 g for
10 min), stored in plastic tubes and frozen until the determination
of corticosterone levels. Plasma corticosterone was estimated
using a commercial corticosterone ELISA kit.

Body Weight and Food Intake
The body weight of each animal and food consumption were
measured daily from the beginning of the period of habituation
until 1 week after cold exposure.

Every morning, rats were briefly removed from their cages
and weighed, and then the residuals were recorded, including the
amount of food remaining onto sheets placed under each cage
and that which had left on the bottom of the cages. Food intake
estimations were calculated by subtracting the weight of food (in
grams) recovered from that provided.

Behavioral Battery
Behavioral tests were performed on different days to reduce stress
which can be induced by the behavioral paradigms themselves
and the potential interaction between the tests. Behavioral test
battery started the day after the last exposure to cold stress and
was performed in the following order: day 1—Open field test;
day 2—Elevated plus maze; day 3—Marble burying test; day 4—
Y maze; day 5—Novel object recognition test as detailed in the
following timeline of the behavioral experiments:

Cognitive Tests
Y-Maze Spontaneous Alternation
The Y Maze Spontaneous Alternation is a behavioral
test performed to assess immediate working memory. The
protocol of this task is based on the innate tendency characteristic
of rodents to explore novelty. The maze used is an apparatus
in the form of a capital “Y” consisted of three identical arms
(40 × 9 × 16 cm) made of Plexiglas separated from each other
by 120◦ angles. Each rat was placed in the center of the arena
and was allowed to freely explore the three arms for 5 min.
Normal rats with intact spatial working memory, can remember
the arms visited and those not previously explored and show
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a tendency to explore the least recently visited arm and thus
tend to alternate visits between the 3 arms. While a rodent with
impairments in working memory failed to remember which
arm it has just visited, and thus shows reduced spontaneous
alternation behavior (Wall and Messier, 2002). All test sessions
were taped through a video camera mounted over the maze.
An alternation behavior was operationally defined as successive
entries into each of three arms as overlapping triplet sets (i.e.,
ABC, BCA, CAB etc.). The total number of entries into the
arms of the Y maze and the number of triads were recorded
in order to calculate the percentage of spontaneous alternation
(index of alternation) which is used as an index of spatial working
memory performance.

Object Recognition Task
The Novel Object Recognition test is a highly validated test
used to evaluate cognition in rodents, particularly recognition
memory. Before starting the short-term memory task, rats were
familiarized by placing them in an empty open field (50 cm × 50
cm × 50 cm) and allowing them to explore it freely. On the next
day, rats were placed back into the device and allowed to explore
two identical objects (A1 and A2) positioned in two adjacent
corners, 10 cm from the arena walls; this was the “acquisition”
session. Exploration was considered when rat’s nose touched the
object or at least was directed toward it at a distance less than
2 cm. After a delay of 1 h (to evaluate stress effects on short-
term recognition memory), each rat was placed in the apparatus
and allowed to explore it for 5 min in the presence of the
familiar object and a novel object, quite distinct object B. The
measurements were taken by using a video camera. Between
each trial of recognition testing, the device and the objects were
thoroughly cleaned using 70% ethanol to eliminate olfactory cues
possibly left by the previous rat (Ennaceur and Meliani, 1988).
The amount of time spent exploring the new and the familiar
objects provides an index of recognition memory calculated as
(time with novel object)/(time with novel object + time with
familiar object) ∗ 100.

Behavioral Tests
Open Field Test (OF)
The open field test is a behavioral test used to assay anxiety,
general activity levels and exploration habits in rodents and it is
usually performed in animal experimentation to assess stress and
anxiety disorders (Campos et al., 2013). The open field apparatus
used was a square arena surrounded by high walls (50 cm × 50
cm × 50 cm) made of Plexiglas, with the floor divided equally
into 25 squares (10 cm × 10 cm). At the beginning of the
test, each rat was removed from its home cage and placed into
the center of the arena and allowed to explore it freely for 10
min. The exploratory behavior of animals was quantified by a
videotracking system. The observed behavioral parameters were
as follows: the time spent into the central zone (CZ), the time
spent into the peripheral zone (PZ), and the number of peripheral
and central square crossings. After each test session, the open field
box was carefully wiped with ethanol solution (70%) and allowed
to dry completely to avoid the presence of any odor traces of the
previously evaluated animal.

Elevated Plus Maze Test (EPM)
The elevated plus maze test is a well-characterized behavioral
paradigm based on rodent’s natural aversion for open areas
and can be used to assess anxiety-related behavior in rodent
models. As described by Pellow et al. (1985) the apparatus used
for this task was a plus (or “X”) shaped maze made of black
Plexiglas and consisting of four arms elevated 50 cm above the
floor: Two opposite enclosed arms (50 cm × 10 cm × 40 cm)
provided with opaque vertical walls and two opposite open arms
(50 cm × 10 cm) surrounded by a small a 1-cm high transparent
Plexiglas edge which is intended to allow the animal to grip and
avoid falling. These four arms were arranged to form a cross
whose intersection is called the “central zone” (10 × 10 cm).
During behavioral testing, rats were individually placed in the
central area with the head facing an enclosed arm and left free to
explore the maze for 5 min. The behavior of the rats was recorded
using a digital camera placed above the maze. The device was
cleaned with ethanol solution (70%) and dried before and after
each testing session in order to remove scents throughout the
device that may disrupt the performance of the task. The variables
identified in the EPM test for the evaluation of anxiety were: the
number of entries into the closed and the open arms and the time
spent in each of these arms as well as in the central zone.

