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Abstract
We review numerical methods for simulations of cosmic ray (CR) propagation on

galactic and larger scales. We present the development of algorithms designed for

phenomenological and self-consistent models of CR propagation in kinetic description

based on numerical solutions of the Fokker–Planck equation. The phenomenological

models assume a stationary structure of the galactic interstellar medium and incorporate

diffusion of particles in physical and momentum space together with advection, spal-

lation, production of secondaries and various radiation mechanisms. The self-consistent

propagation models of CRs include the dynamical coupling of the CR population to the

thermal plasma. The CR transport equation is discretized and solved numerically

together with the set of MHD equations in various approaches treating the CR popu-

lation as a separate relativistic fluid within the two-fluid approach or as a spectrally

resolved population of particles evolving in physical and momentum space. The rele-

vant processes incorporated in self-consistent models include advection, diffusion and

streaming propagation as well as adiabatic compression and several radiative loss

mechanisms. We discuss, applications of the numerical models for the interpretation of

CR data collected by various instruments. We present example models of astrophysical

processes influencing galactic evolution such as galactic winds, the amplification of

large-scale magnetic fields and instabilities of the interstellar medium.
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1 Introduction

1.1 Introduction

Cosmic rays (CRs) are charged particles with non-thermal energy distributions

(Strong et al. 2007; Grenier et al. 2015; Gabici et al. 2019). There are both hadronic

and leptonic cosmic rays among which protons and electrons are the most abundant

particles. In the hadronic component the composition resembles approximately the

element distribution in the universe (e.g. Blasi and Amato 2012; Gaisser et al.

2013), so protons and helium nuclei are by far most abundant and account for most

of the energy stored in high energy particles. Heavier elements and in particular

unstable isotopes are rare but provide valuable information on the dynamics of CRs

and serve as clocks for CR acceleration and transport. CR electrons are usually

negligible for the dynamics but provide important information on the magnetic field

via loss processes that produce radio and synchrotron radiation (e.g. Gaisser 1991).

Being high-energy charged particles, CRs mainly interact with the gas via the

magnetic field (e.g. Zweibel 2013). The transport processes and the dynamical

interaction with the gas are thus tightly coupled to plasma processes.

The integrated energy in hadronic CRs is large enough to have a dynamical

impact. In the interstellar medium the CR proton energy is comparable to the

thermal and kinetic counterpart (e.g. Ferrière 2001). On galactic scales there is

evidence that CR protons are an important agent in driving galactic winds (see, e.g.

Naab and Ostriker 2017; Zweibel 2017). In addition they might have an impact on

the distribution of gas in the galactic disc and thus alter the star formation process

on molecular cloud scales, even though their dynamical impact on molecular clouds

is expected to be much weaker compared to other drivers in the ISM like radiation

or supernovae. In the densest part of cloud cores, into which CR protons are able to

penetrate they ionize and heat the gas (e.g. Padovani et al. 2020). If CRs are

efficiently coupled to the gas or penetrate into regions dense enough such that direct

particle-particle collisions become relevent, they provide a temperature floor, which

directly impacts the fragmentation scale and the seeds of star formation.

1.2 Origin of CRs

Most of the CRs are believed to be produced in shocks via diffusive shock

acceleration (DSA). Early theoretical models (Krymskii 1977; Axford et al. 1977;

Bell 1978; Blandford and Ostriker 1978) as well as recent numerical simulations

(e.g. Caprioli and Spitkovsky 2014) confirm this paradigm, see also Marcowith

et al. (2020) for a recent review. In the Milky Way and most of the star forming

galaxies supernova remnants (SNR) are by far the most abundant source of strong
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shocks that provide the conditions to accelerate CRs up to an energy of

approximately 1015 eV, so the particles up to that energy are likely to be of

Galactic origin (Ackermann et al. 2013). CRs are however observed up to energies

of 1020 eV, which cannot be explained by SNe. Instead, Active Galactic Nuclei

(AGN) are an alternative candidate to provide sufficiently energetic environments.

In addition, the gyro-radii of those ulta-high energy CRs are larger than the disk of

the Milky Way. If coming from a local source within our Galaxy, the individual CRs

could therefore be traced back to their origin with an anisotropic distribution on the

sky. However, this is not the case and those ultra high energy CRs are thus of

extragalactic origin (Kotera and Silk 2016).

The spectral distribution of CRs shows a peak or a flattening at a few GeV

followed by a power law with remarkably little scatter. Up to energies of 1015 eV a

spectrum with E�2:7 is observed. Above that energy the scaling steepens, which

leads to naming the kink at 1015 eV the ‘‘knee’’. At 1020 eV the spectrum flattens

again, which is called the ‘‘ankle’’. At the highest energies the spectrum is less clear,

mainly due to the small statistics. Due to the steep spectrum, most of the energy can

be located in a narrow energy range of from 1 to 10 GeV per nucleon. Models

accounting for the dynamical impact of CRs therefore focus on GeV protons.

1.3 Numerical approaches of CR transport and scope of this review

CRs span a large energetic range from particle energies just exceeding the thermal

distribution (* MeV) up to the GZK cutoff (e.g. Kotera and Olinto 2011; Amato

and Blasi 2018; Gabici et al. 2019). Over this range in momentum the dynamical

range of the particle distribution function spans approximately 10 orders of

magnitude. Consequently, the effective (numerical) models that describe CRs and

the interactions with their environment differ. First, we need to distinguish between

a macroscopic and a microscopic perspective; we start with the macroscopic

models.

For low-energy CRs with small gyroradii we are often interested in the overall

energy of CRs rather than the individual particle trajectories (e.g. Padovani et al.

2020). On the other hand, for ultra-high-energy CRs with gyro-radii comparable to

entire galactic discs the particles’ trajectory is of greater interest (Kotera and Olinto

2011). Equally important to the energy per particle is the fraction of CR energy

compared to the other energies like the magnetic, thermal, radiation or kinetic one

for the coupling between the CRs and their environment. If the integrated CR

energy is much smaller that the other components, CRs can be treated as tracers

without dynamical back-reaction. Depending on the system under consideration the

effective transport of the CR tracers can differ from advection with the gas, to

diffusion and to free streaming.

This is basically always the case for CR electrons, so CRs can be treated as tracer

particles or passive fluid. For the hadronic component we can identify three main

regimes, which we outline in more detail in Sect. 1.4. The low-energy CRs do not

significantly contribute to the dynamics via their total pressure, so again a passive

tracer fluid or tracer particles are appropriate. The regime around a GeV contains
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comparable energy densities to other components in galaxies, so the back-reaction

onto the dynamics needs to be included. There are several models of different

complexity, which we outline in this review, ranging from simply adding another

pressure to the hydrodynamical equations up to a more complex way of including

plasma processes between CR particles and the hydromagnetic waves. The very

steep spectrum results again in an overall negligible integrated energy above

� 100 GeV. The passive treatment is then again appropriate. However, the large

gyro-radii combined with the low number of particles favours the treatment as

passive individual particles and their trajectories.

In the microscopic CR models the interaction of individual particles with the

magnetic field is of interest in order to understand plasma processes. This approach

is a different numerical class, known as particle-in-cell methods, where the Lorentz

force for each particle is computed and the particle distribution function is actually

sampled by a large number of CRs. The complexity of this plasma approach exceeds

the scope of this review and we would like to highlight the review by Marcowith

et al. (2020).

The field of CR physics is large ranging from their acceleration at small spatial

scales of individual shock fronts up to the trajectory of the highest energy CRs and

their specific origin from extra-galactic sources. Depending on the individual setups

and environmental conditions, different models are chosen and combined. Among

the three main types of models (particle-in-cell, test particle models and an effective

fluid description) we mainly cover the last one in different applications.

In this review we distinguish between the following numerical models:

• We consider CR propagation described by the canonical Fokker–Planck

equation in a static magnetic field, referred to as ‘phenomenological models’,

which are discussed in Sects. 3.1 and 3.2.

• In the second part we discuss models considering joint solutions of the Fokker–

Planck equation for CRs combined with the equations of magneto-hydrody-

namics (MHD). These models are referred to as ‘self-consistent models’ (Strong

et al. 2007) and are discussed in Sects. 4.1–5.1. They can be further

distinguished in two ways.

• The first one covers a dynamical coupling of the CRs to the MHD system by

simply including an additional pressure term related to cosmic rays. The

interactions between CRs and magnetic fields are included as subgrid models

with effective coupling coefficients, i.e. without including the streaming

process explicitly in the system. This class of models however, has recently

been extended to include spectrally resolved CRs.

• The latest approach also considers CR generated Alfvén waves together with

CR scattering off self-excited waves (streaming) which additionally couple

CRs to the energy equation of the thermal plasma through dissipation of

Alfvén waves (cosmic ray heating).
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1.4 Basics and approaches

We begin with some basic concepts of CR propagation, and relating these to

observational data. Most of our knowledge of CR propagation comes via secondary

CRs, with additional information from c-rays and synchrotron radiation. It is

instructive to point out why secondary nuclei are an ideal probe of CR propagation:

the fact that the primary nuclei are measured (albeit only near the solar position)

means that the secondary production functions can be computed from primary

spectra, cross-sections and interstellar gas densities; the secondaries can then be

‘propagated’ and compared with observations.

Since it became known that CRs fill the Galaxy it has been clear that nuclear

interactions imply that their composition contains information on their propagation

(Bradt and Peters 1950). An important breakthrough was the advent of satellite

measurements of isotopic Li, Be, B in the 1970’s (Garcia-Munoz et al. 1975). Since

then the subject has expanded continuously with models of increasing degrees of

sophistication. The observation that the composition of CRs is different from that of

solar, in that rare solar-system nuclei like Boron are abundant in CR, proves the

importance of propagation in the interstellar medium. Simplified estimates of the

lifetime time of CRs in the interstellar medium conclude that there is a canonical

column density of a few ‘few g cm-2’ of traversed material before the CRs interact

with the gas and lose their energy (see Sect. 2.1).

1.4.1 Particle versus kinetic versus fluid approach

One main distinction of CR transport is the difference between particle and fluid

approaches. If the mean free path of CRs is small compared to the characteristic

simulated scales, i.e. CRs scatter efficiently, they are often treated as a fluid. On the

other hand, if the mean free path is comparable or larger than the system under

consideration the trajectory of individual CRs need to be considered. Which

approach is more appropriate depends on the spatial scales, the scattering frequency,

and the energy of the CRs. To get an order of magnitude estimate of the typical

scales we can investigate the gyro-radius

rg ¼ p?
jqjB ; ð1Þ

where p? is the momentum perpendicular to the magnetic field line, |q| is the

absolute value of the charge and B is the magnetic field strength. Figure 1 shows the

gyro radius of CR protons for different magnetic field strengths as a function of CR

momentum together with typical sizes of astrophysical systems. The plot illustrates

that for low-energy CRs the gyro-radii are perceptibly smaller than typical astro-

physical objects. We would like to highlight that the gyro-radius is not a definite

measure for how the CRs need to be treated, but it nicely illustrates the separation of

scales.

The confinement of CRs is more complicated and depends also on the total

energy in CRs compared to the energy of the background system, i.e. whether CRs

can be treated as tracer particles moving through the medium or whether CR
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themselves modify the magnetic field and gas properties. We can broadly separate

three different regimes.

CR momenta �GeV/c The spectrum at low CR energies is not well constrained

due to solar modulation (e.g. Webber 1998a; Potgieter 2013). The best data of the

CR spectrum is based on Voyager (e.g. Cummings et al. 2016) and AMS-02 (e.g.

Aguilar et al. 2014b, a) measurements, which is still in our very local astrophysical

neighbourhood. At low energies the cross section of CRs with gas atoms and

molecules increases, which leads to efficient losses (Coulomb losses, ionisation

losses). On typical scales above a few parsec the gas scatters efficiently and the

integrated energy of CRs is low enough such that those CRs are often treated as a

diffusing fluid. On scales of star forming regions and protoplanetary discs the

individual trajectories might be of interest.

CR momenta between 0.1 and � 10 GeV/c This regime of the CR spectrum is the

most difficult one because the total integrated CR energy is dominated by the

contribution of the GeV particles. With energy densities exceeding the magnetic

one, CRs do not just scatter off a background system but heavily influence the

magnetic field and—connected via MHD—the local turbulent and thermal

properties. Typically the scattering is very efficient, which allows a fluid approach.

However, the simple diffusion approximation is likely to be violated. The resulting

transfer of energy and the CR losses are complicated by the interplay between

Coulomb and ionisation losses, hadronic losses and the interactions between CRs

and the magnetic field.

CR momenta above � 10 GeV/c At higher momenta each CR is much more

energetic than other particles in the universe. However, the spectrum is so steep that

the total energy stored in those CRs is subdominant, so they are dynamically

irrelevant. The low scattering efficiency makes those CRs a reliable probe of their

Fig. 1 Gyro-radius of CRs as a function of particle momentum. For gyro-radii much smaller than the
system under consideration a fluid approximation seems reasonable

123

Simulations of cosmic ray propagation Page 7 of 92 2



travel through the magnetised universe. Therefore, in this energy regime CRs are

often treated by following individual particles along their trajectories.

1.4.2 Grey versus spectrally resolved CR fluids

In order to account for the global effects of CRs in numerical models one often uses

a grey approach, i.e. CR properties integrated over the full momentum range of the

distribution function. In this simplified approach the CRs are treated as a fluid with

global effective transport properties and interaction efficiencies. As in thermal gas

dynamics an underlying spectrum needs to be assumed. Spectrally resolved methods

allow for a more accurate treatment of the cooling.

1.5 The canonical CR propagation equation

The canonical CR propagation equation can be written as (Skilling

1971, 1975a, b, c)

of

ot
þ u � rf ¼ 1

3
ðr � uÞp of

op
þrðDrf Þ

þ 1

p2

o

op
p2blf þ Dpp

of

op

� �
þ qðr; p; tÞ;

ð2Þ

where f ¼ f ðr; p; tÞ is the CR density per unit momentum p at position r and at time

t, f ðpÞ dp ¼ 4pp2f ðpÞ dp in terms of phase-space density f ðpÞ, bl represents

mechanical and adiabatic losses and qðr; p; tÞ denotes the source terms. The effec-

tive CR advection velocity is

u ¼ v0 þ vs; ð3Þ

where v0 is the advection velocity of thermal plasma and

vs ¼ �bvAsignðb � recrÞ ð4Þ

accounts for scattering of CR particles off self-excited Alfvén waves with b
denoting the unit vector aligned with magnetic field, and vA is the Alfvén speed.

The waves are excited due to a resonant coupling with the streaming CR

population. The condition for resonance is that the Doppler-shifted wave frequency

x� kv is an integral multiple of the cyclotron frequency nX (Kulsrud and Pearce

1969). For n ¼ 0 the gyroresonance occurs for waves at the same phase velocity as

the particle velocity. If the drift velocity of CRs exceeds the Alfvén speed, the

instability occurs for the waves propagating in the same direction. CRs interacting

with the wave traveling in the same direction are mainly scattered in pitch angle and

give a small amount of energy to the wave. The effect is known as the streaming

instability. Although the instability generates directly forward waves propagating

along magnetic field in the same direction as cosmic rays, wave-wave interactions

imply the existence of backward waves, propagating in the opposite direction (Chin

and Wentzel 1972; Skilling 1975a).
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The spatial diffusion coefficient is generally anisotropic and thus described by a

diffusion tensor

D ¼ Dxxbb; ð5Þ

with ‘bb’ meaning the dyadic product of vector b. In one dimension or for isotropic

diffusion this reduces to a diffusion coefficient, Dxx, which is given by

Dxx ¼ v2 1 � l2

2 mþ þ m�ð Þ

� �
; ð6Þ

where m� means the collision frequency against forward (?) and backward (-)

waves, v is particle velocity and l ¼ p � b=p denotes the particle pitch-angle cosine.

Diffusive reacceleration is described as diffusion in momentum space determined

by the coefficient

Dpp ¼ 4c2m2v2
A

1 � l2

2

mþm�
mþ þ m�

� �
; ð7Þ

where m is the particle mass and c is its Lorentz factor.

CR sources are usually assumed to be concentrated near the Galactic disk and to

have a radial distribution like for example supernova remnants (SNR). A source

injection spectrum and its isotopic composition are required; the composition is

usually initially based on primordial solar but can be determined iteratively from the

CR data themselves for later comparison with solar. The spallation part of qðr; p; tÞ
depends on all progenitor species and their energy-dependent cross-sections, and the

gas density qðrÞ; it is generally assumed that the spallation products have the same

kinetic energy per nucleon as the progenitor. K-electron capture and electron

stripping can be included via the time scale for loss by fragmentation sf and q. Dxx is

in general a function of ðr; b; p=ZÞ where b ¼ v=c and Z is the charge, and p/Z
determines the gyro-radius in a given magnetic field; Dxx may be isotropic, or more

realistically anisotropic, and may be influenced by the CR themselves (e.g. in wave-

damping models). The coefficient Dpp is related to Dxx by DppDxx / p2, with the

proportionality constant depending on the theory of stochastic reacceleration

(Berezinskii et al. 1990, Seo and Ptuskin 1994) as described in Sect. 2.5. v is a

function of r and t. The term in $ � v represents adiabatic momentum gain or loss in

the non-uniform flow of gas with a frozen-in magnetic field whose inhomogeneities

scatter the CR. sf depends on the total spallation cross-section and qðrÞ.
Observationally, the density qðrÞ can be based on surveys of atomic and molecular

gas, but can also incorporate small-scale variations such as the region of low gas

density surrounding the Sun. In hydrodynamical simulations, the density is naturally

included in every computational cell. This equation only treats continuous

momentum-loss; catastrophic losses can be included via sf and q. CR electrons,

positrons and antiprotons propagation constitute just special cases of this equation,

differing only in their energy losses and production rates.