Marble Burying Test (MB)
Marble burying test is an animal model used in scientific research
to represent anxiety or obsessive-compulsive disorder behavior.
This test consisted of taking rats from their home cage and
allowing them to explore another rat cage [45 cm (L) × 23 cm
(W)× 20 cm (H)] filled with 5 cm of bedding. Black marbles with
a slight metallic sheen were arrayed in a regularly spaced grid in
the testing cage (Marks et al., 2009). The cage was kept in a small
dark room (1–5 lux). The rats were placed individually into the
center of the marble grid and allowed to freely roam in the cage
for 20 min without any access to food or water. After the testing
period, the rats were returned to their home cages. The latency
to bury the first marble and the number of buried marbles were
recorded for each rat. Marbles are considered buried if at least
2/3 of the marble is submerged with bedding. Marbles must be
washed with soapy water, rinsed with ethanol solution (70%) and
then dried after each 20 min trial.

Statistical Analysis
The Shapiro–Wilk test was used to assess the normality of the
data. Non-parametric data (Y-Maze Spontaneous Alternation,
Object recognition test, Elevated plus maze, and Open field
test) were subsequently analyzed using the Mann–Whitney
U-test. The variables measured in the Marble burying test were
analyzed by the Student t-test. The experimental data of body
weight and food intake were evaluated using Two-way ANOVA
(Treatment × day) followed by Bonferroni’s post hoc tests.
Statistical treatment was performed using the software program
GraphPad Prism (version 5, San Diego, California, United States).
The results presented are expressed as the mean± SEM. and were
considered statistically significant when p-value < 0.05.
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RESULTS

Adrenal Glands Weight
Daily exposure to 2 h of cold for 5 days resulted in a significant
increase in adrenal weight relative to body weight in males, but
not in females (Figure 1). The weight of the adrenal glands (mg)
was analyzed per 1 g of body weight. In males, analysis with one
way ANOVA revealed a significant effect of stress on the adrenal
gland/body weight ratio at the time of autopsy (T: 7.54± 0.96 mg
organ/100 g body weight S: 10.2± 0.84 mg organ/g body weight;
P= 0.001). While, there was no effect of chronic intermittent cold
stress on adrenal glands weight in female rats (P > 0.05).

Corticosterone Levels
Plasma corticosterone values were measured in control
and cold stressed (4◦C, 2 h/day) male and female rats.
Exposure to cold stress resulted in a significant elevation
in the level of corticosterone in male rats (P = 0.012).

While, corticosterone levels were not significantly
different between stressed female rats and their controls
(P > 0.05) (Figure 2).

Body Weight Gain
The results of the weight parameters obtained in our study
showed that all male rats continued to grow throughout the
experiment, and there was an increase in weight gain in
stressed male rats compared to control rats. Two-way ANOVA
analysis showed a highly significant effect of stress on body
weight gain [F(1, 147) = 16.25, P < 0.0001], with a highly
significant effect of day [F(13, 147) = 6.617, P < 0.0001].However,
Bonfferoni’s post hoc test showed no significant interaction
between stress and day on body weight gain [F(13,147) = 0.468,
P = 0.9393] (Figure 3A).

A significant difference between cold-stressed and control
female rats was not found. Two-way ANOVA analysis performed
on body weight gain in female rats showed no significant stress

FIGURE 1 | Variation in adrenal weight relative to body weight (mg/100 g of body weight) of control and stressed rats of both sexes. In males, cold stress
significantly increased relative adrenal weight in the stressed group compared to the control group. In females, exposure too cold for 5 days had no effect on adrenal
glands weight. Adrenal glands weight is expressed in (mg) per 100 g of body weight. Data are represented as mean ± SEM (n = 5) for each sex. Effect of stress:
∗∗P = 0.001.

FIGURE 2 | Effect of cold stress on corticosterone levels in male and female rats. Corticosterone was significantly higher in male rats exposed to cold stress
compared to their controls. Chronic intermittent cold stress had no significant effect on the corticosterone levels determined in female rats. Data are represented as
mean ± SEM (n = 5) for each sex. Effect of stress: ∗P < 0.05.
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FIGURE 3 | Body weight changes observed in control and stressed rats of both sexes. Cold stress increases body weight gain in male rats (A) but does not affect
female’s body weight (B). Weight gain is expressed in grams. Data are represented as mean ± SEM (n = 5). (A) Male rats: Effect of stress: ***p < 0.001; Effect of the
day: ****p < 0.0001; Bonfferoni’s post hoc test showed no significant interaction between stress and day on body weight gain (p = 0.9393). (B) Female rats: Effect of
stress: ns p > 0.05; Effect of the day: ns p > 0.05 (ns: not significant).

effect [F(13, 147) = 0,734; P = 0.393], or day effect [F(13,

147) = 0.9566; P = 0.4969].
The Bonfferoni’s post hoc test showed no significant interactive

effect of stress and day on body weight gain [F(13, 147) = 0.2105;
P = 0.9985] (Figure 3B).

Food Intake
Food consumption was measured during and after the period of
stress. The main data obtained from food diaries are represented
in Figure 4. The analysis carried out on the results obtained in
male rats revealed a significant effect of the day on food intake
[F(13, 147) = 2.541; P = 0.0035], with no significant effect of
stress [F(1, 147) = 0.7449; P= 0.3895] and a significant interaction
between day and stress [F(13, 147) = 2.36; P = 0.0068].