The boundary conditions depend on the model; often f ¼ 0 is assumed at the

‘halo boundary’ where particles escape into intergalactic space, but this obviously
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just an approximation (since the intergalactic flux is not zero) which can be relaxed

for models with a physical treatment of the boundary.

Equation (2) is a time-dependent equation; often the steady-state solution is

required, which can be obtained either by setting of=ot ¼ 0 or following the time

dependence until a steady state is reached; the latter procedure is much easier to

implement numerically. Depending on the model setup the time-dependence of

q can be neglected unless effects of nearby recent sources or the stochastic nature of

sources are being studied. In hydrodynamical models, local sources are easily

incorporated in regions of star formation or locally identitfied shocks. By starting

with the solution for the heaviest primaries and using this source term to compute

the spallation source for their products, the complete system can be solved including

secondaries, tertiaries etc. Then the CR spectra at the solar position can be

compared with direct observations, including solar modulation if required.

Source abundances are determined iteratively, comparing propagation calcula-

tions with data; for nuclei with very small source abundances, the source values are

masked by secondaries and cross-section uncertainties and are therefore hard to

determine. Webber (1998b) gives a ranking from ‘easy’ to ‘impossible’ for the

possibility of getting the source abundances using Advanced Composition Explorer

(ACE) data. A review of the high-precision abundances from ACE is in Wiedenbeck

et al. (2001) and for Ulysses in Connell (2001). For a useful summary of the various

astrophysical abundances relevant to interpreting CR abundances see Binns et al.

(2005).

1.5.1 Streaming and diffusion

Equation (2) contains the term representing advection of the CR population with the

velocity u ¼ v0 þ vs, given by formula (3). This includes the streaming velocity

along the direction pointing down the CR energy density gradient. This term

originates from the consideration of the cyclotron resonance streaming instability,

discovered by Kulsrud and Pearce (1969), which sets in when a population of CRs

move with a bulk speed greater than the Alfvén speed vA. Even a slight anisotropy

of CRs, which naturally arises in the presence of sources, causes unstable growth of

the waves due to momentum transfer from the CRs to waves via pitch-angle

scattering. The streaming CRs transfer their energy to Alfvén waves and

subsequently scatter off self-generated waves (see e.g. Wiener et al. 2013, for a

detailed introduction). Streaming and diffusion are considered respectively as the

first and second order effects in expansion of the distribution function in powers of

inverse wave particle scattering frequency m (e.g. Skilling 1971; Wiener et al.

2017b).

The waves are subject to damping due to ion-neutral friction, due to wave-

particle interactions between thermal ions and the low-frequency beat waves formed

by two interfering Alfvén waves (non-linear Landau damping) and due to the

cascade of waves to smaller scales (turbulent damping) (see Thomas and Pfrommer

2019, for a brief summary on this topic). The system reaches equilibrium when the

wave damping rate becomes equal to their growth rate due to the streaming

instability. The scattering leads to isotropisation of the CR distribution in the
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reference frame co-moving with the waves, implying that the CRs bulk velocity

becomes equal to the Alfvén velocity plus a local fluid velocity.

Scattering of CR particles off Alfvén waves manifests itself as diffusion process

in phase space, with spatial and momentum diffusion coefficients given respectively

by formulae (6) and (7). Diffusion of CRs is intrinsically related to the streaming

process which depends on local plasma conditions. In a more general case diffusion

might be related also to an extrinsic turbulence driven by sources other than CRs.

The effective diffusion coefficient depends on the dominant wave damping

mechanism.

Wave damping means dissipation of wave energy and heating of the interstellar

medium. The heating rate due to dissipation of Alfvén waves is

Cwave ¼ �vs � rPcr: ð8Þ

If the coupling of CRs is reduced, due to wave damping mechanisms, the effective

propagation speed of the CR population might be higher than the Alfvén speed,

however, it is argued that the heating rate is still given by the expression (8),

because all momentum and energy transfer between the CRs and gas is mediated by

hydromagnetic waves which propagate at the speed vA (e.g. Zweibel 2013).

The concept of CR diffusion explains why energetic charged particles have

highly isotropic distributions and why they are retained well in the Galaxy. The

Galactic magnetic field which tangles the trajectories of particles plays a crucial role

in this process. Typical values of the diffusion coefficient found from fitting to CR

data is Dxx �ð3 � 5Þ � 1028 cm2 s�1 at an energy of � 1 GeV per nucleon and it

increases with magnetic rigidity as R0:3 � R0:6 in different versions of the empirical

diffusion model of CR propagation. Here, the magnetic rigidity is defined as R ¼
pc=Ze with the momentum p and the charge Ze. In a given magnetic field

configuration, particles with the same rigidity follow the same trajectory.

On the microscopic level the diffusion of CR results from particle scattering off

random MHD waves and discontinuities. The effective ‘‘collision integral’’ for

charged energetic particles moving in a magnetic field with small random

fluctuations dB � B is given by the standard quasi-linear theory of plasma

turbulence (Kennel and Engelmann 1966). The wave-particle interaction is of

resonant character so that an energetic particle is predominantly scattered by those

irregularities of magnetic field which have their projection of the wave vector on the

average magnetic field direction equal to kk ¼ �s= rgl
� �

, where l is the particle

pitch angle. The integers s ¼ 0; 1; 2. . . correspond to cyclotron resonances of

different order. The efficiency of scattering depends on the polarization of the waves

and on their distribution in k-space. The first-order resonance s ¼ 1 is the most

important for the isotropic and also for the one-dimensional distribution of random

MHD waves along the average magnetic field. In some cases—for the calculation of

scattering at small l and for the calculation of perpendicular diffusion—the

broadening of resonances and magnetic mirroring effects should be taken into

account. The resulting spatial diffusion is strongly anisotropic locally and goes

predominantly along the magnetic field lines. However, strong fluctuations of the

magnetic field on large scales of L� 100 pc, where the strength of the random field
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is several times higher than the average field strength, lead to the isotropization of

global CR diffusion in the Galaxy. The rigorous treatment of this effect is not trivial,

since the field is almost static and the strictly one-dimensional diffusion along the

magnetic field lines does not lead to non-zero diffusion perpendicular to B, see

Casse et al. (2002) and the references therein.

Following several detailed reviews of the theory of CR diffusion (Jokipii 1971;

Toptygin 1985; Berezinskii et al. 1990; Schlickeiser 2002) the diffusion coefficient

at rg\L can be roughly estimated as Dxx � dBres=Bð Þ�2vrg=3, where dBres is the

amplitude of the random field at the resonant wave number kres ¼ 1=rg. The spectral

energy density of interstellar turbulence has a power law form wðkÞdk� k�2þadk,

a ¼ 1=3 over a wide range of wave numbers 1=ð1020 cmÞ\k\1=ð108 cm), see

Elmegreen and Scalo (2004), and the strength of the random field at the main scale

is dB � 5 lG. This gives an estimate of the diffusion coefficient Dxx �
2 � 1027bR1=3

GV
cm2 s-1 for all CR particles with magnetic rigidities R\108 GV,

in a fair agreement with the empirical diffusion model (the version with distributed

reacceleration). The scaling law Dxx �R1=3 is determined by the value of the

exponent a ¼ 1=3, typical for a Kolmogorov spectrum. Theoretically (Goldreich

and Sridhar 1995) the Kolmogorov type spectrum might refer only to some part of

the MHD turbulence which includes the (Alfvénic) structures strongly elongated

along the magnetic-field direction and which are not able to provide the significant

scattering and required diffusion of cosmic rays. In parallel, the more isotropic (fast

magnetosonic) part of the turbulence, with a smaller value of random field at the

main scale and with the exponent a ¼ 1=2 typical for the Kraichnan type turbulence

spectrum, may exist in the interstellar medium (Yan and Lazarian 2004). The

Kraichnan spectrum gives a scaling Dxx �R1=2 which is close to the high-energy

asymptotic form of the diffusion coefficient obtained in the ‘plain diffusion’ version

of the empirical propagation model. Thus the approach based on kinetic theory

gives a proper estimate of the diffusion coefficient and predicts a power-law

dependence of diffusion on magnetic rigidity, but the determination of the actual

diffusion coefficient has to make use of fitting to models of CR propagation in the

Galaxy.

1.5.2 Convection/advection

The transport of CRs is a combination of the locally advective contribution, where

CRs are advected with the flow, plus the diffusive and/or streaming transport

relative to the gas. Depending on the system under consideration convection and

advection have been distinguished. From a hydrodynamical perspective the CRs are

advected with the flow. Historically, global models of galaxies do not resolve the

gas flow but cover the turbulent motions in the galaxy and the perturbations globally

as a convective system. In the literature we therefore find both terminologies.

While the most frequently considered mode of CR transport is diffusion, the

existence of galactic winds in many galaxies suggests that advective transport

should also be important. Winds are common in galaxies and can be CR-driven (e.g.

Naab and Ostriker 2017) CRs also play a dynamical role in galactic halos
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(Breitschwerdt et al. 1991, 1993). Convection not only transports CR, it can also

produce adiabatic energy losses as the wind speed increases away from the disk.

Convection was first considered by Jokipii (1976) and followed up by Owens and

Jokipii (1977a, b), Jones (1978, 1979), Bloemen et al. (1993). Both 1-zone and

2-zone models have been studied: a 1-zone model has convection and diffusion

everywhere, a 2-zone model has diffusion alone up to some distance from the plane,

and diffusion plus convection beyond.

For one-zone diffusion/convection models a good diagnostic is the energy-

dependence of the secondary-to-primary ratio: a purely convective transport would

have no energy dependence (apart from the velocity-dependence of the reaction

rate), contrary to what is observed. If the diffusion rate decreases with decreasing

energy, any convection will eventually take over and cause the secondary-to-

primary ratio to flatten at low energy: this is observed but convection does not

reproduce e.g. the Boron-to-Carbon ratio (B/C) very well (Strong and Moskalenko

1998).

Ptuskin et al. (1997) studied a self-consistent two-zone model with a wind driven

by CR and thermal gas in a rotating Galaxy. The CR propagation is entirely

diffusive in a zone jzj\1 kpc, and diffusive-convective outside. CR reaching the

convective zone do not return, so it acts as a halo boundary with height varying with

energy and Galactocentric radius. It is possible to explain the energy-dependence of

the secondary-to-primary ratio with this model, and it is also claimed to be

consistent with radioactive isotopes. The effect of a Galactic wind on the radial CR

gradient has been investigated (Breitschwerdt et al. 2002); they constructed a self-

consistent model with the wind driven by CR, and with anisotropic diffusion. The

convective velocities involved in the outer zone are large (* 100 km s-1) but this

model is still consistent with radioactive CR nuclei which set a much lower limit

(Strong and Moskalenko 1998), since this limit is only applicable in the inner zone.

Observational support of such models would require direct evidence for a Galactic

wind in the halo.

1.5.3 Reacceleration

In addition to spatial diffusion, the scattering of CR particles on randomly moving

MHD waves leads to stochastic acceleration which is described in the transport

equation as diffusion in momentum space with some diffusion coefficient Dpp. One

can estimate it as Dpp ¼ p2V2
a = 9Dxxð Þ where the Alfvén velocity Va is introduced as

a characteristic velocity of weak disturbances propagating in a magnetic field, see

Berezinskii et al. (1990), Schlickeiser (2002) for rigorous formulas.

2 Early models

2.1 CR propagation - basic relations and motivations

Assuming that CRs are accelerated from the ISM of our Galaxy, we expect a similar

composition of CRs and the thermal gas in the ISM. However, their observed
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abundances show a relative over-abundance of the light elements Li, Be, and B,

which must be produced during their transport through the ISM. These elements are

produced in spallation processes and are thus secondary particles. A classical

measure of the ratio of stable secondaries to primaries is the B/C ratio, which

depends on particle energy, but can be approximated to zeroth order to be � 0:3.

The grammage is the amount of material that the CRs have to pass through before

they interact with an atom in the ISM,

v ¼
Z

qðlÞdl: ð9Þ

The grammage can be related to the spallation products by comparing the travelled

depth with the mean mass per particle in the ISM mISM and the typical cross section

for the spallation of carbon to boron,

B

C
� v

mISM=rC!B

� 0:3: ð10Þ

Using typical numbers for the ISM we find a grammage of � 10 g cm�2. At a disc

surface density of approximately Rgas � 10 M	 pc�2 ¼ 2 � 10�3 g cm�2 the CR

must cross the disc 103 times, assuming that the grammage is accumulated by

travelling through the disc. The associated travel or residence time, which can also

be understood as the lifetime of a CR in the Galaxy or its escape time from the disc,

is given by

tres ¼
v

Rgas

h

v
� 106 yr ð11Þ

for a gas scale height of h� 100 pc and a CR velocity v ¼ c.

The linear distance that a CR travels during the residence time is

l ¼ tresc� 500 kpc, so much larger than galactic scales and the CRs need to be

confined to the Galaxy. In order to estimate escape timescales of the CRs

unstable secondaries provide a valuable tool. The longest lived and best measured

unstable isotope is 10Be. Its decay time is tdecay ¼ 1:39 Myr, which is of the order of

the residence time. The cross sections for the spallation of carbon into stable (9Be)

and unstable (10Be) beryllium are similar, rC!10Be � rC!9Be. This means that an

initial abundance ratio (10Be/9Be) of unity at production decreases over time by

tdecayð10
BeÞ=tres. Measurements of this ratio reveal a residence time of 10 � 20 Myr,

so larger than the residence time of CRs.

A simple transport equation along the vertical dimension reads

oN

ot
¼ Q0ðpÞdðzÞ þ

o

oz
D
oN

oz

� �
: ð12Þ

Here, N is the number density of CRs, Q0 is the CR source function, D is the

diffusion coefficient, and d is the Dirac-d distribution. By assuming steady state and

an injection of CRs close to the midplane at z ¼ 0, we can reduce the equation to
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Q0ðpÞdðzÞ ¼ D
o2N

oz2
ð13Þ

and find for z[ 0

oN

oz
¼ const: , NðzÞ ¼ N0 1 � z

H

� 	
; ð14Þ

where H is the size of the halo, which is poorly constrained to a value of approx-

imately 5 kpc. The total grammage v ¼ qtresc will be reached by moving though the

average density of the total volume (disc plus halo), q ¼ lmpnISMh=H, with a disc

scale height of h ¼ 100 pc, an average mean molecular weight of l ¼ 1:4, and an

average ISM density of 1 cm�3. The diffusion coefficient can be estimated to be

D ¼ H2

tres

ð15Þ

¼ HlmpnISMhc

v
ð16Þ

� 3 � 1028 H

5 kpc


 �
v

10 g cm�2


 ��1

cm2 s�1 ð17Þ

Even though these estimates are very simplified, they provide two valuable features

of GeV CRs that remain valid even with much more complex assumptions. The first

is that the CRs are distributed relatively smoothly through the ISM. Locally, the CR

density varies, but much less than the gas structures, so molecular clouds are located

in an almost uniform sea of GeV CRs. The second is that due to frequent scattering,

the CR distribution is locally isotropic.

2.2 Weighted slabs and leaky boxes

The closely related leaky-box and weighted slab formalisms have provided the basis

for most of the literature interpreting CR data.

In the leaky-box model, the diffusion and convection terms are approximated by

the leakage term with some characteristic escape time of CR from the Galaxy. The

escape time sesc may be a function of particle energy (momentum), charge, and

mass number if needed, but it does not depend on the spatial coordinates. There are

two cases when the leaky box equations can be obtained as a correct approximation

to the diffusion model: (1) the model with fast CR diffusion in the Galaxy and

particle reflection at the CR halo boundaries with some probability to escape

(Ginzburg and Syrovatskii 1964), (2) the formulae for CR density in the Galactic

disk in the flat halo model ðzh � RÞ with thin source and gas disks (zgas � zhÞ
which are formally equivalent to the leaky-box model formulae in the case when

stable nuclei are considered (Ginzburg and Ptuskin 1976). The nuclear fragmen-

tation is actually determined not by the escape time sesc but rather by the escape
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length in g cm�2: x ¼ vqsesc , where q is the average gas density of interstellar gas

in a galaxy with the volume of the cosmic ray halo included.

The solution of a system of coupled transport equations for all isotopes involved

in the process of nuclear fragmentation is required for studying CR propagation. A

powerful method, the weighted-slab technique, which consists of splitting the

problem into astrophysical and nuclear parts was suggested for this problem (Davis

1960; Ginzburg and Syrovatskii 1964) before the modern computer epoch. The

nuclear fragmentation problem is solved in terms of the slab model wherein the CR

beam is allowed to traverse a thickness x of the interstellar gas and these solutions

are integrated over all values of x weighted with a distribution function G(x) derived

from an astrophysical propagation model. In its standard realization (Protheroe et al.

1981; Garcia-Munoz et al. 1987) the weighted-slab method breaks down for low

energy CRs where one has strong energy dependence of nuclear cross sections,

strong energy losses, and energy dependent diffusion. Furthermore, if the diffusion

coefficient depends on the nuclear species the method has rather significant errors.

After some modification (Ptuskin et al. 1996) the weighted-slab method becomes

rigorous for the important special case of separable dependence of the diffusion

coefficient on particle energy (or rigidity) and position with no convective transport.

The modified weighted-slab method was applied to a few simple diffusion models in

Jones et al. (2001a, 2001b). The weighted-slab method can also be applied to the

solution of the leaky-box equations. It can easily be shown that the leaky-box model

has an exponential distribution of path lengths GðxÞ / expð�x=XÞ with the mean

grammage equal to the escape length X.