Bonfferoni’s post hoc analysis showed a significant decrease in
food intake in the stressed rat on day 14 (Post stress: t = 3.865;
P < 0.01), this indicates that time affected food intake differently
in stressed male rats (Figure 4A).

The two-way ANOVA analysis of the results obtained revealed
a significant effect of stress on food intake in female rats [F(1,

147) = 6.432; P = 0.0123], with no significant effect of the day
[F(3, 147) = 1.216; P = 0.2733] or interactive effects of day and
stress [F(13, 147) = 1.056; P = 0.4022]. The Bonfferoni’s post hoc
test showed no significant difference between stressed female rats
and control female rats on any day of the experiment (Figure 4B).

Y-Maze Spontaneous Alternation
In this test, we measured the effect of chronic intermittent cold
stress on spontaneous alternation of rats in the Y-maze. Statistical
analysis by Mann Whitney test of our results obtained in male
rats revealed no significant effect of cold stress on the percentage
of alternation of the stressed group in the three arms compared
to the control group (U = 12; P = 1) (Figure 5).

Furthermore, the results of the performance of the female rats
during this test did not show any significant difference (U = 10;
P = 0.6905) between the percentage of alternation of stressed
female rats (63.57 ± 5.36%) and that of female control rats
(59.97± 8.07%) (Figure 5).

This indicates that this type of stress had no effect on the
immediate spatial memory of male and female rats.

Object Recognition Test
We used this test to assess the effects of cold stress on the short
term object recognition memory in stressed male and female rats
and their controls.

The results obtained in male rats in this test revealed
no significant difference between the recognition index of
the stressed group and that of the control group (U = 10;
P = 0.6745) (Figure 6).

Moreover, Statistical analysis of the results obtained in female
rats showed no significant effect of exposure to cold stress on
the behavior of the animals observed in this test (U = 7.5;
P = 0.344) (Figure 6).

Thus, these findings indicate that chronic intermittent cold
stress had no effect on the short term memory assessed with
novel object recognition test.

Elevated Plus Maze Test
We used this test to evaluate the level of anxiety in male and
female rats. Figure 7 shows the main results obtained concerning
the EPM test on the time spent (AB) and the number of entries
(CD) in the open arms, compared to the closed arms, and also the
time spent in the center (E) in male and female rats.

Statistical analysis of the EPM test sessions showed a
significant effect of stress in male rats. In this experiment,
stressed male rats showed a higher spent time in the closed arms
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FIGURE 4 | Variation in food intake in control and stressed rats of both sexes. Male rats are not affected by chronic intermittent cold stress until the 14th day (post
stress), represented by a decrease in food intake (A). In female rats, cold exposure leads to a significant decrease in food intake (B). Food intake is expressed in
grams (g). Data are represented as mean ± SEM (n = 5). (A) Male rats: Effect of stress: ns p > 0.05. Effect of the day: **P < 0.01. (n = 5). (B) Female rats: Effect of
stress: *p < 0.05. Effect of the day: ns p > 0.05 (ns: not significant).

FIGURE 5 | Behavioral evaluation of spatial working memory disorders in male and female rats in a Y-maze spontaneous alternation test (% alternation). In both
sexes cold stress had no effect on spatial working memory assessed in Y maze test. Each value represents the mean ± SEM (n = 5); Effect of stress: ns p > 0.05
(ns: not significant).

(P = 0.0456; U = 2.5), and a lower spent time in central area
(P = 0.0317; U = 2) compared to controls. We also observed
a reduced percentage of entries into open arms (P = 0.0417;
U = 2.5) following cold stress in this behavioral test. However,
the results obtained in EPM did not show a significant effect of
cold stress on time spent in open arms (P = 0.6905; U = 10) and
number of entries in closed arms (P = 1; U = 12).

In contrast, the statistical analysis of the experimental data
recorded in female rats in this test showed no significant
difference in the time spent in the open arms (P= 0.841, U = 11),
the time spent in the closed arms (P = 0.5476, U = 9), and the
time spent in the center (P = 1, U = 12). Similarly, differences

in the number of entries in open arms (P = 0.745, U = 10.5),
and in the number of entries in closed arms (P = 0.5248,
U = 9) were not observed between stressed female rats and
their controls.

Open Field Test
We used the open-field test to assess anxiety-related behavior in
male and female rats.

The effects of stress in the open-field behavior in male rats
are summarized in Figure 8. The data Analysis of open field
test sessions indicated that the time spent in the periphery was
significantly higher in the stressed group than in the control
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FIGURE 6 | Behavioral evaluation of recognition memory disorders in male rats in a Novel object recognition test (Recognition index%). Cold stress had no
significant effect on the recognition performance assessed in an object recognition test in male and female rats. Each value represents the mean ± SEM; Effect of
stress: ns p > 0.05 (ns: not significant) (n = 5).

group (P = 0.0159, U = 1), whereas the time spent in the center
was significantly lower (P = 0.0159, U = 1). Furthermore, the
number of entries to the central zone was significantly lower
in stressed male rats when compared to controls (P = 0.0465,
U = 2.5). Regarding the number of entries to the peripheral
zone we noticed no significant differences between stressed and
controls male rats (P = 1, U = 12).

The results obtained in Figure 8 show the behavioral variables
recorded during the open field test in stressed female rats
compared to control rats. Statistical analysis of these results,
showed no significant effect of the cold stress on exploratory
behavior recorded in the open field, except that the number of
entries to the peripheral zone was higher in stressed female rats
when compared to controls (C: 103.8 ± 6.681; S: 111.8 ± 32.53),
but this variation did not reach significance (P = 1, U = 12).