In a purely empirical approach, one can try to determine the shape of the

distribution function G(x) which best fits the data on abundances of stable primary

and secondary nuclei (Shapiro and Silberberg 1970). It has been established that the

shape of G(x) is close to exponential: GðxÞ / expð�x=XðR; bÞÞ, and this justifies the

use of the leaky-box model in this case. There are various calculations of

G(x) (Stephens and Streitmatter 1998; Davis et al. 2000; Jones et al. 2001a, b).

The possible existence of truncation, a deficit at small path lengths (below a few

g cm�2 at energies near 1 GeV/n), relative to an exponential path-length

distribution, has been discussed for decades (Shapiro and Silberberg 1970;

Garcia-Munoz et al. 1987; Webber 1993; Duvernois et al. 1996). The problem

was not solved mainly because of cross-sectional uncertainties. In a consistent

theory of CR diffusion and nuclear fragmentation in the cloudy interstellar medium,

the truncation occurs naturally if some fraction of CR sources resides inside dense

giant molecular clouds (Ptuskin and Soutoul 1990).

For radioactive nuclei, the classical approach is to compute the ‘surviving

fraction’ which is the ratio of the observed abundance to that expected in the case of

no decay. Often the result is given in the form of an effective mean gas density, to

be compared with the average density in the Galaxy, but this density should not be

taken at face value. The surviving fraction can better be related to physical

parameters (Ptuskin and Soutoul 1998). None of these methods can face the

complexities of propagation of CR electrons and positrons with their large energy

and spatially dependent energy losses.
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2.3 Explicit models

Finally the mathematical effort required to put the 3-D Galaxy into a 1-D formalism

becomes overwhelming, and it seems better to work in physical space from the

beginning: this approach is intuitively simple and easy to interpret. We can call

these ‘explicit models’. The explicit solution approach including secondaries was

pioneered by (Ginzburg and Ptuskin 1976) and applied to newer data by Webber

et al. (1992), Bloemen et al. (1993) with analytical solutions for 2D diffusion-

convection models with a cosmic-ray source distribution, which however had many

restrictive approximations to make them tractable (no energy losses, simple gas

model). More recently a semi-empirical model which is 2D and includes energy-

losses and reacceleration has been developed (Maurin et al. 2001, 2002). This is a

closed-form solution expressed as a Green’s function to be integrated over the

sources. It incorporates a radial CR source distribution, but the gas model is a simple

constant density within the disk. Taillet et al. (2004) give an analytical solution for

the time-dependent case with a generalized gas distribution.

A ‘myriad sources model’ (Higdon and Lingenfelter 2003), which is actually a

Green’s function method without energy losses, yields similar results to Strong

et al. (2004) for the diffusion coefficient and halo size.

The most advanced explicit solutions to date are the fully numerical models

described in other sections. Even this has limitations in treating some aspects (e.g.

when particle trajectories become important at high energies) so one might ask

whether a fully Monte-Carlo approach (as is commonly done for energies [ 1015

eV) would not be better in the future, given increasing computing power. This

would allow effects like field-line diffusion (important for propagation perpendic-

ular to the Galactic plane) to be explicitly included. However it is still challenging: a

GeV particle diffusing with a mean free path of 1 pc in a Galaxy with 4 kpc halo

height takes � ð4000=1Þ2 � 107 scatterings to leave the Galaxy, which would even

now need supercomputers to obtain adequate statistics. Hence we expect a

numerical solution of the propagation equations to remain an important approach for

the foreseeable future.

3 Phenomenological models

3.1 GALPROP

The GALPROP project (Strong and Moskalenko 1998) was invented with the

following aims:

1. to enable simultaneous predictions of all relevant observations including CR

nuclei, electrons and positrons, c-rays and synchrotron radiation,

2. to overcome the limitations of analytical and semi-analytical methods, taking

advantage of advances in computing power, as CR, c-ray and other data become

more accurate,
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3. to incorporate the best current information on Galactic structure and CR source

distributions,

4. to provide a publicly-available code as a basis for further expansion.

The first point was the real driving factor, the idea being that all data relate to the

same system, the Galaxy, and one cannot for example allow a model which fits CR

secondary/primary ratios while not fitting c-rays or not being compatible with the

known interstellar gas distribution. There are so many simultaneous constraints, and

that to find one model satisfying all of them is a challenge, which in fact has not

been met up to now. GALPROP has been adopted as the standard for diffuse

Galactic c-ray emission for NASA’s Fermi-LAT c-ray observatory.

We give a very brief summary of GALPROP; for details we refer the reader to

the relevant papers (Strong and Moskalenko 1998; Moskalenko and Strong 1998;

Strong et al. 2000; Moskalenko et al. 2002; Strong et al. 2004; Ptuskin et al. 2006)

and two Annual Reviews articles, (Strong et al. 2007) with new developments

described in Grenier et al. (2015). Developments of GALPROP have continued. It is

maintained as public software1 which includes an Explanatory Supplement

describing the method in full detail. Recent developments are described in (Porter

et al. 2017, 2019; Boschini et al. 2020b).

The CR propagation equation is solved numerically on a spatial grid, either in 2D

with cylindrical symmetry in the Galaxy or in full 3D. The boundaries of the model

in Galactocentric radius and height above the disk, and the grid spacing, are user-

definable. In addition there is a grid in momentum; momentum (not e.g. kinetic

energy) is used because it is the natural quantity for propagation. Parameters for all

processes in Eq. (2) can be controlled with input parameters. The distribution of CR

sources can be freely chosen, typically to represent supernova remnants (SNR).

Source spectral shape and isotopic composition (relative to protons) are input

parameters. Interstellar gas distributions are based on current HI and CO surveys,

and the interstellar radiation field (ISRF), for lepton energy losses and inverse

Compton scattering is based on a separate detailed calculation. CR fragmentation

and destruction cross-sections are based on extensive compilations and parameter-

izations (Mashnik et al. 2004). The numerical solution proceeds in time until a

steady-state is reached; a time-dependent solution is also an option. Checks for

convergence are implemented. Starting with the heaviest primary nucleus consid-

ered (e.g. 64Ni) the propagation solution is used to compute the source term for its

spallation products, which are then propagated in turn, and so on down to protons,

secondary electrons and positrons, and antiprotons. In this way secondaries,

tertiaries etc. are included. (Production of 10B via the 10Be-decay channel is

important and requires a second iteration of this procedure.) GALPROP includes

K-capture and electron stripping processes, where a nucleus with an electron (H-

like) is considered a separate species because of the difference in the lifetime. Since

H-like atoms have only one K-shell electron, the K-capture decay half-life has to be

increased by a factor of 2 compared to the measured half-life value.

1 See http://galprop.stanford.edu and https://gitlab.mpcdf.mpg.de/aws/galprop.
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Primary electrons are treated separately. Normalization of protons, helium and

electrons to experimental data is provided (all other isotopes are determined by the

source composition and propagation). c-rays and synchrotron are computed using

interstellar gas survey data (for pion-decay and bremsstrahlung) and the ISRF model

(for inverse Compton). Spectra of all species on the chosen grid and the c-ray and

synchrotron skymaps are output in a standard astronomical format for comparison

with data. Extensions to GALPROP includes non-linear wave damping (Ptuskin

et al. 2006).

We remark that while GALPROP has the ambitious goal of being ‘realistic’, it is

obvious that any such model can only be a crude approximation to reality. Some

known limitations are: boundary condition (flux set to zero) at the halo boundary is

not physical, only energies below 1015 eV are treated (no trajectory calculations),

spatially uniform source abundances are assumed, though stochastic sources in

space and time are also implemented.

CR propagation is traditionally treated as a spatially smooth, steady-state process.

Because of the rapid diffusion and long containment time-scales in the Galaxy this

is to first order a sufficient approximation, but there are cases where it breaks down.

The rapid energy loss of electrons and positrons above about 100 GeV and the

stochastic nature of their sources produces spatial and temporal variations.

Supernovae are stochastic events and each SNR source of CR accelerates for only

104 � 105 years, which leaves an imprint on the distribution of electrons. This leads

to large fluctuations in the CR electron/positron density at high energies, so that the

lepton spectrum measured near the Sun may not be typical (Strong et al. 2004).

These effects are much smaller for nucleons since there are essentially no energy

losses except ionization at low energies, but they are still included. Such effects can

influence the B/C ratio (Taillet et al. 2004; Büsching et al. 2005). A recent time-

dependent GALPROP model is described in Porter et al. (2019).

Here we give some technical details of the GALPROP package, taken from the

GALPROP Explanatory Supplement supplied with the code. These can be

compared with the other approaches described in this review.

Transport equation. GALPROP solves the transport equation with a given source

distribution and boundary conditions for all cosmic-ray species. This includes

Galactic wind (convection), diffusive reacceleration in the interstellar medium,

energy losses, nuclear fragmentation, and decay. The numerical solution of the

transport equation is based on an implicit second-order scheme (e.g. Press et al.

1992). The spatial boundary conditions assume either zero CR density at the

boundaries or, more physically plausible, free particle escape at the boundaries.

Since we have a 3-dimensional (R, z, p) or 4-dimentional (x, y, z, p) problem

(spatial variables plus momentum) we use ‘‘operator splitting’’ to handle the implicit

solution.

The propagation equation is written in the form:
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oN
ot

¼ qðr; pÞ þ $ � ðDxx$N � VNÞ þ o

op
p2Dpp

o

op

1

p2
N

� o

op
_pN � p

3
ð$ � VÞN

h i
� 1

sf
N � 1

sr
N ;

ð18Þ

where N ¼ Nðr; p; tÞ is the density per unit of total particle momentum, NðpÞdp ¼
4pp2f ðpÞ in terms of phase-space density f ðpÞ, qðr; pÞ is the source term, Dxx is the

spatial diffusion coefficient, V is the convection velocity, reacceleration is described

as diffusion in momentum space and is determined by the coefficient Dpp, _p 
 dp=dt

is the momentum loss rate, sf is the time scale for fragmentation, and sr is the time

scale for the radioactive decay.

One can estimate Dpp ¼ p2V2
a = 9Dxxð Þ where the Alfvén velocity Va is introduced

as a characteristic velocity of weak disturbances propagating in a magnetic field, see

(Berezinskii et al. 1990; Schlickeiser 2002) for rigorous formulas.

For a given halo size the diffusion coefficient as a function of momentum and the

reacceleration or convection parameters is determined by boron-to-carbon ratio

data. The spatial diffusion coefficient is taken as Dxx ¼ bD0ðq=q0Þd if necessary

with a break (d ¼ d1;2 below/above rigidity q0), where the factor b (¼ v=c) is a

consequence of a random-walk process. For the case of reacceleration the

momentum-space diffusion coefficient Dpp is related to the spatial coefficient Dxx

where d ¼ 1=3 for a Kolmogorov spectrum of interstellar turbulences. The

convection velocity (in z-direction only) V(z) is assumed to increase linearly with

distance from the plane (dV=dz[ 0 for all z); this implies a constant adiabatic

energy loss. Since the wind cannot blow in both directions at z ¼ 0 this formulation

requires a zero velocity there. A more general case where the wind starts at zero and

reaches a constant value at a specified z has therefore been implemented using a

tanh function.

The distribution of cosmic-ray sources is parameterized and usually chosen to

follow the pulsar distribution from radio observations, since pulsars should be a

good tracer of SNR, which are difficult to detect at large distances. The injection

spectrum of nucleons is assumed to be a power law in momentum, dqðpÞ=dp / p�c.

Energy losses for nuclei by ionization and Coulomb interactions are included, and

for electrons by ionization, Coulomb interactions, bremsstrahlung, inverse Comp-

ton, and synchrotron. The code uses cross-section measurements and energy

dependent fitting functions.

The code calculates the production and propagation of secondary antiprotons

from pp collisions. Secondary positrons and electrons in cosmic rays are the final

product of decay of charged pions and kaons which in turn created in collisions of

cosmic-ray particles with gas. Pion production by pp; pHe;Hep;HeHe collisions are

included.

The nuclei are aligned on the same kinetic energy per nucleon Ekin since this

simplifies the secondary-to-primary computation, where primaries produce secon-

daries of the same Ekin. However the basic CR density used has units of density per

total momentum p since this is natural for propagation. The actual units used
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internally are c
4pNðpÞ, where NðpÞ ¼ dN =dp in units of cm�3 MeV�1, i.e.

N ¼ 4pp2f ðpÞ.
When the flux IðEkinÞ in cm-2 sr-1 s-1 (MeV/nucleon)�1 is necessary, it can be

simply obtained from

IðEkinÞ ¼
bc
4p

dN
dp

dp

dEkin

¼ c

4p
NðpÞA; ð19Þ

where A is the nucleus mass number. This follows from dp ¼ A
b dEkin. The combined

requirements of transport and fragmentation are thus elegantly met. The normal

units for presentation of CR data are cm-2 sr-1 s-1 (MeV/nucleon)�1, and with this

scheme the conversion is trivial. The nucleus energy scales are logarithmic in Ekin.

3.1.1 Numerical solution of the propagation equation

Full explicit method. The diffusion, reacceleration, convection and loss terms in

eq. (18) can all be finite-differenced for each dimension (R, z, p) or (x, y, z, p) in

the form

oN i

ot
¼ N tþDt

i �N t
i

Dt
¼ a1N t

i�1 � a2N t
i þ a3N t

iþ1

Dt
þ qi ; ð20Þ

where all terms are functions of (R, z, p) or (x, y, z, p).

This is the fully time-explicit method (Press et al. 1992) where the updating

scheme is

N tþDt
i ¼ N t

i þ a1N t
i�1 � a2N t

i þ a3N t
iþ1 þ qiDt : ð21Þ

which generalizes simply to any number of dimensions since all the quantities are

known from the current step. It gives more accurate solutions, which tend to the

exact solution according to the computed diagnostics, but are not unconditionally

stable (while Crank–Nicolson is). For this reason it is only applicable for short

enough timesteps. Since no solution of matrix equations is required, this method is

faster than Crank–Nicolson for the same timesteps, and this compensates for the

need for smaller steps.

Fully implicit method. The diffusion, reacceleration, convection and loss terms in

eq. (18) can all be finite-differenced for each dimension (R, z, p) or (x, y, z, p) in

the form

oN i

ot
¼ N tþDt

i �N t
i

Dt
¼

a1N tþDt
i�1 � a2N tþDt

i þ a3N tþDt
iþ1

Dt
þ qi ; ð22Þ

where all terms are functions of (R, z, p) or (x, y, z, p).

This is the fully time-implicit method where the updating scheme is

N tþDt
i ¼ N t

i þ a1N tþDt
i�1 � a2N tþDt

i þ a3N tþDt
iþ1 þ qiDt : ð23Þ

This method is unconditionally stable for all a and Dt, but is only 1st-order accurate

in time.
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The tridiagonal system of equations

�a1N tþDt
i�1 þ ð1 þ a2ÞN tþDt

i � a3N tþDt
iþ1 ¼ N t

i þ qiDt; ð24Þ

is solved for the N tþDt
i by standard methods. Note that for energy losses we use

‘upwind’ differencing to enhance stability, which is possible since we have only loss
terms (adiabatic energy gain is not included here).

Crank–Nicolson method. Alternatively, the propagation equation can be finite-

differenced in the form

oN i

ot
¼ N tþDt

i �N t
i

Dt

¼ a1N tþDt
i�1 � a2N tþDt

i þ a3N tþDt
iþ1

2Dt

þ
a1N t

i�1 � a2N t
i þ a3N t

iþ1

2Dt
þ qi

ð25Þ

This is the Crank–Nicolson method where the updating scheme is

N tþDt
i ¼ N t

i þ
a1

2
N tþDt

i�1 � a2

2
N tþDt

i þ a3

2
N tþDt

iþ1

þ a1

2
N t

i�1 �
a2

2
N t

i þ
a3

2
N t

iþ1 þ qiDt :
ð26Þ

It thus uses a combination of implicit and explicit terms, forming the time-average

of the differentials. Like the fully implicit method, this method is unconditionally

stable for all a and Dt, but is 2nd-order accurate in time, so that larger time-steps are

possible than with the 1st-order scheme.

The tridiagonal system of equations

� a1

2
N tþDt

i�1 þ ð1 þ a2

2
ÞN tþDt

i � a3

2
N tþDt

iþ1

¼ N t
i þ qiDt þ

a1

2
N t

i�1 �
a2

2
N t

i þ
a3

2
N t

iþ1

ð27Þ

or

� a1

2
N tþDt

i�1 þ ð1 þ a2

2
ÞN tþDt

i � a3

2
N tþDt

iþ1

¼ a1

2
N t

i�1 þ ð1 � a2

2
ÞN t

i þ
a3

2
N t

iþ1 þ qiDt
ð28Þ

is again solved for the N tþDt
i by the standard method. Note that the RHS has all

known quantities from the current time-step.

The Crank–Nicolson method described above applies to a one-dimensional case;

the application to 2 or 3 spatial and one momentum dimension requires a

generalization. A straightforward expansion to more dimensions implies solving

large matrix equations (no longer tridiagonal); instead the so-called ADI (alternating

direction implicit) method is used, in which the implicit solution is applied to each

dimension in turn. Each application uses just the operator for that dimension, so the
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tridiagonal scheme can still be used. This however is not completely valid since it

solves a slightly different problem from that with the full operator; however for

small enough timesteps the solution is accurate (see Section on Tests of GALPROP

in the GALPROP Explanatory Supplement).

The explicit method, where the full operator can be used in each timestep without

any overhead for solving matrix equations, is also useful for obtaining an accurate

solution at the end of a run. Although it is not unconditionally stable, this does not

matter provided the timesteps are small enough, which is in any case required for

the implicit methods to maximise their accuracy. A suitable mix of explicit and

implicit methods to obtain an accurate solution with minimum computing

requirements, is the goal.

For 2D, three spatial boundary conditions

NðR; zh; pÞ ¼ N ðR;�zh; pÞ ¼ N ðRh; z; pÞ ¼ 0 ð29Þ

may be imposed at each iteration. This is not physically expected, although it is a

common conventional assumption. More physically plausible is free escape at the

boundaries, which is not the same. For this, it is sufficient simply to not impose the

above conditions in the updating scheme, since the a1; a3 coefficients do not act

outside the boundaries, so there is no diffusive or convective flux inwards at the

boundaries. The resulting solutions then have N [ 0 at the boundaries. In future

more physical boundary conditions could be implemented, e.g. specifying the

outward streaming velocity or the escape probability at the boundaries. No boundary

conditions are imposed or required at R = 0 or in p. Grid intervals are typically

DR ¼ 1 kpc, Dz ¼ 0:1 kpc; for p a logarithmic scale with ratio typically 1.2 is used.

Although the model is symmetric around z ¼ 0 the solution is generated for

�zh\z\zh since this is required for the tridiagonal system to be valid.

For 3D, the spatial boundary conditions

Nð�xh; y; z; pÞ ¼ N ðx;�yh; z; pÞ ¼ N ðx; y;�zh; pÞ ¼ 0 ð30Þ

may be imposed at each iteration, and free escape at the boundary is an option as for

2D. Again no boundary conditions are imposed in p. Grid intervals are typically

Dx ¼ Dy ¼ 0:5 kpc, Dz ¼ 0:1 kpc.

Since we have a 3-dimensional (R, z, p) problem we use ‘operator splitting’ to

handle the implicit solution, as follows. We apply the implicit updating scheme al-

ternately for the operator in each dimension in turn, keeping the other two

coordinates fixed. The source and fragmentation, decay terms are used in every step,

so to account for the 3 substeps, 1
3
qi and 1

3s are used instead of qi, 1=s for the source

term and the fragmentation, decay terms respectively. The coefficients for 3 spatial

dimension are the same except that R is replaced by (x,y) and the finite differencing

coefficients have the same form as for z, and 1
4
qi and 1

4s are used for the source term

and the fragmentation, decay terms respectively, to account for the 4 substeps. With

this scheme the solution can be done via the tridiagonal solution for each dimension

in turn, as described in Press et al. (1992). The spatial 3D scheme is simpler than the

2D one since the diffusion operator is easier to formulate (x,y,z have the same
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form), and in addition it does not have the problem of the boundary condition at

R=0. In the case of anisotropic diffusion, Dzz is used in the z-direction.

Finally all nuclei are normalized to the proton flux from the parameter file, using

the relative abundances given as parameters. The value of Ekin is taken as the

reference value for the proton normalization. All results are output to FITS files for

comparison with data and further analysis.

3.2 Other codes

Following the success of the GALPROP approach described above, other projects

with similar goals were started. Here we just mention these without details, which

can be found in the papers. The DRAGON project (Gaggero et al. 2014) and

references therein which extends the CR propagation to anisotropic and spatially-

dependent diffusion. DRAGON is also publicly available.2 A more physical

approach to diffusion with turbulence incorporated in DRAGON is given in Evoli

and Yan (2014).

USINE is a semi-analytical CR-propagation package, which has the advantage of

speed for model parameter explorations, and which has been the basis of many

recent investigations. USINE is publicly available3 as described by Maurin (2020).

It has been used for many years already (Putze et al. 2011) and references therein. It

has recently been used to study secondary antiprotons (Boudaud et al. 2020) and the

size of the Galactic CR halo (Weinrich et al. 2020).

The numerical packages mentioned have limitations in terms of both accuracy

and speed, and hence the spatial resolution achievable. Hence their use has mainly

been restricted to 2D models with cylindrical symmetry. A new approach is

implemented in the PICARD model (Werner et al. 2013; Kissmann 2014), which is

fully 3D in concept and has state-of-the art numerical techniques. This makes it

possible to handle models with spiral structure at good (e.g. 10 pc) resolution with

reasonable computer resources.

4 Self-consistent models

4.1 The system of equations

To reduce the physical and computational complexity of the CR propagation

problem numerous authors neglected the explicit consideration of the streaming

process by eliminating the Alfvén wave-related component from the CR propaga-

tion speed u in Eq. (2) and by defining the spatial and momentum diffusion

coefficients as free parameters of the model. In phenomenological models the values

of diffusion coefficient are deduced from secondary to primary CR abundances

taken from observational data. Depending on particular needs Eq. (2) might be

integrated directly or with the aid of its number density or energy density moments.

2 At http://www.dragonproject.org.
3 https://dmaurin.gitlab.io/USINE/.
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The latter quantities enable construction of numerical solvers in a conservative

manner, using finite volume methods both in spatial and in momentum dimensions.

In the following considerations we neglect particle acceleration processes, therefore

we assume Dpp ¼ 0. We also omit particle acceleration and radioactive decay.

4.1.1 CR number density

The number density of CR particles in an arbitrarily chosen range ½pL; pR� in

momentum space is defined as

nLR
cr ðx; tÞ 


Z pR

pL

4pp2f ðx; p; tÞdp: ð31Þ

We multiply Eq. (2) by 4pp2 and integrate over p to get the evolution equation for

the particle number density

onLR
cr

ot
¼ �r � ðunLR

cr Þ þ r hDnirnLR
cr

� �

þ 1

3
ðr � uÞpþ bl


 �
4pp2f

� �pR

pL

þQLR;
ð32Þ

where QLR is the spatial density of CR sources and hDni is the momentum-averaged

spatial diffusion tensor of the particle number density (see also Sect. 4.6). In the

limit of pL ¼ 0 and pR ¼ 1 we get the conventional form of the diffusion-advec-

tion equation for CR particle number density

oncr

ot
¼ �r � ðuncrÞ þ r hDnirncrð Þ þ Q: ð33Þ

4.1.2 CR energy density

The CR energy density in a section ðpL; pRÞ of the momentum axis is defined as

eLR
cr ðx; tÞ 


Z pR

pL

4pp2TðpÞf ðx; p; tÞdp: ð34Þ

Again, we integrate Eq. (2) multiplied by 4pp2T over p, where T 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m2c4

p
� mc2 is kinetic energy and m is the rest-mass of CR protons,

electrons or other particles. The resulting equation for the CR energy density reads

oeLR
cr

ot
¼�r � ðueLR

cr Þ þ r hDe
xxireLR

cr

� �
þ 1

3
ðr � uÞpþ bl


 �
4pp2fT

� �pR

pL

�
Z pR

pL

1

3
ðr � uÞpþ bl


 �
4pp2f

cpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2c2

p dpþ SLR :

ð35Þ
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where hDei denotes the momentum averaged diffusion coefficient (see Sect. 4.6) of

the CR energy and SLR sources of CR energy. The CR pressure contribution from

particles in the momentum range ½pL; pR� is

PLR
cr 
 4p

3

Z pR

pL

p3vfdp : ð36Þ

In the limit of pL ¼ 0, pR ¼ 1 and bl ¼ 0 we get the conventional form (see e.g.

Schlickeiser and Lerche 1985) of the momentum-integrated diffusion-advection

equation for the CR particle energy density

oecr

ot
¼ �r � ðuecrÞ þ r hDeirecrð Þ � Pcrðr � uÞ þ S ; ð37Þ

together with an adiabatic equation of state relating the momentum integrated CR

pressure to CR energy density Pcr ¼ ðccr � 1Þecr with adiabatic index equal to 4/3

for a relativistic gas or its value is in the range [4/3, 5/3] if the trans-relativistic

population of CR particles is significant.

4.2 Two-fluid diffusion-advection models

The development of self-consistent methods for the CR transport equation started

with theoretical work by Drury and Voelk (1981), Axford et al. (1982) who

integrated the kinetic equation (2) in momentum space to get a single equation for

the total CR pressure. They supplemented the resulting equation to the set of fluid

equations for the conventional gas. The two components, thermal gas and the

population of the nonthermal CR particles were coupled by the CR pressure term.

The resulting two-fluid system was applied in analytical studies of hydrodynamic

shock structure in the presence of CRs. These preliminary studies have shown that

even for moderately strong shock waves most of the upstream energy flux in the

background plasma is transferred to cosmic rays, and thus demonstrated the

importance of the CR induced dynamical effects in the system composed of CRs

and thermal plasma. Schlickeiser and Lerche (1985) used the two-fluid system of

equations for studies of the dynamics of interstellar gas in galactic disks.

Drury and Falle (1986) presented a first numerical algorithm to model the

propagation of CRs together with thermal gas in 1-D. The algorithm, based on the

solution of an appropriate Riemann problem (see Sect. 4.3.1) has been used to study

the stability of CR-modified shocks.

Kang and Jones (1990) extended the two-fluid model of diffusive shock

acceleration by inclusion of an in-situ CR injection at steady state shocks. In a

companion paper Jones and Kang (1990) presented the results of time-dependent

numerical simulations of CR-mediated shocks based on the two-fluid model. By

means of the piecewise parabolic method (PPM) Colella and Woodward (1984)

modelled the evolution of plane parallel, piston-driven shocks and spherical

adiabatic blast waves. They investigated shocks that sweep up ambient cosmic rays

as well as those that inject the cosmic rays directly. Jones and Kang (1993)
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developed a time-dependent two fluid model of CR acceleration during the impact

of shocks on dense two-dimensional clouds.

Diffusive shock acceleration of relativistic protons and their dynamical feedback

on the background flow was included in the two-fluid model of Jones et al. (1994)

who simulated the dynamical evolution of cosmic gas clouds moving supersonically

through a uniform low-density medium. In their simulations more than 10% of the

initial kinetic energy of the flow was converted into a combination of thermal and

CR energy. The fraction of energy going to CRs exceeded in some cases the energy

transfered to gas.

Frank et al. (1994) carried out numerical simulations with a new conservative

total variation diminishing (TVD) MHD scheme based on a Godunov-type method

by Ryu and Jones (1995), Ryu et al. (1995). They treated CRs as a massless,

diffusive fluid governed by a conservation equation for the CR energy derived from

the momentum-dependent diffusion-advection equation (Skilling 1975a). The CR

energy equation was solved using a second order monotonic advection and Crank–

Nicolson scheme. The paper demonstrated first results of time-dependent two-fluid

CR modified shock simulations in one spatial dimension.

Frank et al. (1995) performed dynamical simulations of oblique MHD cosmic-

ray (CR)-modified plane shock evolution. They solved the system of two-fluid CR-

MHD equations and also a more complete system consisting of MHD equations and

the momentum dependent diffusion-advection equation. The authors compare the

results of two-fluid and momentum-dependent diffusion-advection approaches.

A comprehensive discussion of the strength and weakness of the two-fluid model

was presented by Kang and Jones (1997). They found a good agreement of the two-

fluid model with the dynamical properties of the more detailed diffusion-advection

results. They also found that the validity of the two-fluid formalism does not

necessarily mean that steady state two-fluid models provide a reliable tool for

predicting the efficiency of particle acceleration in real shocks.

Hanasz and Lesch (2003) presented a new numerical algorithm for two-fluid

diffusion-advection propagation of CRs coupled dynamically with thermal plasma,

with anisotropic, magnetic field-aligned diffusion. The algorithm was implemented

into the MHD code ZEUS-3D (Stone and Norman 1992a, b). The paper focussed on

the development of a stable algorithm for anisotropic diffusion of CRs along

magnetic field vectors defined on a staggered mesh. Details of the anisotropic

diffusion algorithm are presented in Sect. 5.2. The CR propagation algorithm,

involving an explicit diffusion algorithm coupled to the MHD system, has been

demonstrated to be stable within the standard CFL time-step restriction

Dt� 0:5ðDxÞ2=D, where D is the diffusion coefficient. The algorithm was applied

in simulations of the Parker instability triggered by cosmic rays injected by a SN

remnant and subsequently in numerical experiments of the CR-driven dynamo

process (Hanasz et al. 2004, 2009b) and in numerical models of CR-driven winds

(Hanasz et al. 2013).

Snodin et al. (2006) realized that the usual Fickian approach to the diffusion,

which assumes that the flux of the diffusive quantity is proportional to its

instantaneous gradient, leads to several problems. They noted that the anisotropic
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part of CR diffusion tensor becomes singular at magnetic X-points, leading to

infinite CR propagation speeds, and consequently limits the timestep of an explicit

time-stepping algorithm to zero. In order to ensure finite propagation speed they

modified the equation for the diffusive flux to a non-Fickian form motivated by the

turbulent transport of passive scalars (Blackman and Field 2003). The resulting

equation for the diffusive quantity was reduced to the form of telegraph equation

containing an extra second time-derivative, which acts as the displacement current

in electrodynamics. The new term was included with an artificially reduced speed of

light in order to reduce the propagation speed to numerically acceptable values.

4.3 Dynamical CR MHD models

4.3.1 Riemann problem

The aim of this section is to introduce the Riemann problem as well as the principle

of the Godunov method to clarify the terms we use in subsequent sections. The basis

for the dynamical CR models are the fluid equations for the thermal gas, which can

be expressed in primitive (q, u, P) or conserved quantities (q, qu, �). The differential

equations of fluid dynamics in primitive form and one spatial dimension read

qt þ ðquÞx ¼ 0; ð38Þ

ut þ uux þ
px
q
¼ 0; ð39Þ

�t þ u�x þ
p

q
ux ¼ 0; ð40Þ

where we use the short notation qt 
 oq=ot. The three equations describe the

conservation of mass, momentum and total energy. We define etot ¼ qð1
2
u2 þ �Þ,

where � ¼ p
ðc�1Þq and c ¼ Cp

Cv
. The equivalent set of HD equations in conservative

form is

Ut þ FðUÞx ¼ 0: ð41Þ

U ¼
u1

u2

u3

2
64

3
75 


q

qu

etot

2
64

3
75; F ¼

f1

f2

f3

2
64

3
75 


qu

qu2 þ p

uðetot þ pÞ

2
64

3
75; ð42Þ

where U is the vector of conservative quantities, F is the vector of corresponding

fluxes. The equations of hydrodynamics are hyperbolic partial differential equations

(see, e.g. LeVeque 2002; Toro 2009; Balsara 2017), whose time dependent solutions

are given by the so-called charateristics. The characteristic curves are lines in space-

lime along which U stays constant. Their slope is given by eigenvalues of the

Jacobian joFi=oxjj. For the advection equation of quantity q with constant velocity u
in one dimension,

123

2 Page 28 of 92 M. Hanasz et al.



oq

ot
þ u0

oq

ox
¼ 0; ð43Þ

the characteristcs are linear functions that simply translate the quantity q. More

generally we find solutions by geometrical translation of the initial state to a given

point along characteristic lines. In the full set of equations we find that besides

advection the system is influenced by the pressure in the gas and the corresponding

sound waves c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cP0=q0

p
. The system yields three different characteristcs,

k�1 ¼ u0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cP0=q0

p
¼ u0 � c0; ð44Þ

k0 ¼ u0; ð45Þ

kþ1 ¼ u0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cP0=q0

p
¼ u0 þ c0; ð46Þ

which are the ones for advection (k0), the advected fluid and a left-going sound

wave (k�1) as well as the advection and a right-going sound wave (kþ1). The

characteristics of this problem are illustrated in Fig. 2.

In numerical setups we discretize the domain into cells i and use the discretized

form of conservation laws. Integration over a control volume—a finite section of

space and time—leads to the evolution equation (Godunov method)

Unþ1
i ¼ Un

i þ
Dt
Dx

Fi�1
2
� Fiþ1

2

h i
; ð47Þ

where Un
i are averaged conservative quantities over the cell volume and Fi�1

2
are the

fluxes between cells averaged over the timestep.

The Riemann problem describes an initial value problem using a discontinuous

initial state S with piecewise constant values on either side of the interface x0

S ¼
S1 x� x0

S2 x[ x0;



ð48Þ

The time evolution is described by three types of wave structures, namely shocks,
rarefaction waves and contact discontinuities. The solutions can be found by

solving the so-called Rankine–Hugoniot jump conditions which represent conser-

vation laws across discontinuities

Fig. 2 Visualisation of the characteristics of the sound waves. The left side shows the subsonic case the
right side the supersonic case
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½qv� ¼ 0; ð49Þ

qv2 þ P
� �

¼ 0; ð50Þ

1

2
v2 þ �þ P

q

� �
¼ 0; ð51Þ

which is explicitly written as

q1v1 ¼ q2v2 ð52Þ

q1v
2
1 þ P1 ¼ q2v

2
2 þ P2 ð53Þ

1

2
v2

1 þ �1 þ
P1

q1

¼ 1

2
v2

2 þ �2 þ
P2

q2

ð54Þ

Using the Mach number

M1 
 v1

c1

¼

ffiffiffiffiffiffiffiffiffi
q1v

2
1

cP1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�mv2

1

ckBT1

s
ð55Þ

we can write the ratios of densities, pressures and temperatures as follows

q2

q1

¼ v1

v2

¼ ðcþ 1ÞM2
1

ðc� 1ÞM2
1 þ 2

ð56Þ

P2

P1

¼ q2kBT2

q1kBT1

¼ 2cM2
1 � ðc� 1Þ
cþ 1

ð57Þ

T2

T1

¼
ðc� 1ÞM2

1 þ 2
� �

2cM2
1 � ðc� 1Þ

� �
ðcþ 1Þ2M2

1

ð58Þ

Exact solutions can be found with some help of numerical root finding. In numerical

practice it is computationally less expensive to compute approximate solutions

which do not rely on root finding routines, but instead rely on purely algebraical

methods, using explicitely Rankine–Hugoniot conditions (HLL). A particularly

important setup is the Sod shock tube (Sod 1978) with the initial conditions

q1

P1

v1

0
B@

1
CA ¼

1:0

1:0

0:0

0
B@

1
CA;

q2

P2

v2

0
B@

1
CA ¼

0:125

0:1

0:0

0
B@

1
CA: ð59Þ

The most prominent example is a shock tube, with four important interfaces, which

are illustrated in Fig. 3. From left to right we highlight the head and the tail of the

rarefaction wave, the contact discontinuity as well as the shock front moving to the

right.
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The system described so far does not include magnetic fields, which extend the

set of characteristics by magnetic waves. Despite the importance of the magnetic

field for CRs in general we refrain from deriving the additional equations here. This

setup is for one simple thermal fluid. CRs can be included in three different manners

into this setup. The first and most simple inclusion is simply the advection of the CR

fluid with the gas velocity. The second possibility includes the CR pressure into the

jump condition and accounts for the possibility of two different adiabatic indices for

the different fluids as described in Pfrommer et al. (2006). The third possibility does

not just include CRs as an existing fluid, but includes the acceleration of CRs in a

phenomenological way. A fraction of the dissipated energy at the shock is converted

to CRs and treated as a source term in the shocked region. This approach is

described in Pfrommer et al. (2017).