Marble Burying Test
The final behavioral test was the marble burying which we used
to examine if cold stress leads to enhanced anxiety-like behavior
in male and female rats.

After the statistical analysis of the results obtained during
this test in male rats, a significant difference in the latency time
was demonstrated (P = 0.010, t = −3.332) between the stressed
male rats which started to dig the litter after (12.964 ± 7.552 s)
and their controls (46.18 ± 6.509 s). In addition, the number
of marbles buried by the stressed group was significantly higher
compared to the control group (P = 0.005, t = 3.868) (Figure 9).

While our results did not reveal any significant difference
between the stressed female rats and their controls, concerning
the latency to initiate burying (S: 19.2 ± 7.276 vs. T: 7 ± 3.406;
P = 0.167, t = −1.519), and the number of marbles buried (S:
11.2± 3.056 vs. C: 7.6± 1.887; P= 0.346, t=−1.002) (Figure 9).

DISCUSSION

The body response to stress is both biological and behavioral. The
biological response involves many parameters (cardiovascular,

metabolic, immunological, and nervous) and the behavioral
response is an adaptation to an unexpected situation allowing the
individual to escape as much as possible from the stressor.

Prolonged exposure to stressors may influence feeding
behavior and energy homeostasis by inducing various alterations
in the amount of food consumed (Epel et al., 2001). Chronic stress
can induce morphological variations in animals, and change
of body weight might be an important index of physiological
responses to stress (Selye, 1976). Body weight change is a part of
coping strategies (Uochi and Asashima, 1998; Aoki et al., 2003),
which can be an increase (Wang et al., 1995), a decrease (Merritt,
1995), or even no change (Reynolds and Lavigne, 1988) during
cold adaptation.

Numerous Studies in laboratory animals under stressful
conditions show that food intake is either stimulated or inhibited.
The nature of the stimulus, its intensity and its duration
determine the observed response. Indeed, stress is known to
affect metabolism in a different ways, either by increasing food
intake and weight gain (Dallman et al., 2005; Nieuwenhuizen
and Rutters, 2008), or by reducing calorie consumption and body
weight (Torres and Nowson, 2007; Depke et al., 2008).

Stress-induced alterations in body weight and food
consumption are used as a dependable indicator to evaluate
the severity of the stress paradigm. Furthermore, stress may
have different effects on the human eating behavior; exposure to
stressful stimuli resulted in a decrease in food consumption and
weight loss in 30% of individuals, while roughly 70% of subjects
increased their food consumption (Stone and Brownell, 1994;
Epel et al., 2004).

The results obtained in our study showed that chronic
intermittent cold stress significantly increased body weight gain
in male rats and had no effect on their food intake until the
7th day post-stress. Although these results are in agreement
with the data of Chantal and Nieuwenhuizen (Chantal et al.,
2003; Nieuwenhuizen and Rutters, 2008) showing a significant
body weight gain in stressed rats; they contrast with the earlier
reports showing that chronic stress attenuate food consumption
and body weight in male rats (Torres and Nowson, 2007;
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FIGURE 7 | Behavioral evaluation of anxiety-like behavior in male and female rats in an Elevated plus Maze. The behavior of the animals was recorded by a
videotracking system. In male rats, chronic intermittent cold stress causes an increase in the time spent in closed arms (B), with a decrease in the time spent in the
center (E). It also leads to a decrease in the number of entries in the open arms. Cold exposure had no significant effect on the various variables measured during
this test in female rats. (A) Time spent in open arms; (B) time spent in closed arms; (C) number of entries in open arms; (D) number of entries in closed arms;
(E) time spent in the center. Each histogram represents the mean ± SEM; effect of stress: ∗ns p < 0.05, ns: (not significant) p > 0.05 (n = 5).
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FIGURE 8 | Behavioral evaluation of anxiety-like behavior in male and female rats in an open field test (OF). The behavior of the animals was recorded by a
videotracking system. In male rats, exposure to cold leads to an increase in the time spent in the peripheral zone (A) associated with a decrease in the time spent in
the central zone (B) and a decrease in the number of entries in the central zone (D). In female rats, intermittent cold stress had no significant effect on the various
variables measured during this test. (A) time spent in the peripheral zone; (B) time spent in the central zone; (C) number of entries to the peripheral zone; (D) number
of entries to the central zone. Each histogram represents the mean ± SEM. Effect of stress: ∗p < 0.05 (n = 5), ns p > 0.05 (ns: not significant) (n = 5).

Depke et al., 2008). Cold stress increased body weight gain in
male rats without altering their food intake. This result suggests
that energy expenditure was reduced by stress. Cold stress seems
to potently stimulate NPY secretion (Kuo et al., 2007), that
could plays important roles in regulating energy expenditure.
It has been demonstrated that increases in NPY activity in the
catechominergic system may decrease energy expenditure and
induce weight gain during cold stress (Zhang et al., 2014).

Exposure to cold decreased food intake in female rats but
did not affect their weight gain for 14 days. These results are
consistent with previous studies showing that exposure to stress
has minimal or no effect on the body weight of females (Duncko
et al., 2001; Trentani et al., 2003; Westenbroek et al., 2003, 2004,

2005; Lin et al., 2008, 2009; Ortiz et al., 2015). However, other
studies have found that chronic restraint stress (McLaughlin
et al., 2005; Conrad et al., 2012) and chronic unpredictable stress
(McFadden et al., 2011) can lead to weight loss. Thus, it seems
that female rats are less sensitive to the effects of cold stress on
body weight gain than other stress paradigms. Female rats had
stabilized body weight despite reduced food intake, suggesting
that metabolic adaptations occur during stress, which increases
caloric efficiency. The unchanged body weight may be due to the
fact that the energy intake is the same as the energy expenditure
in which the energy intake is mainly used for thermoregulation.

These changes in body weight and food intake elicited by
chronic intermittent cold stress, lead to the conclusion that male
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FIGURE 9 | Evaluation of the burying behavior in Marbel Burying test (MB) for 20 min of recording in male and female rats. The cold stress studied leads to an
increase in the latency time (A), as well as an increase in the number of buried marbles (B) in male rats. In female rats, exposure to cold had no detectable effect on
latency time (A) and number of buried marbles (B) between the two groups of rats. Each histogram represents the mean ± SEM. Effect of stress: ∗p < 0.05,
∗∗p < 0.01, ns p > 0.05 (n = 5).

and female rats may respond and react differently to this type
of stress. Indeed, the stress response can vary depending on
many factors such as the type, duration and intensity of stressors
and also the sex of laboratory animals (Paré and Redei, 1993;
Pucilowski et al., 1993; Martí et al., 1994). Therefore, different
stress patterns may have different effects on eating behavior and
body weight gain in male and female rats.

The stress response is a set of harmonized, dynamic and
complex reactions involving neurochemical, neurobehavioral
and physiological processes necessary for the phenomenon of
adaptation to a stressful situation. The hypothalamic-pituitary-
adrenal (HPA) axis is an important and complex system involved
in the regulation of neuroendocrine responses to stress and the
adrenal gland which is the organ and the hormonal system
most affected during a stress response is part of this axis
(Ulrich-Lai et al., 2006).

During exposure to chronic stressors, adrenocorticotropic
hormone (ACTH) induces unusual stimulation of the adrenal
gland which leads to its hypertrophy (Macedo et al., 2015).
Thus, we evaluated the effect of cold exposure on adrenal
glands responsivity using their weight as an indirect
indicator of HPA axis activation in response to stress, and
on corticosterone levels as a potential biomarker of stress in male
and female rats.

In the current study, relative adrenal weights and levels
of corticosterone were significantly increased in cold stressed
male rats compared to their controls. Corroborating our result,
Kioukia-Fougia et al. (2002) showed increase in adrenal gland
weight in male rats in response to exposure to cold. This
stress-related adrenal gland enlargement was not a surprising
discovery, as the adrenals have been shown to have one of the
highest rates of blood supplies per gram of tissue during exposure
to stress (Hornsby, 1985). Thus, adrenal hypertrophy and higher

levels of corticosterone found in male rats can be interpreted as a
result of reaction to a stressful situation, indicating the activation
of the HPA axis, known as a physiological system extremely
sensitive to conditions of stress (Kenjale et al., 2007), which
causes the secretion of adrenocorticotrophic hormone (ACTH)
and corticosterone from the adrenal glands to help the body cope
with stress (Zafir and Banu, 2009).

In female rats, relative adrenal glands weights and
corticosterone levels were unaltered following chronic
intermittent cold stress, suggesting a potential adaptation
of the hypothalamic-pituitary-adrenal axis after repeated
exposure to the same stressor (Viau and Sawchenko, 2002).

Overall, these results showed that chronic intermittent cold
stress affects physiological parameters assessed in male rats in
a similar way to that of other types of chronic stress. Unlike
males, female rats exposed to cold did not exhibit body weight
change, hypertrophy of the adrenal gland or elevated levels of
corticosterone. Therefore, the effectiveness of cold stress in male
rats was affirmed by body weight gain, enlarged adrenal gland,
and higher levels of plasma corticosterone. While female rats
showed resistance to the evaluated physiological impacts of cold
stress although they exhibited decreased food intake.

Stress can contribute to behavioral modifications and it
is thought to be responsible for many neuropsychiatric
disturbances such as depression or anxiety disorders on human
(Garcia-Bueno et al., 2008). It has been shown that exposure to
stressful conditions induces anxious and depressive behavior in
rodents (Haenisch et al., 2009; Hageman et al., 2009; Regenthal
et al., 2009; Huynh et al., 2011; Chiba et al., 2012). However,
stress does not always lead to behavioral changes (Gregus et al.,
2005; Swiergiel et al., 2007). There have been several studies
on the effects of various types of stressors on behavior in
male rats. In contrast, to our knowledge, there has been little
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research on the effects of cold stress on the behavior of male
and female rats.

Cold stress may have its own specific pattern of
neurobehavioral alterations. Thus, we evaluated the effects
of cold environment on the neurobehavioral functions of rats by
proposing different behavioral tests to assess the level of anxiety
among male and female rats.

Cold Stressed male rats demonstrated enhanced anxiety
as shown by an increase in time spent in the outer zone
and a reduction in time spent in the inner zone of the
open field, suggesting decreased motivation to explore a new
environment due to higher levels of anxiety in stressed rats
(Tobach, 1966; Katz et al., 1987). These findings are consistent
with the studies undertaken by Veenema and Neumann
(2007); Chiba et al. (2012), and Suresh et al. (2013) which
report that stress can cause aggressiveness, and it induces in
particular an increase in the level of anxiety assessed in the
open-field test.