Fig. 3 Shock tube solution at late time. One can clearly distringush between the unperturbed states at the
very left and right, the rarafaction wave, the contact discontinuity and the shock front. Image reproduced
with permission from LeVeque (2002), copyright by CUP
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4.3.2 Extensions of the Riemann problem including CRs

To address the question of dynamical importance of shock-injected CRs during the

structure formation in the KCDM universe (Pfrommer et al. 2006) derived a

complete analytic solution of the Riemann shock-tube problem (Sod 1978) for the

medium composed of thermal gas and relativistic CR component in two-fluid

approximation. They applied their solution in smooth particle hydrodynamics (SPH)

cosmological simulations designed for studies of CR energy injection at cosmo-

logical shocks.

Miniati (2007) added the number density moment of the CR propagation

equation (2) to the system of HD equations and performed characteristics analysis

of the system of quasilinear equations describing the dynamical evolution of thermal

gas combined with a spectral evolution of a CR population. The study focussed on

the hydrodynamical part of the momentum-dependent algorithm (see Sect. 4.5 for

details) for the evolution of CRs, introduced in the COSMOCR code (Miniati 2001).

The CR population was approximated with a piecewise power-law distribution

function. A set of conservation laws for the number density of CR particles in

individual spectral bins, treated as passive scalars, has been supplemented to the

system of conservation laws for thermal gas density, momentum and total (gas plus

CR) energy density. The exchange of energy between the thermal fluid and the CR

components is modeled with flux conserving methods both in configuration and in

momentum space. The proposed numerical method is based on a combination of

Glimm’s method (Glimm 1965) preserving the discontinuous character of shocks

and a higher order Godunov method (Toro 2009) in the smooth flows.

Kudoh and Hanawa (2016) analyzed the CR-MHD equations and proposed a

fully conservative approach to the system of equations consisting of the set of MHD

equations and the equation describing the number density of CR particles in a two-

fluid approach. They proposed a numerical scheme providing solutions that satisfy

the Rankine–Hugoniot conditions. By using the CR concentration normalized to the

thermal gas density v ¼ qcr=q they have shown that their conditions are equivalent

to those obtained by Pfrommer et al. (2006). They derived the corresponding Roe-

type MHD solver (Roe 1981) for the full system of MHD equations (with the total

energy including the energy of thermal gas, cosmic rays and magnetic fields)

supplemented with the evolution equation for the CR concentration. They found that

solutions obtained for different forms for the CR energy equations, with source

terms v � $pcr (Kuwabara et al. 2004) or �Pcr$ � v (Hanasz and Lesch 2003; Yang

et al. 2012; Dubois and Commerçon 2016), differ from the Riemann solution

between the shock front and the contact discontinuity. They find that the Rankine–

Hugoniot relation is seriously violated when the CR pressure dominates in the post-

shocked gas.

Gupta et al. (2021) found that the standard CR two-fluid model described in

terms of three conservation laws (expressing conservation of mass, momentum and

total energy) and one additional equation (for the CR pressure) cannot be cast in a

satisfactory conservative form. The presence of non-conservative terms with spatial

derivatives in the model equations prevents a unique weak solution behind a shock.

Nevertheless, all methods converge to a unique result if the energy partition
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between the thermal and non-thermal fluids at the shock is prescribed a priori. This

highlights the closure problem of the two-fluid equations at shocks. They extended

the analysis further and made a comprehensive comparison of different discretiza-

tion strategies. They constructed a full classification of the available discretization

options for the two-fluid cosmic-ray hydrodynamics by comparison of numerical

aspects of the ’pdv’ and ’vdp’ methods applied for different combinations of

mathematically equivalent energy equations. They compared the cases of the gas

energy equation with the CR energy equation, the total energy equation with the CR

energy equation and total energy equation plus CR entropy equation in two variants

including the operator split and unsplit method. After extensive numerical testing,

they found that the numerical results are consistent for various reconstruction

schemes only with the ’pdv’ method in a fully unsplit fashion with v and pcr
computed from the HLL Riemann solver values of momentum and density states.

4.3.3 CR injection in SN shocks

A separate issue is how to properly inject CRs in astrophysical shocks. The standard

approach is to follow the assumption of Diffusive Shock Acceleration theory

(DSA), relating the injection efficiency of CRs at shocks to the Mach number of the

shock (Kang and Jones 2007). They find that the shock Mach number can be

determined using Rankine–Hugoniot boundary conditions across shocked cells

(Miniati et al. 2000; Ryu et al. 2003a; Skillman et al. 2008; Vazza et al. 2009).

Vazza et al. (2012a) implement an algorithm for CR energy injection in the ENZO

code and apply an approach based on the differences of the gas and CR pressure

between cells. Their algorithm selects candidate shocked cells by requiring that the

flow in the cell is converging: rv\0. Then the 3D distribution of cells around the

candidate cell is analyzed along the three axes, and it is checked that the gas

temperature T, and the gas pseudo-entropy, S ¼ pq�c change in the same direction,

rS � rq[ 0 (Ryu et al. 2003a; Skillman et al. 2008; Vazza et al. 2009). The

gradient of the temperature then sets the candidate post-shock and pre-shock cells.

The Mach number is then evaluated from the information of the pressure jump

between cells given by the Rankine–Hugoniot condition

P2

P1

¼ 2cM2 � cþ 1

cþ 1
ð60Þ

If the shock Mach number is known the energy flux of shock accelerated protons

can be computed as

/CR ¼ gðMÞ quc
3
sM

3

2
; ð61Þ

where qu is the comoving upstream gas density and gðMÞ is a function of M (Kang

and Jones 2007). The injected energy density of CRs within each cell results from

integration of the CR energy flux over time step
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eCR ¼ /CR

q
dt

dx
; ð62Þ

where q is gas density in the cell, dx is the cell size and dt is the timestep. The

method has been further extended by inclusion of the effects of the upstream CR-to-

thermal ratio by Kang and Ryu (2013) and the magnetic obliquity by Pais et al.

(2018).

Pfrommer et al. (2017) presented new methods to integrate the CR evolution

equations coupled to magneto-hydrodynamics on an unstructured moving mesh of

the parallel AREPO code for cosmological simulations. They included an effective

recipe for diffusive shock acceleration of CRs at resolved shocks based on Schaal

and Springel (2015) and at supernova remnants in the interstellar medium. CR

losses are included in terms of Coulomb and hadronic interactions, with CR

streaming neglected. The accuracy of their model was demonstrated using

simulations of plane-parallel shock tubes that were compared to exact solutions

of the Riemann shock tube problem for a composite of CRs and thermal gas with

effective CR acceleration. Capabilities of the new algorithm have been verified in

large scale cosmological simulations and in simulations of galaxy formation.

4.4 Unified Alfvén wave regulated CR transport

One of the first attempts to incorporate the Alfvén wave regulated CR transport

introduced in Sect. 1.5.1 in numerical solutions of CR propagation was undertaken

by Breitschwerdt et al. (1991) in studies of galactic wind driving mechanisms. Their

system of equations, following the analytical work by MacKenzie and Völk (1982),

included the set of stationary MHD equations extended with the CR propagation

(energy balance) equation and with a separate equation for the energy density of the

fluctuating field of Alfvén waves propagating down the CR pressure gradient. A

further extension of the model by Dorfi and Breitschwerdt (2012) discussed time

dependent non-stationary solutions of galactic winds.

Sharma et al. (2010) incorporated CR energy in the form derived by MacKenzie

and Völk (1982)

oPcr

ot
þ $ � ðvPcrÞ þ $ � 4

3
Pcrvs


 �
¼ �Pcr

$ � v
3

� vs � rPcrj j
3

; ð63Þ

where Pcr is the cosmic ray pressure, v is the plasma velocity and

vs ¼ �va
b � rPcr

jb � rPcrj
ð64Þ

is the streaming velocity with va ¼ Bffiffiffiffiffiffi
4pq

p representing Alfvén velocity directed down

the CR pressure gradient and b ¼ B=jBj is the magnetic unit vector. Equation (63)

describes the streaming of CR gas along the magnetic field direction down the

gradient of its pressure.

Equation (63) is challenging for numerical algorithms because the standard

upwind time-evolution algorithms with a CFL-limited time-step result in spurious
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oscillations at the grid scale. These oscillations arise due to unphysically large flux

gradients near the minima and maxima and propagate through the computational

domain. Using a hydro-based CFL (Dt ¼ CDx=vs) leads to spurious oscillations

which originate from the local extrema even for a smooth initial condition.

Monotonicity can be achieved at high computational price for an upwind update by

setting the timestep Dt / Dx3. Numerical solutions of Eq. (63) are unstable even

with implicit methods and regularization of the equation by an additional smoothing

term, resembling incorporation of explicit viscosity in Euler’s equations is

necessary.

Sharma et al. (2010) proposed to replace the discontinuous streaming velocity in

Eq. (63) by its smooth approximation tanhðvs=�Þ, where � is a small parameter. This

operation introduces an additional diffusive term to the CR propagation equation

with the diffusion coefficient vs=� and numerical stability is achieved for the

timestep limitation given by

Dt� Dx2�

2vs
ð65Þ

It has been demonstrated that stable numerical solutions are achievable due to the

regularization.

Uhlig et al. (2012) and later on Dubois et al. (2019) showed that streaming can

be recasted into a diffusion term and be solved with an implicit solver for diffusion.

The streaming transport term in the CR energy equation $ � ½ðecr þ PcrÞvs� becomes

$ � Fcr;s ¼ $ � � ðecr þ PcrÞjBj
jb � recrj

ffiffiffiffiffiffiffiffi
4pq

p bðb � recrÞ
� �

¼ $ � �Dsbðb � recrÞ½ � ð66Þ

and can be interpreted as anisotropic diffusive term, where Ds is the diffusion

coefficient corresponding to the streaming of CRs along magnetic field lines. The

streaming-diffusion process has been modeled with an anisotropic implicit diffusion

algorithm and is an interesting alternative to the one proposed by Sharma et al.

(2010). Characteristic for the solutions obtained with the two different approaches

are the flattened extrema apparent in numerical tests, such as those initiated with

sinusoidal perturbations (see Fig. 4).

To avoid the ad hoc smoothing Jiang and Oh (2018) proposed a new numerical

algorithm based on the two-moment methods of radiative transfer under the reduced

speed of light approximation. The system of equations for the propagation of CR

energy density and flux reads

oecr

ot
þ $ � Fcr ¼ðvþ vsÞ � $ � Pcrð Þ þ Q;

1

V2
m

oFcr

ot
þ $ � Pcr ¼� rcr � Fcr � v � EcrI þ Pcrð Þ½ �;

ð67Þ

where Vm is the maximum speed at which CRs can propagate which, for practical

reasons, is reduced with respect to the speed of light c. The authors demonstrated

that their results are not sensitive to the exact value of Vm as long as it is much larger

than the maximum Alfvén and flow velocities in the simulations. On the other hand
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Vm can be assumed much smaller than the speed of light, which is important for an

effective mitigation of the CFL condition. Essential advantage of the method is that

it ensures a stable evolution for isotropic and field aligned streaming and diffusion

without any regularization procedure. The timestep given by the standard Courant

condition scales linearly with resolution. The full set of equations consists of the

standard set of conservative MHD equations extended with the set of the two

Eq. (67) and with additional CR-related source terms in the momentum and energy

equations. The difference with respect to the approach by Sharma et al. (2010) is

that the interaction coefficient (inverse CR diffusion coefficient) rcr becomes zero

when $Pcr approaches zero. In this regime the term 1
V2
m

oFcr

ot becomes important,

which is the main difference between these two approaches. The flat extrema in the

spatial CR distribution can be understood as the result of CR streaming outwards

until the flat top develops. CRs cannot stream further to produce an inverted profile

because that would require CRs to stream up their gradient. An important element of

the approach is the closure relation between the CR pressure tensor and the CR

energy density. Jiang and Oh (2018) assume that Pcr ¼ Iecr=3. This assumption is

correct only when CRs are strongly coupled to the gas, but in the case of strong

wave dumping CRs may stream freely and the CR pressure can be very anisotropic.

The algorithm has been implemented in the publicly available MHD code

Athena?? (Stone et al. 2020).

Thomas and Pfrommer (2019) developed a new macroscopic transport theory,

which includes both diffusion and streaming of CRs in the selfconfinement picture.

They incorporated resonant excitation of Alfvén waves through the gyroresonant

instability by CRs streaming along magnetic field lines. CR scattering off these

waves modulates the macroscopic CR transport. Their approach relies on the system

Fig. 4 The figure shows the flattened maxima typical for the propagation of CRs down their gradient
along magnetic field direction. Upper and lower panels show different integration schemes and different
timestep choices. Different lines represent different resolutions of the 1D grid adopted for the tests. Image
reproduced with permission from Sharma et al. (2010), copyright by SIAM
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of three equations including an equation for the CR energy density ecr and its flux

density Fcr in the Eddington approximation of radiative transport and the equation

describing the evolution of the energy density of Alfvén waves ea;� excited by the

streaming CRs. The ± signs denote co- and counter-propagating waves with respect

to the large scale magnetic field. The Alfvén-wave regulated CR transport equations

[eqs. (10-16) in Thomas and Pfrommer (2019)] in the fluid (comoving) reference

frame are

oecr

ot
þ $ � vðecr þ PcrÞ þ bFcr½ �

¼ v � $Pcr � va � ggri;þ þ va � ggri;�;
ð68Þ

oðfcr=c
2Þ

ot
þ $ � vFcr=c

2
� �

þ b � $Pcr

¼ � b � $vð Þ � bFcr=c
2

� �
� b � ggri;þ þ ggri;�

� �
;

ð69Þ

oea;�
ot

þ $ � vðea;� þ Pa;�Þ � vabea;�
� �

¼ v � rPa;� � va � ggri;� � Q�;
ð70Þ

where ecr and Fcr, are measured with respect to the comoving (fluid) frame and the

Alfvén wave energy density ea;� is measured in the lab frame, b ¼ B=B is the unit

vector directed along magnetic field and

ggri;� ¼ b

3j�
Fcr 
 vaðecr þ PcrÞ½ � ð71Þ

are the Lorentz forces due to small-scale magnetic field fluctuations of Alfvén

waves.

The subsystem is closed by the grey approximation for the CR diffusion

coefficients linking the diffusion of CR energy density directly to the energy density

of Alfvénic turbulence

1

j�
¼ 9p

8

X
c2

ea;�
2�B

1 þ 2va
c2


 �
; ð72Þ

where X ¼ ZeB=ðcmcÞ is the relativistic gyrofrequency of a CR population with

charge Ze and Lorentz factor c.

The scattering rate of CRs particles depends on the Alfvén wave energy density,

so this energy density has to be dynamically evolved together with the propagation

of CRs. The transport of Alfvén waves depends on several damping processes such

as non-linear Landau damping, ion-neutral damping, turbulent and linear Landau

damping as well as by sub-Alfvénically streaming CRs.

The CR-Alfvénic subsystem is coupled to the set of ideal MHD equations in a

manner ensuring energy and momentum conservation in the non-relativistic limit of

MHD
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oU

ot
þ $�F ¼ S; ð73Þ

with the vector of conserved variables U, the fluxes F 
 FðUÞ, and the source terms

S. The three vectors can be described as (Thomas and Pfrommer 2019)

U ¼

q

qv

e

B

0
BBB@

1
CCCA; F ¼

qv

qvvT þ P1� BBT=ð4pÞ
ðeþ PÞv� B v�Bð Þ=ð4pÞ

BvT � vBT

0
BBB@

1
CCCA;

S ¼

0

g

u � gþ Qþ þ Q�

0

0
BBB@

1
CCCA:

ð74Þ

Here, q is the mass density, v is the velocity, and Qþ, Q� are the source terms of

thermal energy due to Alfvén wave energy losses. For the ion-neutral damping

Qin� ¼ Cinea;�, where Cin is the damping rate for Alfvén waves due to ion-neutral

collisions. For the nonlinear Landau damping Qnll� ¼ ae2
a;�, where the interaction

coefficient a ¼
ffiffi
p

p

8
vth

eB
hki is a function of thermal velocity, magnetic field energy

density and an averaged wavenumber. The turbulent damping and linear Landau

damping lead to Qturbþll� ¼ ðCturb þ CllÞea;� with turbulent damping rate given by

Cturb ’ va
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk;minkmhd;turb

p
, where kmhd;turb is the wavenumber at which the large

scale MHD turbulence is driven and kk;min � 1=rL, rL is the Larmor radius [details

see Thomas and Pfrommer (2019), and references therein].