Whereas female rats exposed to cold did not show stress-
induced anxiety behavior changes, this indicates that the stress
applied in our study did not affect the level of anxiety assessed in
a new environment in female rats. A result that is not supported
by previous studies showing that chronic stress has been found to
increase anxiety-like behavior assessed in the open field test (OF)
(Bowman and Kelly, 2011; Manikandan et al., 2015).

To further confirm the development of anxiety-related
behavior in rats in response to cold stress, we also used the
elevated plus maze test (EPM), which is a validated to assess
emotional response particularly anxiety (Pellow et al., 1985;
Rodgers and Cole, 1993a; Ohl et al., 2001; Walf and Frye,
2007). The behavior of animals in the elevated plus maze can
be influenced by stress factors such as cold (Hata et al., 2001)
electric shocks (Steenbergen et al., 1990) and forced swimming
(Britton et al., 1992).

Our data, demonstrated that stressed male rats spent a greater
amount of time exploring the closed arms than the open arms
of the elevated plus maze and made fewer entries into the open
arms, reflecting higher levels of anxiety associated with exposure
to cold. These results are in agreement with previous studies in
males showing that chronic stress induces anxious and depressive
behavior in rodents (Huynh et al., 2011; Chiba et al., 2012;
Suresh et al., 2013; Manikandan et al., 2015), and it also generates
behavioral changes in humans and can lead to anxiety disorders
(Garcia-Bueno et al., 2008; Horstmann and Binder, 2011).

Chronic intermittent cold stress, on the other hand, did not
affect the parameters measured on the elevated plus maze task
in female rats. Although this finding is consistent with other
studies showing that stress has no effect on the level of anxiety
assessed in (EPM) in female rats (Rodgers and Cole, 1993b;
Marcondes et al., 2001; Voikar et al., 2001; Bowman et al., 2009);
resistance to chronic stress observed in female rats disagrees
with the anxiogenic effect reported by Beck and Luine (2002);
Bowman et al. (2004), Gregus et al. (2005); Swiergiel et al. (2007),
Huynh et al. (2011), and Manikandan et al. (2015). Contradictory
findings on behavioral responses to stress in female rats evaluated
with the OF and EPM tests are probably due to the difference in
stressors applied, the duration of the stress and the experimental

procedures (e.g., day—night; the method of applying the stress)
and genetic factors (Huynh et al., 2011).

Marble burying is another rodent model employed to study
anxiety disorders (Jury et al., 2015; Silverman et al., 2015; Ene
et al., 2016). The elevated plus maze (EPM) and the open field
(OF) models are based on the test animal’s aversion to open
and brightly lit areas, while the Marble burying test is applied to
evaluate fear of a new aversive materiel. Rodents have an inherent
tendency to bury either harmful (Koolhaas et al., 1999; Pinel et al.,
1994) or non-harmful (Njung’e and Handley, 1991; De Boer and
Koolhaas, 2003) objects in their bedding, to protect against the
potential danger posed by the object.

Behavioral assessment of anxiety-like behavior in a Marble
burying test revealed that female rats exposed to chronic
intermittent cold stress for 2 h per day showed no difference in
the burying behavior compared to control female rats. Whereas
male rats that received the same type of stress hid more number
of marbles than control male rats, reflecting an increase marble-
burying behavior. Indeed, the number of hidden marbles is
directly related to the response to anxiety, indicating that cold
stress increased the level of anxiety in male rats while it had no
effect on anxiety-related behavior in female rats.

Our results obtained in this series of behavioral experiments
showed that unlike males, female rats do not exhibit anxious
behavior in new environments. Although it was reported that
anxiety is more upon in stressed female animals (Bowman
and Kelly, 2011; Huynh et al., 2011; Manikandan et al., 2015),
this was not the case in cold stressed female rats. This result
has been interpreted as reflecting an increased capacity to
cope with stressful situations known as resilience and, thus,
a decreased vulnerability to behavioral disorders or alterations
induced by cold stressors.

This difference between male and female rats is probably
attributable to the fact that male rats are vulnerable in HPA axis
deregulation after exposure to chronic cold stress. The cumulative
load of repeated cold stress resulting in high level of anxiety,
thus, the male rats could not adapt and get used to repeated
stress and could not display an anxiolytic state. While female
rats might adapt to repeated cold stress and show no signs of
anxiety in a new environment. These resulting data provide new
information on the effects of cold stress on levels of anxiety-
related behaviors in female rats.

It has been proven that males and females rats respond
differently to stress, and this sexual dimorphism in the behavioral
response might be related to the effect of sex hormones and
gonads effect on the brain etc. (Renard et al., 2005). Our study
demonstrates that anxiety-related behaviors differ between males
and females after exposure to stress, thus, cold stress response is
also sexually dimorphic.

The activation of the HPA axis by acute stress is considered
an adaptive biological response intended to cope with stressful
situation. While, chronic stress may lead to dysregulation of
the hypothalamic-pituitary-adrenal axis resulting in an increased
risk of disease or health disorders (de Kloet et al., 2005). In
fact, a relationship appears to exist between the HPA axis
hyperactivity and the development of anxiety disorders (Martin
et al., 2010; Bangasser and Valentino, 2014).
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Our data indicate that, male rats were more vulnerable in
the application of chronic cold stress than female rats. These
differences obtained in stressed rats are probably due to the sex-
related differences in stress-induced activation of the HPA axis
(Patchev and Almeida, 1998; Young, 1998) and its reciprocal
relationship with serotonergic function (Heninger, 1997; Joffe
and Cohen, 1998). Behavioral differences between male and
female rats have been linked to HPA axis functioning and
serotonergic system which may respond differently in the two
sexes after acute (Karandrea et al., 2002; Drossopoulou et al.,
2004) or chronic (Duncko et al., 2001; Beck and Luine, 2002;
Bowman et al., 2003, 2009; Konkle et al., 2003; Westenbroek et al.,
2003) stressful conditions.

Exposure to cold stress triggers a reduction in the serotonin
levels in most regions of the brain in male rats (Toh, 1960;
Aly et al., 1985; Hata et al., 1991) and the serotonergic system
is thought to be implicated in the modulation of anxiety
(Graeff et al., 1996; Voigt et al., 1999; Holsboer, 2000; Millan,
2003). In this regard, it has been reported that reduced stress-
induced hippocampal 5-HT release is observed in rats that
display high levels of anxiety (Keck et al., 2005). In fact,
reduction in ventral hippocampal 5-HT levels is believed to
increase anxiety-like behavior (Tu et al., 2014) and enhancement
of 5-HT concentrations in the hippocampus contributes to
reduce it (Guimaraes et al., 1993; Graeff et al., 1996), indirectly
suggesting that hippocampal serotonin levels are involved in
adaptive coping. The anxiety-like behavior observed in cold-
stressed male rats may thus be related to the disruption of the
serotonergic system.

In addition, a persistent increase in corticosterone (CORT)
levels may be an important factor that can increase the risk
of developing an anxiety disorder in stressed male rats. This
interpretation is supported by higher levels of corticosterone and
increased adrenal weight observed in these rats, which indicates
hyperfunction of the adrenals due to chronic stress (Dallman
et al., 1992; Blanchard et al., 1998).

Elevated CORT levels can increase anxiety-like behavior
in rats by several mechanisms, among which we suggest
the possibility of serotonin dysregulation. This hypothesis is
supported by studies demonstrating that chronic administration
of exogenous corticosterone lead to alterations in serotonergic
function and expression of 5-HT1A and 5-HT2A receptors in
male rats (Dickinson et al., 1985; Fernandes et al., 1997; Gorzalka
and Hanson, 1998; Karten et al., 1999).

On the other hand, sex differences in anxiety-like behavior
observed in the present study can be explained in part by
the influence of gonadal hormones. Stress appears to be a
potential risk factor for reproductive function, one of the known
consequences of stress is the decline in male fertility (Clarke et al.,
1999). The activation of the HPA axis in response to stress can
inhibit the normal functioning of the male reproductive system
via suppression of the hypothalamic-pituitary-gonadal axis (HPG
axis) (Ferin, 2006). Exposure to stressful conditions has been
shown to limit sperm production, impair spermatogenesis,
reduce sperm counts and motility, increase amounts of
morphologically abnormal sperm and decrease testosterone and
LH levels (Almeida et al., 2000; Khandve et al., 2013). Thus,

higher levels of anxiety in male rats may also be a reflection of
stress-induced inhibition of testosterone secretion. Testosterone
replacement or administration induces anxiolytic-like effects
in castrated male rats (Fernandez-Guasti and Martinez-Mota,
2005) and increases the number of entries in the open arms
in elevated plus maze test (EPM) (Bitran et al., 1993; Frye and
Seliga, 2001), suggesting that anxiety-like behavior is associated
with lower testosterone levels.

The different response in female rats is probably due to
their hormonal adaptation to cold stress (Suresh et al., 2013;
Wang et al., 2015) as well as the differential action of sex
steroids (estrogen and progesterone) and their organizational and
activational effects on behavioral responses to stress (Patchev and
Almeida, 1998; Rachman et al., 1998; Karandrea et al., 2002;
Bowman et al., 2003; Dalla et al., 2004).

Indeed, stress-induced changes including anxiety related
behavior might be influenced by the reproductive cycle of female
rats (ter Horst et al., 2012). During proestrus (estradiol and
progesterone are high) and estrus (peak estrogen secretion)
phases, female rats spend more time in the open-arms of the
elevated plus maze (EPM) than rats in diestrus (low estradiol),
indicating decreased anxiety-like behavior (Mora et al., 1996;
Díaz-Véliz et al., 1997; Frye et al., 2000; Marcondes et al., 2001;
Gouveia et al., 2004; Walf et al., 2009).

Furthermore, researches in animal models suggests
important roles for progesterone and the neuroactive steroid
allopregnanolone in stress and anxiety. Thus, the decreased
anxiety level in female rats might be related to the regulatory
effects of progesterone and allopregnanolone. In females,
high levels of circulating progesterone are converted to
allopregnanolone. Therefore, higher levels of allopregnanolone
under stressful conditions lead to lower levels of anxiety in
female rats than in male rats (Zimmerberg and Brown, 1998;
Kelly et al., 1999). In addition, the open arms exploration
in elevated plus maze is increased by allopregnanolone
administration to female rats, indicating a decreased anxiety
levels (Zimmerberg and Brown, 1998).

Working memory is a cognitive system responsible for the
storage and manipulation of information for a brief period of
time (Repovs and Baddeley, 2006). Stress affect memory processes
in complex ways, and its effect depends on many factors such as
the type and the duration of stress, the moment of applying the
stressor and the cognitive tasks used (Joëls and Baram, 2009).

In the present study, spontaneous alternation behavior, which
is considered to reflect spatial working memory, was assessed in
the Y-maze by allowing rats to freely explore the three arms of
the maze and this behavior is motivated by the rodents’ innate
curiosity to explore previously unvisited areas (Lalonde, 2002).
Cognitive profiling of the male and female cold stressed rats
revealed that chronic intermittent cold stress had no effect on
performance in the spontaneous alternation test, indicating intact
working memory ability.