Symbol g represents forces between CRs, Alfvén waves and the thermal gas:

g ¼ gLorentz þ gponder þ ggri;þ þ ggri;�; ð75Þ

where

gLorentz ¼� ð1� b bÞÞ � $?Pcr; ð76Þ

gponder ¼� $ðPa;þ þ Pa;�Þ ð77Þ

are the Lorentz force due to the large-scale magnetic field and the ponderomotive

force respectively, and Pa;þ þ Pa;� are the ponderomotive pressures.

The thermal and CR energy densities are given by eth and ecr, respectively. The

total pressure P and the total energy density excluding CRs are

P ¼ Pth þ
B2

2
; ð78Þ
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e ¼ eth þ
qv2

2
þ B2

2
: ð79Þ

The system of the equations is closed using an equation of state for both the thermal

as well as the CR fluid,

Pth ¼ ðcth � 1Þ eth; ð80Þ

Pcr ¼ ðccr � 1Þ ecr: ð81Þ

The adiabatic indices are usually set to the canonical value of cth ¼ 5=3 and to

ccr ¼ 4=3 implying a fully relativistic fluid.

Thomas and Pfrommer (2019) presented numerical solutions of the new CR-

Alfvén wave subsystem in one spatial dimension along the magnetic field. The

inclusion of the nonequilibrium kinetic effects in the Alfvén wave propagation

advances significantly the treatment of CR propagation over the approaches

assuming a fixed Alfvén wave background. One of the tests reported by the authors

exhibits the expected property of the system that the non-linear Landau damping

process reduces the wave energy, increases the CR flux density and makes the CR

transport more diffusive. The formalism itself does not depend on free parameters,

since the CR diffusion and the wave Landau damping coefficients are given by

MHD quantities and the characteristic gyrofrequency of CR population in the grey

approximation. The only tunable parameter—the reduced speed of light—is chosen

so that the solution does not depend on its specific value.

The aproach by Thomas and Pfrommer (2019) recovers the equations of Sharma

et al. (2010) in the steady-state limit. The major difference between the formalisms

of Jiang and Oh (2018) and Thomas and Pfrommer (2019) is that the diffusion

coefficient of CRs in the first case is reconstructed from the distribution of ecr

j ¼ j0 þ
opcr

ox

����
����
�1

vaðecr þ PcrÞ; ð82Þ

while in the latter case it is related to the energy density of Alfvén waves and may

be influenced by various damping processes, such as Landau damping, inaccessible

directly in the former approach. The results obtained with the method by Jiang and

Oh (2018) are almost identical to those obtained with the Thomas and Pfrommer

(2019) in a test case initiated with a Gaussian profile of CR energy density, however

a similar test involving the Gaussian profile superposed to an initial uniform CR

background, shown in Fig. 5 indicates advantages of the separate treatment of

Alfveń wave component in the method proposed by Thomas and Pfrommer (2019).

Another interesting alternative for the direct incorporation of the streaming

process on large galactic scales has been proposed by Krumholz et al. (2020) who

develop theoretical models of CR propagation, relating CR diffusion to the

streaming process in magnetic field line random walk (FLRW). They describe the

FLRW as the macroscopic diffusion coefficient to indicate that (1) the averaging is

done over scales larger than the coherence length of MHD turbulence, (2) the

process relies on the Alfvén wave regulated transport, which arises from the first-
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order term in distribution of pitch angles, while diffusion of CR relative to the bulk

flow represents a second-order microscopic diffusion. They present an explicit

formula for the CR parallel diffusion coefficient (their Eq. 20) and show its

dependence on energy (their Fig. 2) for three starbust galaxies and the Milky Way.

They apply the computed diffusion coefficient to a simple model of CR escape and

loss, and show that the resulting c-ray spectra are in good agreement with the

observed spectra of the starbursts NGC 253, M82, and Arp 220. The model

reproduces relatively hard GeV c-ray spectra and softer TeV spectra without the

need for any fine-tuning of advective escape times or the shape of the CR injection

spectrum.

4.5 Momentum-dependent diffusion-advection models

Up to now we have discussed numerical treatments of the diffusion-advection

equation (2) integrated over momentum space which leads us to the two-fluid

approaches applied for the combination of a thermal fluid and CRs treated as a

relativistic fluid. Neglecting the evolution of the whole CR population in

momentum space is a significant simplification.

However, the Fokker–Planck equation (2) can be also discretized and solved

numerically in both spatial and momentum spaces to determine a time-evolution of

the distribution function f ðx; pÞ in a way similar to the approaches implemented in

GALPROP (Strong and Moskalenko 1998), PICARD (Kissmann 2014), DRAGON2

Fig. 5 Comparison of the time evolution of an isolated Gaussian profile of ecr on top of a homogeneous
CR distribution in the approaches by Thomas and Pfrommer (2019), Jiang and Oh (2018) and by Sharma
et al. (2010). Profiles of the CR energy distribution, energy flux and streaming spead reveal signifficant
differences. Image reproduced with permission from Thomas and Pfrommer (2019), copyright by the
authors
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(Evoli et al. 2017), but with dynamical coupling to the thermal plasma taken into

account.

Including the additional momentum dimensions in full generality becomes

computationally demanding because the space of independent variables expands

from three to six dimensions. A practical option is to reduce the problem to four

dimensions by assuming that the distribution function is isotropic. A standard

discretization with piecewise constant values for f requires relatively high spectral

resolution in order to obtain accurate results. Because of a typically high dynamical

range of the power-low distribution function a few hundred bins are necessary to

achieve a reasonable accuracy of the numerical integration (see e.g. Winner et al.

2019; Girichidis et al. 2020b).

Falle and Giddings (1987) and Bell (1987) used partial differential equation

solvers to investigate the time-dependent structure of plane parallel shocks

propagating parallel to the large-scale magnetic field. They solved the CR transport

equation (2) in momentum space, together with the transport of gas and CRs in one

spatial dimension. They used first-order Godunov methods to evolve the gas in a

conservative manner together with a non-conservative treatment of the CR

population represented by the function g ¼ p4f on a uniform grid of the independent

variable y ¼ ln p. The effectively smaller dynamical range of g resulted in a

possibility to reduce resolution of the momentum grid. These authors applied a

Lagrangian formalism for advection and diffusion of the CR spectrum and used the

Crank-Nicholson method. They included injection of particles at the shock position

and assumed a momentum-dependent CR diffusion coefficient.

Another way to reduce the computational cost is to consider CRs as a passive

component needed only for observational diagnostics of the simulated object. In this

case a smaller spatial resolution of synthetic images is usually sufficient, therefore

the spectrum can be evolved for a relatively small set of Lagrangian particles. If

dynamical impact of CRs on the thermal fluid is to be taken into account, the

spectrum is needed for each computational element of the spatial grid. This would

imply the need to process hundreds of momentum bins on multi-dimensional spatial

grids leading to very high computational costs of numerical models.

To mitigate the computational demands several methods have been proposed to

solve the Fokker–Planck equation using a piecewise power-law representation. The

currently popular methods can be classified as one-moment and two-moment

approaches, involving number density ncr and/or energy density ecr moments of the

distribution function f defined in Sect. 4.1.

4.5.1 One-moment approaches

To achieve a more accurate evolution of the spectrum with a lower number of

momentum bins one needs an accurate representation of the spectrum within a

single bin. Since the observed spectra of CRs are power-laws to a good

approximation, a natural choice is the numerical representation by the piecewise

power-low distribution function. Jun and Jones (1999) assumed a piece-wise power-

law electron spectrum of the type
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f ðpÞ ¼ fi�1=2

p

pi�1=2


 ��qi

; ð83Þ

where edges of i-th bin are placed at pi�1=2 and the logarythmic slope qi is attributed

to bin centers. They used the number density as the dependent variable representing

CRs

ni ¼
Z p

iþ1
2

p
i�1

2

4pp2f ðpÞdp ð84Þ

to obtain the number density moment of the CR discretized transport equation (2).

They noted that only a few bins may capture the basic structure of the spectrum.

They assumed a continuous spectrum at the bin boundaries. By imposing the same

values of the slope qi for two lowest bins in the log of momentum space one can

solve, with the use of continuity assumption, the system of equations recursively for

the entire spectrum.

The method has been combined with the ideal MHD equations for an adiabatic

plasma, solved using the ZEUS-3D Eulerian code (Stone and Norman 1992a, b; Jun

et al. 1994). The advection equation for the electron number density was solved by

the standard fluid transport algorithm and the adiabatic compression term was

updated implicitly for the time-centered number density of electrons in each

momentum bin. The CR electrons were treated as a passive population without a

significant pressure affecting the thermal plasma component. The diffusion term in

the CR propagation and the synchrotron losses were ignored. The code has been

used to study the MHD evolution of a Type Ia supernova remnant with CR electrons

and for SN interactions with clouds in two spatial dimensions.

Using the piecewise-powerlaw approximation within another code Jones et al.

(1999) solved the equations of ideal nonrelativistic magnetohydrodynamics (MHD)

in cylindrical coordinates. Tregillis et al. (2001) used the method combined with 3D

MHD simulations of electron transport in radio-galaxies.

The code is an MHD extension of the Harten (1983) conservative, second-order

finite difference total variation diminishing scheme, as detailed in Ryu and Jones

(1995), Ryu et al. (1995, 1998). The electron transport equation was derived from

the general momentum-dependent diffusion advection equation (2) with the effects

of spatial diffusion neglected. To properly treat the particle density at shock

discontinuities their algorithm evolved the normalized concentration of relativistic

particles bi ¼ ni=q, where q is the gas density.

The one-moment piece-wise power-law method proposed by Jun and Jones

(1999) is relatively straightforward and computationally inexpensive, however,

there is a fundamental problem with a continuous description of f in particular for a

locally varying spectrum. Numerical tests (Girichidis et al. 2020b) show that if

energy is injected at one part of the spectrum, the continuity assumption enforces

changes of the local slope across the entire spectrum. The resulting continuous

representation then alternates between a concave and a convex spectrum. Artificial

oscillations superposed to the initially smooth spectrum have a tendency to grow

towards high energy bins revealing a numerical instability of the scheme. To avoid
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these oscillations, the energy in all bins need to be adjusted. The problem is less

severe for a small number of bins, equal or less than 10. An alternative for the

continuous spectrum is the discontinuous modeling, which requires to constrain two

degrees of freedom. Within the one-moment approach one may consider the

additional restriction imposing a constant curvature of the spectrum through the

relation qiþ1 � qi ¼ qi � qi�1, which turns out to be suitable only for CR nucleons,

but not for the fast cooling electrons (Miniati 2001).

An interesting one-moment approach to the propagation of CR electrons, not

affected by the numerical instability described above, was proposed by Mimica

et al. (2009) and implemented in SPEV code and followed by Vaidya et al. (2018)

who incorporated their algorithm in the PLUTO code. These authors presented a

hybrid framework which describes the spectral evolution of highly energetic

particles by means of (mesh-less) Lagrangian macro-particles embedded in a

classical or relativistic MHD fluid. The main purpose of this work was the inclusion

of sub-grid micro-physical processes at macroscopic astrophysical scales where the

fluid approximation is adequate. The MHD equations were integrated by means of

standard Godunov-type finite-volume schemes, while propagation of macro-

particles representing CRs is described by the relativistic version of the cosmic-

ray transport equation (2). In the numerical implementation the number density

moment of the equation corresponding to Eq. (32) was solved for the CR particle

number density normalized to the fluid number density vp ¼ np=n (Vaidya et al.

2018). Spatial diffusion of CR particles as well as back-reaction from particle to the

fluid were not included. The novel aspect of their approach is the Lagrangian

approach in momentum space assuming that bin edge positions drift in accordance

with the flow of particles in momentum space due to actual cooling and heating

processes. Position changes of bin-edges were calculated by means of the method of

characteristics in momentum space reducing the problem to the set of ordinary

differential equations for each Lagrangian particle moving in physical coordinate

space. The Lagrangian discretization in momentum space implies that the particle

number within each bins remains constant. The power-law index q needed for

computing of synchrotron emissivity was computed a posteriori.

4.5.2 Two-moment approaches

Another method proposed by Miniati (2001) binds the pair of distribution function

parameters ðfi�1=2; qiÞ to its two moments: number density ni and energy density ei.

In absence of energy loss processes (radiative and adiabatic losses) these two

moments are conservative quantities and therefore they are suitable for an accurate

evolution with conservative transport schemes in both the spatial and momentum

domains. A summary of the two-moment piece-wise power-law method is presented

in Sect. 5.3.

Using a similar approach Jones and Kang (2005) modelled the propagation of

CRs including advection plus diffusion in space and advection in momentum. The

propagation equation does not include any strong cooling effects, such as the

ionization or synchrotron cooling which act predominantly on one of the edges of
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the spectrum. Therefore the spectrum can be processed in an arbitrarily chosen

range of momentum space, with the momentum boundary condition setting the

particle number density to zero at the high energy end. At the low energy range of

the spectrum the distribution was matched to the thermal particle distribution. The

authors refer to the method as to ‘‘Coarse-Grained Momentum finite Volume’’ or

‘‘CGMV’’. It extends the ideas introduced in Jones et al. (1999), Miniati (2001) for

the case of CR transport across an Eulerian grid including advection and diffusion.

Jones and Kang (2005) extended the CGMV method so that it can be applied to

the treatment of fully nonlinear CR modified shocks. The algorithm has been

implemented in the CRASH code which is based on the high order Godunov-like

shock tracking algorithm. The hydrodynamics routine in that code employs a

nonlinear Riemann solver to follow shock discontinuities within the zones of an

initially uniform grid. Thus, gas sub-shocks in CR-modified shocks remain

discontinuous throughout a simulation, allowing CR transport to be modeled down

almost to the scale of the physical shock thickness. CRASH also employs adaptive

mesh refinement (AMR) around shocks in order to reduce the computational effort

on the spatial grid.

With the aim of studying the Fermi bubbles (kpc-scale gamma-ray features

centred on the Galactic Centre) Yang and Ruszkowski (2017) develop a new

CRSPEC module for FLASH code to track the CR spectrum during MHD

simulations. They construct a scenario for the Fermi bubbles resulting from AGN jet

activity in the center of Milky Way. The specific features of the Fermi bubble’s

spectra including their spatial uniformity, shapes of the spectra and high energy

cutoff at 110 GeV suggest a leptonic origin. The physical nature of the problem

requires, therefore, a method to evolve the spectra of CR electrons dynamically

together with the fluid-dynamical evolution of the expanding bubble. The method

they adopted to trace the CR electrons spectral evolution follows the piece-wise

power-law approach by Miniati (2001). They solve the two-moment set of equations

for a population of CR electrons advected along trajectories of a set of tracer

particles while CR diffusion neglected. They assumed a hydrodynamical evolution

of the thermal component and a fixed magnetic field taken from GALPROP models.

In this sense their approach represents a intermediate step between the CR

propagation in a fixed plasma background and the self-consistent models.

Winner et al. (2019) presented an efficient post-processing code for Cosmic Ray

Electron Spectra that are evolved in Time (CREST) on Lagrangian tracer particles.

The novel element of their method is the division of the overall spectrum into three

parts treated with different methods. They note that for very low momenta the

timescale related to the Coulomb cooling process becomes shorter than the typical

time step of MHD simulations. Similarly, for very high momenta the synchrotron

and inverse Compton energy losses proceed on arbitrarily short timescales. In order

to efficiently calculate the CR electron spectrum with time steps similar to the MHD

time step, they use analytical solutions for low and high momenta together with the

fully numerical treatment for intermediate momenta. The situation is outlined in

Fig. 6.

The analytical approach relies on the consideration of the momentum losses

corresponding to the cooling terms in the CR transport equation (2). The momentum
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losses integrated over a time step lead to the change of the distribution function due

to the cooling which shifts particles with from pini to p within Dt

f ðp; t0 þ DtÞ ¼ f ðpiniðp;DtÞ; t0Þ
_pðpiniðp;DtÞ; t0 þ DtÞÞ

_pðp; t0Þ
: ð85Þ

The cooled spectrum can be interpreted as a momentum shift of the initial spectrum

at time t0 multiplied with a momentum-dependent cooling factor. In the central part

of the spectrum the CR transport equation (2) is solved with the aid of direct

numerical integration relying on the operator split technique. The spectrum is cal-

culated on a discrete momentum grid with piecewise constant values. A cubic

interpolation function is used to calculate the analytic solution after a time step Dt.
The combination of analytical and numerical methods enables the integration of

the spectra on reasonably large MHD time steps. The hybrid analytical-numerical

method is implemented in the CREST module and coupled to the cosmological

MHD code AREPO (Springel 2010; Pakmor et al. 2016c) with CR protons modeled

as a relativistic fluid with a constant adiabatic index of 4/3 in a two-fluid

approximation (Pfrommer et al. 2017). The coupling of CR propagation to the

MHD system is done with the aid of Lagrangian tracer particles, which trace the

velocity field (Genel et al. 2013) and are passively advected with the gas. The CR

electron transport equation is solved for each particle in a post-processing routine on

every MHD time step. The hybrid technique enables modeling of the spectral CR

electron evolution such as adiabatic expansion and compression, Coulomb losses,

radiative losses: inverse Compton, bremsstrahlung and synchrotron processes,

diffusive shock acceleration and re-acceleration, and Fermi-II reaccelleration. The

authors demonstrate that the CR electron spectra are efficiently and accurately

evolved in shock-tube and Sedov-Taylor blast wave simulations. This technique

Fig. 6 Schematic view of characteristic time-scales for electron cooling illustrating the combination of
analytical and numerical solutions. The grey area shows the ranges where either Coulomb or inverse
Compton plus synchrotron cooling dominate and where analytical solutions can be used. Image
reproduced with permission from Winner et al. (2019), copyright by the authors
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opens up the possibility to produce self-consistent synthetic observables of non-

thermal emission processes in various astrophysical environments like SNR

(Winner et al. 2020).