Although scant, there are some previous studies in male
rats showing that chronic stress does not alter spatial working
memory, but the present data greatly extend these findings.
Yet, it should be underscored that while our current findings
are in agreement with some previous studies showing that
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chronic stress had no effect on working memory (Luine et al.,
1994, 1996; Williams et al., 1998) or may be causing impaired
memory retrieval while leaving working memory intact
(Srikumar et al., 2006, 2007), they are inconsistent with previous
findings reported by Mizoguchi et al. (2000) and Manikandan
et al. (2006) showing that chronic stress impaired spatial working
memory or both reference and working memory. This could be
due to methodological differences, such as the type and duration
of stress and the memory test used.

On the other hand, spatial working memory disorders
might be related to the post-stress delay to evaluate the
performance of rats in the task. In chronic stress exposed male
rats (restraint stress, 6 h per day, for 7 days) tested in the radial
arm maze (RAM) with various delay conditions, 10–13 days after
stress exposure (Luine et al., 1996) or from 21 days post-stress
(Hoffman et al., 2011), no effect on spatial memory performance
was observed. While working memory assessed immediately after
exposure to stress in the same task (RAM) in male rats was
impaired (Hoffman et al., 2011).

The findings of stress related-changes in learning and memory
in rats are well documented, but the effect of chronic stress on
spatial working memory in females is still in its infancy and
further studies will be necessary to investigate stress effect on
female spatial working memory.

To our Knowledge, no study on the effects of cold stress on
working memory in female rats has as yet been conducted. As
the first study, we demonstrated that spatial working memory
appear to be not altered in female rats exposed to cold. While,
our previous findings (El Marzouki et al., 2014) indicate that
chronic intermittent cold stress procedure as administered in our
laboratory lead to enhanced spatial learning in female rats and
impaired memory retrieval in male rats.

Sex differences have been reported in non-spatial memory in
rats exposed to stress. In general, memory performance is not
affected by chronic stress in a variety of non-spatial tasks in
female rats, but it is impaired in males. In this study, chronic
stress does not alter short-term object recognition memory
assessed using the object recognition test in male and female rats,
suggesting intact recognition memory following cold exposure.

Thus, the findings from the current study are in agreement
with several other studies (Beck and Luine, 2002; Bisagno et al.,
2004; Bowman et al., 2009; Bowman and Kelly, 2012; Gomez
and Luine, 2014) showing that chronic stress has no effect on
female performance on the task of object recognition. Although,
our surprising results in male rats are inconsistent with previous
research (Beck and Luine, 2002; Bowman et al., 2009; Gomez
et al., 2013; Santori et al., 2020) indicate that stressed male rats are
unable to make a significant distinction between known and new
objects following chronic stress exposure, and show impaired
object recognition memory; the effect of stress on recognition
memory observed in male rats is consistent with these reported
by Beck and Luine (1999) suggesting that chronic restraint stress
only impairs object recognition memory when the retention
interval exceeds 1 h.

Given the fact that recognition memory performance was
not altered at shorter delays, cold stress may not have changed
the extraneous factors that could influence recognition memory

(such as tendency for exploration, locomotor activity, or
preferences for novelty) (Baker and Kim, 2002).

Moreover, chronic stress has been associated with impaired
memory functions in male rodents. However, these effects may
differ depending on the type and intensity of stress, the type of
the memory task involved (Conrad, 2010) and the short-delay or
long-delay memory tasks (Beck and Luine, 1999).

Indeed, anxiety is most often assessed after exposure to
chronic stress, and increased anxiety-like behavior can further
disrupt memory function, particularly in exploration-based tests
like recognition memory task (Luine et al., 2017). Thus, since
cold stress did not alter the cognitive function in both sexes but
had a different effect on anxiety; male rats exhibited elevated
anxiety-like behavior, while the behavior of the female rats was
not affected, anxiety-dependent changes do not appear critical in
the cognitive performance.

As with the majority of studies, there are two limitations in the
current study that could be addressed in future research. The first
is the measurement of Adrenocorticotropic hormone and plasma
catecholamine concentrations. The second limitation concerns
the evaluation of the appetite related hormones levels such as
ghrelin and leptin.

CONCLUSION

Cold stress is a collection of physiological and neurobehavioral
changes, resulting from repeated exposure to extreme cold
conditions and may lead to impaired cognitive functions and
behavioral disorders. This study showed that chronic intermittent
cold stress causes an increase in body weight and relative adrenal
gland weight only in male rats but not in females suggesting
potential adaptation of the HPA axis. Cold stress does not have
any impact on the performance of spatial working memory
and object recognition memory in male and female rats. In
addition, exposure too cold for 2 h per day is sufficient to
induce anxiety-like behavior in male rats, but it does not affect
female rat’s behavior.

We can therefore conclude that female rats show resilience
to chronic intermittent cold stress that impairs male behavior,
suggesting that they are affected differently by this type of stress.
Although the mechanism behind the vulnerability of male rats
and the resilience of female rats to chronic intermittent cold
stress remains to be studied, this study provides additional
evidence on how chronic intermittent cold stress affects the
physiology of the organism, and important information about
sex differences in cold stress response which emphasizes the
influence of gender in experimental design. Thus, future studies
are aimed at further evaluating the influence of steroid hormones
on cognition and behavior following exposure to cold stress with
concurrent elucidation of biochemical mechanisms.
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