A similar technique based on a combination of the numerical integration with the

aid of piecewise power-law method and the analytical prescription of the Coulomb

cooling has been applied by Girichidis et al. (2020b). The analytical solution helps

to overcome the excessive shortening of the integration timestep whenever the

cooling timescale is significantly shorter than the hydrodynamical timescale. The

numerical integration scheme incorporated the two-moment approach by Miniati

(2001). The original algorithm was modified in the part responsible for cooling

losses, that were computed through a modification of inter-bin fluxes, rather than by

inclusion of source terms (incorporated through the ’R’-term in the original

approach, see Sect. 5) to the evolution equation for the spectral energy density of

CRs. The modification enables a more accurate computation of the spectral slope

and is a less-diffusive alternative for the propagation of CR population in

momentum space. Tests of the algorithm have confirmed that a combination of

injection and cooling of CRs including Coulomb and hadronic losses shows a very

good agreement with theoretical steady state spectra.

Solutions of the CR transport equation (2) including advection, diffusion and

spectral evolution coupled with the MHD evolution of the thermal plasma turn out

to be challenging. Up to now only approaches restricted to a subset of physically

relevant processes have been successful. The GALPROP-type codes include an

extensive set of physical interactions of CR particles under the assumption of fixed

magnetic field, the CGMV method of Jones and Kang (2005) is capable of modeling

spectral evolution together with diffusion, advection and dynamical coupling of the

CR population to the thermal plasma, but cannot cope with the fast cooling

processes. Other implementations (Miniati 2001; Winner et al. 2019) engaging

Lagrangian test particles include particle acceleration and various cooling

processes, but ignore diffusion and dynamical coupling to thermal plasma.

Limitations of the original CGMV method become severe in the presence of fast

cooling processes, such as synchrotron emission, which naturally tends to evacuate

all particles from high energy bins, producing steep spectra near the upper cutoff. To

avoid these limitations Ogrodnik et al. (2021) extended the CGMV method with

movable boundaries, which change in response to CR momentum gains or losses

near the extremes of the population distribution. The extension relies on an

operational definition of spectral cutoffs which define spectral boundaries of the

spectrum. The extension involves a special treatment of momentum bins containing

spectral cutoffs. Contrary to the regular bins of fixed width, those bins have

variable-width, and their outer edges coincide with spectral cutoffs.

The CR spectra may have different cutoffs in each spatial grid cell, because local

cooling conditions (magnetic and velocity fields) are generally different. Due to

advective and diffusive propagation of the CRs across the spatial grid, different

populations of particles mix in every cell. The essential part of the numerical

problem is to estimate an effective cutoff for the mixture of different populations

inflowing from neighboring cells with different cutoffs. The cutoff positions are

estimated from the particle number density and energy density in the outer bins for
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an assumed value of an additional parameter esmall representing the smallest

physically significant level of CR spectral energy density. Estimation of cutoff

positions from the number density and energy density moments enables a

numerically stable computation of power-law indexes in the active bins, especially

those containing the cutoffs, what would not be possible in the case of fixed

boundary conditions in momentum space.

The algorithm is designed to follow spectral evolution of CRs coupled with an

MHD system on Eulerian grids and is particularly useful for modeling of CR

electron population subject to strong synchrotron and inverse Compton cooling in

the high-energy part of the spectrum. The algorithm is suitable for studies of CR

electron spectrum evolution in MHD simulations of the galactic interstellar

medium.

4.5.3 Advances in theory of CR propagation

An important development has been to explicitly compute the trajectories of

charged particles numerically in the magnetised ISM, thus going beyond the

analytical approximations of e.g. the quasi-linear theory. In principle this involves

just the Lorentz force and Maxwell’s equations, i.e. very basic physics. This

approach was pioneered by Giacalone and Jokipii (1994, 1999). The turbulent

magnetic field is modelled as a superposition of modes with a power-law spectrum,

using Alfvén waves. The trajectories are computed for large numbers of particles,

and then statistical properties—diffusion tensors etc—are calculated (e.g. Reville

et al. 2008). The diffusion coefficient perpendicular to the B-field is found to be

much smaller than the parallel coefficient. Casse et al. (2002) extended this

approach to higher energies and a wider range of environments, including SNR,

superbubbles and radio-galaxies.

Desiati and Zweibel (2014) show that even simple magnetic nonuniformities

combined with pitch angle scattering can enhance cross field line transport by

several orders of magnitude, while pitch angle scattering is unnecessary for

enhanced transport if the field is chaotic. Perpendicular diffusion remains relatively

small compared to parallel diffusion. Snodin et al. (2016) study CR diffusion by

means of particle simulations in turbulent magnetic fields. They obtain direct

estimates of the diffusion tensor from test particle simulations in random magnetic

fields, with the Larmor radius scale being fully resolved and find that diffusion

coefficients obtained are consistent with existing transport theories that include the

random walk of magnetic lines. Shukurov et al. (2017) calculate cosmic-ray

diffusivity in intermittent dynamo-generated magnetic fields using test particle

simulations. The results are compared with those obtained from non-intermittent

magnetic fields having identical power spectra. The presence of magnetic

intermittency significantly enhances cosmic-ray diffusion over a wide range of

particle energies. The authors demonstrate that the results can be interpreted in

terms of a correlated random walk. Seta et al. (2018) use test particle simulations,

tracing the propagation of charged particles (protons) through a random magnetic

field, to study the cosmic ray distribution at scales comparable to the correlation
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scale of the turbulent flow in the interstellar medium (* 100 pc in spiral galaxies).

They find that there is no spatial correlation between the cosmic ray number density

and the magnetic field energy density. Low-energy cosmic rays can become trapped

between magnetic mirrors, whose location depends more on the structure of the field

lines than on the field strength. These results are relevant for interpreting

synchrotron emission data which often assume energy equipartition of CRs with

the magnetic field energy.

Meanwhile observation-based models of the Galactic magnetic fields and related

theory are improving, and these can be input to CR propagation studies, as

addressed elsewhere in this review.

4.6 Spatial diffusion of spectrally resolved CRs

In contrast to advection, spatial diffusion includes an interaction of spatial and

spectral changes. Being energy conserving, spatial diffusion itself does not transfer

CRs in momentum space at one position in space, i.e., of=op ¼ 0jx. But the

transport of number and energy density to neighbouring cells depend on the spatial

derivatives of f. Depending on the values in neighbouring fluid elements and

combined with a different diffusion tensor for n and e will result in changes of both

amplitude fi�1=2 and slope qi within one spectral bin, and with that the other physical

processes in the following evolution. We derive the terms for number and energy

density separately. For the former one the spatial diffusion in momentum range

½p1; p2� is given by

otndiff ¼
Z p2

p1

4p$�ðD�$f Þp2 dp

¼ 4p$�
Z p2

p1

p2D�$f dp

� �
;

ð86Þ

with the diffusion tensor D,

D ¼
D11 D12 D13

D21 D22 D23

D31 D32 D33

0
B@

1
CA: ð87Þ

The components include the orientation of the magnetic fields. The components are

chosen to be (Ryu et al. 2003b),

Dij ¼ D?dij þ ðDk � D?Þbibj ð88Þ

with normalised components of the magnetic field, bi ¼ Bi=jBj. The dependency on

momentum is expressed as

DkðpÞ ¼ Dk;10

p

p10


 �a

; ð89Þ
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D?ðpÞ ¼ D?;10

p

p10


 �a

; ð90Þ

with p10 ¼ 10 GeV=c. Parallel and perpendicular diffusion coefficients with respect

to the magnetic field are denoted as Dk;10 and D?;10. Equation (86) can be solved

directly by replacing the individual components yielding

otndiff ¼ 4p$�
Z p2

p1

p2

D11oxf þ D12oyf þ D13ozf

D21oxf þ D22oyf þ D23ozf

D31oxf þ D32oyf þ D33ozf

2
64

3
75 dp: ð91Þ

Here, ok ¼ o=ok is the partial derivative with k 2 fx; y; zg, so the spatial derivatives

of f need to be taken into account. Alternatively, we can write

ondiff

ot
¼
Z p2

p1

4p$�ðDn�$f Þp2 dp

¼ $� Dnh i�$ncrð Þ;
ð92Þ

where the equation formally takes the form of a simple diffusion equation with only

a modified diffusion tensor Dnh i. The individual components of the diffusion tensor

take the form

Dn;ij

� �
¼
R p2

p1
p2 Dij ojf dpR p2

p1
p2ojf dp

: ð93Þ

For Dij ¼ D0
ijðp=p10Þa we find

Dn;ij

� �
¼

D0
ij

pa10

R p2

p1
p2þaojf dpR p2

p1
p2ojf dp

: ð94Þ

In an analogous way we treat the energy density,

otediff ¼
Z p2

p1

4p$�ðD�$f Þp2TðpÞ dp

¼ 4p$�
Z p2

p1

p2TðpÞD�$f dp

� �
;

ð95Þ

with the modified diffusion coefficients

De;ij

� �
¼
R p2

p1
p2TðpÞDij ojf dpR p2

p1
p2TðpÞojf dp

; ð96Þ

which can be rewritten to include the scaling with momentum
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De;ij

� �
¼

D0
ij

pa10

R p2

p1
p2þaTðpÞojf dpR p2

p1
p2TðpÞojf dp

: ð97Þ

The full computation of the spectrally resolved diffusion involves many derivatives

and introduces numerical errors. The usual approach of applying limiters is a very

powerful method for conserved quantities. For a simple numerical representation of

the particle distribution function, e.g. a piecewise constant representation, a limiter

can simply be applied. But if more complex representations are chosen like

piecewise powerlaws as in e.g. Girichidis et al. (2019), the derivatives include the

terms that scale with the spatial derivative of the amplitude as well as the derivative

of the slope. Applying limiters to those individual terms are not simply applicable as

the quantities are not conserved. A simple approximate solution to the full problem

described above is derived in Jones and Kang (2005), where the number density

weighted diffusion coefficient reads

Dni ¼
R piþ1

pi
p2D of

ox dpR piþ1

pi
p2 of

ox dp
)
R piþ1

pi
Dfp2dp

ni
: ð98Þ

The corresponding energy weighted counterpart can be expressed as

Dgi ¼
R piþ1

pi
D of

ox p
3dpR piþ1

pi

of
ox p

3dp
)
R piþ1

pi
Dfp3dp

gi
; ð99Þ

with gi D=p2
� �

i
¼
R piþ1

pi
pDfdp .

5 Numerical details

5.1 Numerical treatment of CR diffusion

Numerically solving diffusive CR transport faces two main challenges. First of all,

the diffusion equation is an elliptic PDE, which means that the solution propagates

infinitely fast, i.e. the domain of dependence is the entire domain. Ideally, one

would like to solve the diffusion equation with an implicit algorithm including the

entire domain. However, this is numerically demanding and approximate solutions

are favoured. The solution using an explicit algorithm requires to satisfy the explicit

von Neumann stability criterion with a maximum integration time step

Dtmax ¼ 0:5 Ccr

Dx2

D
; ð100Þ

where Dx is the resolution of an individual cell and D is the diffusion coefficient.

The second complication is that the diffusion of CRs is highly anisotropic with the

largest diffusion parallel to the magnetic field lines. The diffusion coefficient thus

extends to a diffusion tensor, with coefficients describing the orientation of a flow
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with respect to the magnetic field orientation. For an explicit algorithm the time step

criterion changes to

Dtmax ¼ 0:5 Ccr

minðDx;Dy;DzÞ2

Dk þ D?
ð101Þ

in the case of a dimensional split numerical scheme, where Dk and D? are the

parallel and perpendicular diffusion coefficients, repsectively, and Ccr\1 is the

Courant number (e.g. Hanasz and Lesch 2003). In the case of an unsplit scheme the

numerical coefficient changes to 0.3. Whereas the implicit solution for isotropic

diffusion can simply be computed using the Green’s function, the anisotropic case

does not have a simple form of the Green’s function. Therefore, iterative methods

are used.

5.2 Anisotropic diffusion on a regular mesh

In this section we present details of the implementation of the anisotropic diffusion

algorithm presented by Hanasz and Lesch (2003). The algorithm has been designed

for the staggered mesh setup of the ZEUS-3D MHD code, with the MHD algorithm

involving the constraint transport (CT) (Evans & Hawley 1988) method to ensure

the divergence-free evolution of the magnetic field. The staggered mesh locates the

individual components of the magnetic field on different faces of grid cells: Bx on yz
faces, By on xz faces and Bz on xy. The CR energy density is located in cell centers

and fluxes of CRs are located on cell faces. Different centering of the relevant

quantities implies the need of interpolation ensuring numerical stability of the

anisotropic diffusion algorithm.

The CR diffusion tensor D depends on the spatially variable magnetic field B. Let

us consider the diffusive part of the diffusion–advection equation (37) with the

diffusion tensor given by Eq. (88):

otecr þ $ � Fcr ¼ 0; Fcr ¼ �D$ecr: ð102Þ

In the discrete representation, the 3-dimensional conservation law reads

enþ1
cr;i;j;k ¼ encr;i;j;k �

Dt
Dx

Fcr;iþ1
2
;j;k � Fcr;i�1

2
;j;k

� 	

� Dt
Dy

Fcr;i;jþ1
2
;k � Fcr;i;j�1

2
;k

� 	

� Dt
Dz

Fcr;i;j;kþ1
2
� Fcr;i;j;k�1

2

� 	
;

ð103Þ

where encr;i;j;k and enþ1
cr;i;j;k are volume averaged CR energy densities in the cell i, j, k,

and Fcr;i�1
2
;j;k, Fcr;iþ1

2
;j;k are the CR fluxes through the left and right cell boundaries, in

x-direction. The fluxes appearing in equation (103) should be understood as time-

averaged fluxes through respective cell boundaries. If we approximate these fluxes

by their values computed at the time–level tn, then we obtain an explicit algorithm

for the numerical integration of the CR diffusion equation. To compute the diffusion
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tensor components at cell faces, we need all components of the unit vector n,

parallel to B at each cell face. We start with computing magnetic field aligned unit

vectors at cell–faces perpendicular to the x-axis:

bi�1
2
;j;k ¼

Bi�1
2
;j;k

jBi�1
2
;j;kj

; ð104Þ

and then do the same for the other faces. The magnetic field component Bx is

already located at proper faces, but the location of By and Bz is different, thus an

interpolation is necessary. The linearly interpolated magnetic field vector located at

ðxi�1
2
; yj; zkÞ is therefore

�Bi�1
2
;j;k ¼ Bx

i�1
2
;j;k;

1

4
By

i�1;j�1
2
;k
þ By

i;j�1
2
;k
þ By

i�1;jþ1
2
;k
þ By

i;jþ1
2
;k

� 	�
;

1

4
Bz
i�1;j;k�1

2

þ Bz
i;j;k�1

2

þ Bz
i�1;j;kþ1

2

þ Bz
i;j;kþ1

2

� 	�
:

ð105Þ

The interpolation scheme for By, at the cell–face perpendicular to x-axis, is shown in

Fig. 7.

To compute the diffusive fluxes of CRs across cell faces, one needs all

components of the CR energy density gradient at each cell face. The components of

recr, perpendicular to cell faces, are centered at cell–faces, e.g.:

oxecrð Þði�1
2
;j;kÞ’

1

Dx
ðecr;i;j;k � ecr;i�1;j;kÞ; ð106Þ

however, an interpolation is needed for the remaining components of CR energy–

density gradient. The procedure follows in three steps, as depicted in Fig. 8:

1. interpolation of ecr to centers of cell faces (1)

2. computation of left– and right finite differences of ecr, with respect to

coordinates parallel to cell faces, at positions (2)

Fig. 7 Interpolation of
magnetic–field components to
cell–faces shown in 2D
projection onto xy–plane
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oy;lecr 

1

2Dy
ðecr;i�1;j;kþecr;i;j;kÞ�ðecr;i�1;j�1;kþecr;i;j�1;kÞ
� �

; ð107Þ

oy;recr 

1

2Dy
ðecr;i�1;jþ1;kþecr;i;jþ1;kÞ�ðecr;i�1;j;kþecr;i;j;kÞ
� �

: ð108Þ

3. computation of face–centered slopes at positions (3) monotonized with the aid

of van Leer slope limiter

oyecr

� �
ði�1

2
;j;kÞ’

1

4
oy;lecr þ oy;recrÞð1 þ signð1; oy;lecr oy;recrÞ
� �

: ð109Þ

We note that the monotonization of recr components (step 3.), parallel to the

considered cell faces, is essential for stability of the overall (CR?MHD) algorithm.

The same procedure is applied to get the monotonized slope of ecr in the z–
direction.

ozecrð Þði�1
2
;j;kÞ’

1

4
oz;lecr þ oz;recrÞð1 þ signð1; oz;lecr oz;recrÞ
� �

: ð110Þ

Computation of ð$ecrÞi;j�1
2
;k and ð$ecrÞi;j;k�1

2
follows in the analogous way.

Another variant of transverse flux computation, designed to avoid negative CR

energy densities when there is a large gradient, has been applied by Yang et al.

(2012) following Sharma and Hammett (2007). Their implementation relies on a

Fig. 8 Computation of the monotonized ecr gradient components, shown in 2D projection onto xy–plane
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double use of one of the slope-limiters such as minmod, van Leer or monotonized

central (MC) limiter.

At this point we are ready to compute all CR–fluxes Fcr ¼ �D$ecr at all cell–

faces. We apply the directional–splitting technique to compute the total diffusive

change of CR–energy density, in a single timestep. Subsequent updates of CR–

energy density proceed in a directionally split manner:

enþb
cr;i;j;k ¼ enþa

cr;i;j;k �
Dt
Dx

Fcr;iþ1
2
;j;k � Fcr;i�1

2
;j;k

h i
ð111Þ

enþc
cr;i;j;k ¼ enþb

cr;i;j;k �
Dt
Dy

Fcr;i;jþ1
2
;k � Fcr;i;j�1

2
;k

h i
ð112Þ

enþ1
cr;i;j;k ¼ enþc

cr;i;j;k �
Dt
Dz

Fcr;i;j;kþ1
2
� Fcr;i;j;k�1

2

h i
ð113Þ

where enþa
cr;i;j;k is CR-energy density after the advection step, enþb

cr;i;j;k and enþcr;i;j;k are CR-

energy densities after these quantities have been updated in x and y-directions,

respectively

For more recent models of finite difference and finite volume algorithms for

anisotropic diffusion we would like to point to van Es et al. (2014, 2016).

5.2.1 A semi-implicit extension

Sharma and Hammett (2011) consider purely parallel diffusion along the magnetic

field lines, i.e. D? ¼ 0,

oe

ot
¼ �$ � q; ð114Þ

q ¼ �Dkbðb � $Þe ¼ �Dkbrke; ð115Þ

Defining the components of the diffusion operator on the right hand side of

Eq. (114) as

Dij ¼ � o

oxi
Dkbibj

o

oxj


 �
; ð116Þ

then the method can be formulated as

enþ1 ¼ ð1 þ DtDyyÞ�1ð1 � DtDyxÞð1 þ DtDxxÞ�1ð1 � DtDxyÞen: ð117Þ

An extension to adaptive mesh refinement using an implicit scheme was introduced

by Dubois and Commerçon (2016) in the RAMSES code (Teyssier 2002). In their

algorithm the general anisotropic diffusion is split into an isotropic component and a

component parallel to the magnetic field,
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oe

ot
¼ �$ �Dkbðb$Þe

� �
� $ �Diso$eð Þ: ð118Þ

The updated CR energy in cell i, j is given (in 2D) by

enþ1
i;j þ Dt

Fnþ1
iþ1

2
;j
þ Fnþ1

i;jþ1
2

� Fnþ1
i�1

2
;j
� Fnþ1

i;j�1
2

Dx
¼ eni;j ;

ð119Þ

for cell position i, j. These quantities are evaluated with the centred symmetric

scheme proposed by Günter et al. (2005) for the anisotropic part of the flux. The

anisotropic flux at cell interfaces Fani
i�1=2;j and Fani

i;j�1=2 are evaluated from their cell

corner fluxes Fani
i�1=2;j�1=2, thus

Fani
iþ1

2
;j ¼

Fani
iþ1

2
;j�1

2

þ Fani
iþ1

2
;jþ1

2

2
;

Fani
i;jþ1

2
¼

Fani
i�1

2
;jþ1

2

þ Fani
iþ1

2
;jþ1

2

2
:

The anisotropic cell corner flux is

Fani
iþ1

2
;jþ1

2
¼ �jk �bx �bx

�oe

ox
þ �by

�oe

oy


 �
; ð120Þ

where barred quantities are arithmetic averages over the cells connected to the

corner.

The authors use the diffusion algorithm introduced in Commerçon et al. (2014)

including AMR and adaptive time-stepping on a level-by-level basis. Each

refinement level ‘ is evolved with a corresponding time step Dt‘, where each time

step is twice as large for each coarser level ‘� 1, Dt‘ ¼ Dt‘�1=2. This means that

level ‘ evolves with two consecutive time steps before one time step of level ‘� 1 is

applied. Each level of refinement ‘ is connected to two types of non-uniform

interfaces, namely the fine-to-coarse interface (between level ‘ and ‘� 1) and the

coarse-to-fine interface (between level ‘ and ‘þ 1). Dubois and Commerçon (2016)

use Dirichlet boundary conditions, where the cell values at level boundaries are

imposed. On the other hand, for Neumann boundary conditions the fluxes are

imposed, which are needed to guarantee energy conservation similar to hydrody-

namical solvers.

At the interface from fine-to-coarse, Dubois and Commerçon (2016) use the

values of ‘� 1 at time n as an imposed boundary condition for level ‘. They use the

minmod scheme (van Leer 1979) and interpolate the values of level ‘� 1 on a finer

virtual grid at level ‘ to determine the fine-to-coarse boundary. For the coarse-to-

fine interface they use values of ‘þ 1 at time nþ 1 as the imposed boundary

conditions for level ‘. The value of the boundary coarse cell at level ‘ is restricted to

the average value of the 2dim cells of level ‘þ 1 to impose the coarse-to-fine

boundary. Equation 119 remains correct since the diffusion solver only deals with

data estimated at the same level of refinement. The combination of Dirichlet
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boundary conditions at the level interfaces and the interpolation or restriction

operations does not break the symmetry of matrix A. The imposed values of

neighbouring cells at different levels of refinement enter the right-hand side (in

vector c) of the above matrix system Ax ¼ c.

5.2.2 Diffusion on a Voronoi mesh

Pakmor et al. (2016a) implement the diffusion of the CR strictly along the magnetic

field lines

oecr

ot
� $� Dkb b�$ecrð Þ

� �
¼ 0; ð121Þ

with the CR energy density ecr and the parallel diffusion coefficient Dk. Similar to

Günter et al. (2005) and Sharma and Hammett (2007) they compute the gradient

estimates at the centre of an interface between cells based on the gradient estimates

at the corners. In three dimensions every corner of a Voronoi cell connects to four

adjacent cells. The residual of the gradient fit reads

ri ¼ / cð Þ þ $/ð Þ si � cð Þ � / sið Þ; ð122Þ

with the unknown value at the corner of a cell / cð Þ, the gradient at the corner

position c, $/, and the value at the centre of the cell si, /ðsiÞ. The residual can be

rewritten in matrix form

r ¼ Xq� Y; ð123Þ

where r, q, and Y are N-vectors (N ¼ 4), and X is an N � N matrix. The individual

components are defined as

ðqÞ0 ¼/ cð Þ;
ðqÞ1...N�1 ¼ $/ð Þ0...N�2;

ðYÞi ¼ / sið Þ;
ðXÞi;0 ¼ 1;

ðXÞi;1...N�2 ¼ si;0...N�2 � c0...N�2:

The residual is then minimized by solving

XT X
� �

q ¼ XT Y: ð124Þ

There is a unique solution for q with zero residual because X is a square matrix. In

order to solve for q a multiplication with XT X
� ��1

from the left is used, which

yields

q ¼ M Y; ð125Þ

with M ¼ XT X
� ��1

XT . Here, M only depends on the geometry of the mesh. The

vector Y only contains values at the cell centers. Therefore, M only needs to be
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computed once every timestep as the geometry of the mesh does not change. One

can obtain the value as well as the gradient of any quantity at a corner from a simple

matrix-vector multiplication. Moreover, Eq. (125) shows the linear dependence of

the gradient at the corner on the values in the adjacent cells. This fact is needed for

the implicit time integration.

The estimate of the gradient is given by

$ecr;n ¼ ecr;L � ecr;R

cL � cRj j
cL � cR

cL � cRj j


 �
�nface: ð126Þ

The solution is obtained by a semi-implicit time integration,

e ~n
cr;i ¼ encr;i þ

Dt
Vi

X
j

Dij bij�$enCR;t;ij

� 	
bij�nijAij: ð127Þ

In a second step, the CR energy is advanced according to the fluxes associated with

the normal component of the CR energy density gradients computed at the inter-

faces. This is done with an implicit backward Euler step:

enþ1
cr;i ¼ e ~n

cr;i þ
Dt
Vi

X
j

Dij bij�$enþ1
CR;n;ij

� 	
bij�nijAij: ð128Þ

The term $enþ1
cr;n;ij scales linearly with the CR energy densities. This yields a system

of coupled linear equations, which can be solved using a matrix solver. Pakmor

et al. (2016a) solve the linear system in a two-step procedure using the solvers from

the HYPRE library (Falgout and Yang 2002).

5.3 Numerical scheme for selfconsistent, spectral CR transport

Here we summarise the general framework formulated by Miniati (2001), which we

extend to middly relativistic and non-reativistic ranges of CR momenta.

5.3.1 Evolution of the isotropic CR spectrum on the momentum grid

We assume a piecewise power-law, isotropic (in momentum space) distribution

function

f ðpÞ ¼ fi�1
2

p

pi�1
2

 !�qi

; ð129Þ

where the distribution function amplitudes fi�1
2

are defined on left edges of

momentum bins pi�1
2

and the spectral indices qi are attributed to bin interiors.

The number density of particles in a single momentum bin is
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ni ¼
Z p

iþ1
2

p
i�1

2

4pp2f ðpÞdp ¼
Z p

iþ1
2

p
i�1

2

4pp2fi�1
2

p

pi�1
2

 !�qi

dp; ð130Þ

ni ¼ 4pfi�1
2
p3
i�1

2
�

piþ1
2

pi�1
2

 !3�qi

�1

3 � qi
if qi 6¼ 3

ln piþ1
2
=pi�1

2

� 	
if qi ¼ 3

8>>>>><
>>>>>:

: ð131Þ

The particle density equation in the discretised form (spatial propagation terms and

local sources are neglected here) reads

oni
ot

¼ bðpÞ4pp2f
� �p

iþ1
2

p
i�1

2

; ð132Þ

where b(p) is the loss term. We integrate Eq. (132) over the timestep interval

Z tþDt

t

oni
ot

dt0 ¼ � DnDtiþ1
2
� DnDti�1

2

� 	
; ð133Þ

where DnDt
iþ1

2

and DnDt
i�1

2

are particle numbers transferred through bin boundaries at

pi�1
2

during the time interval Dt.

The discrete form of the particle number becomes

ntþDt
i ¼ nti � DnDtiþ1

2
� DnDti�1

2

� 	
: ð134Þ

We shall approximate kinetic energy of CR particles

TðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m2c4

p
� mc2 
 gðpÞ: ð135Þ

by another piecewise powerlaw function defined for each momentum bin separately

gðpÞ ’ gi�1
2

p

pi�1
2

 !si

; ð136Þ

where the function amplitudes gi�1
2

are defined on left edges of momentum bins pi�1
2

and the power indices si are attributed to bin interiors. The amplitudes gi�1
2

are

computed directly by evaluation of gðpi�1
2
Þ on bin edges and the corresponding

slopes si are

si ¼
log10

g
iþ1

2

g
i�1

2


 �

log10

p
iþ1

2

p
i�1

2


 � : ð137Þ

Thus, the general relation between energy and distribution function amplitudes is
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ei ¼ 4pfi�1
2
gi�1

2
p3
i�1

2
�

piþ1
2

pi�1
2

 !3þsi�qi

�1

3 þ si � qi
if qi 6¼ 3 þ si

ln piþ1
2
=pi�1

2

� 	
if qi ¼ 3 þ si

8>>>>><
>>>>>:

: ð138Þ

Energy equation in the discretised form reads

oei
ot

¼ bðpÞ4pp2f ðpÞTðpÞ
� �piþ1

2

p
i�1

2

�
Z p

iþ1
2

p
i�1

2

bðpÞ 4pcp3f ðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 þ p2

p dp: ð139Þ

The energy loss term (the integral) on the right-hand side of (139) contains the

derivative of kinetic energy

dTðpÞ
dp

¼ cpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m2c4

p : ð140Þ

Since T(p) is approximated by a power-law function we can use Eq. (136) to rep-

resent its derivative

T 0ðpÞ ¼ g0ðpÞ ’ gi�1
2

si
pi�1

2

p

pi�1
2

 !si�1

: ð141Þ

We substitute the second right-hand side term in equation (139), by eiRi:

oei
ot

¼ bðpÞ4pp2f ðpÞTðpÞ
� �piþ1

2

p
i�1

2

�eiRi; ð142Þ

where Ri expresses the energy loss rate per unit energy

Ri ¼
1

ei

Z p
iþ1

2

p
i�1

2

bðpÞ 4pcp3f ðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m2c4

p dp: ð143Þ

For adiabatic cooling

bðpÞ ¼ 1

3
ðr � vÞ p 
 ud p: ð144Þ

To deal with the full (relativistic and non-relativistic) energy range we substitute

(141) in (143)
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Ri ¼
1

ei

Z p
iþ1

2

p
i�1

2

4pudp
3f ðpÞg0ðpÞdpþ . . .

2
4

3
5

¼ 4pcud
ei

fi�1
2
gi�1

2
p3
i�1

2
si �

piþ1
2

pi�1
2

 !3þsi�qi

�1

3 þ si � qi
if qi 6¼ 3 þ si

ln piþ1
2
=pi�1

2

� 	
if qi ¼ 3 þ si

8>>>>><
>>>>>:

þ . . .

ð145Þ

where the dots stand for other cooling mechanisms. By elimination of the energy

density we find that

Ri ¼ udsi þ . . . ð146Þ

We integrate now Eq. (142) over the timestep interval

Z tþDt

t

oei
ot

dt0 ¼ � DeDtiþ1
2
� DeDti�1

2

� 	
�
Z tþDt

t

eiRidt
0; ð147Þ

where DeDt
iþ1

2

and DeDt
i�1

2

are particle energies transfered through bin boundaries at pi�1
2

during the time interval Dt.
We assume that variations of Ri over the timestep are negligible, thus we

approximate the integral on the r.h.s. of (147) as:

Z tþDt

t

eiRidt
0 ¼ 1

2
Dt Ri e

tþDt
i þ eti

� �
: ð148Þ

Hence

etþDt
i � eti ¼ � DeDtiþ1

2
� DeDti�1

2

� 	
� 1

2
Dt Ri e

tþDt
i þ eti

� �
;

etþDt
i ¼

� DeDt
iþ1

2

� DeDt
i�1

2

� 	
þ eti 1 � Ri

2
Dt

� �
1 þ 1

2
Dt Ri

:

ð149Þ

The following part of this section will detail the calculation of the DnDti�1=2 and

DeDti�1=2 terms, which involves fluxes of particles and their energies through bin

boundaries. The procedure relies by construction on the upwind computation of the

fluxes in momentum space.

Computation of upstream momentum pu. Particles loose or gain momentum due

to physical effects underlying the source term b(p) in Eq. (139)

bðpÞ 
 � dp

dt


 �
tot

¼ 1

3
r � vð Þpþ . . . ¼ ud pþ . . .: ð150Þ

We integrate (150) for the case of the adiabatic process
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Z pðtþDtÞ

pðtÞ

dp

p
¼ �

Z tþDt

t

ud dt;

ln ptþDt ¼ ln pt � udDt:

ð151Þ

Our aim is to find the value of the momentum pu at t that becomes lnðpi�1
2
Þ at t þ Dt

ln pi�1
2
¼ ln pu � ud Dt;

and finally we find

pu ¼ pi�1
2
eudDt: ð152Þ

Taylor expansion up to the 1st order in Dt results in:

pu �pi�1
2
ð1 þ udDtÞ: ð153Þ

Computation of upwind quantities DnDt
u;i�1

2

. In the case of cooling the number of

particles transferred from i-th bin through the left bin-face is

DnDt
u;i�1

2
¼
Z pu

p
i�1

2

4pp2f ðpÞdp

¼ 4pfi�1
2
p3
i�1

2
�

pu

pi�1
2

 !3�qi

�1

3 � qi
if qi 6¼ 3

ln
pu

pi�1
2

 !
if qi ¼ 3

8>>>>>>><
>>>>>>>:

:

ð154Þ

In the case of heating the the number of particles transferred from i-th bin through

the right bin-face is

DnDt
u;i�1

2
¼
Z p

i�1
2

pu

4pp2f ðpÞdp

¼ 4pfi�3
2
p3

u

pi�3
2

pu


 �qi�1

�

pi�1
2

pu


 �3�qi�1

�1

3 � qi�1

if qi 6¼ 3

ln
pi�1

2

pu


 �
if qi ¼ 3

8>>>>><
>>>>>:

:

ð155Þ

Computation of upwind quantities DeDtu . In the case of cooling the the amount of

particle energy transferred from i-th bin through the left bin-face:
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DeDt
u;i�1

2
¼
Z pu

p
i�1

2

4pp2f ðpÞTðpÞdp

’ 4pfi�1
2
gi�1

2
p3
i�1

2
�

pu

pi�1
2

 !3þsi�qi

�1

3 þ si � qi
if qi 6¼ 3 þ si

ln
pu

pi�1
2

 !
if qi ¼ 3 þ si

8>>>>>>><
>>>>>>>:

:

ð156Þ

In the case of heating the amount of particle energy transferred from i-th bin through

the right bin-face:

DeDt
u;i�1

2
¼
Z p

i�1
2

pu

4pp2f ðpÞTðpÞdp

’ 4pfi�3
2
gi�3

2
p3

u

pi�3
2

pu


 �qi�1�si�1
ð157Þ

�

pi�1
2

pu


 �3þsi�1�qi�1

�1

3 þ si�1 � qi�1

if qi�1 6¼ 3 þ si�1

ln
pi�1

2

pu


 �
if qi�1 ¼ 3 þ si�1

8>>>>><
>>>>>:

: ð158Þ

5.3.2 Conversion between quantities

The spectral behaviour is best computed using the Fokker–Planck equation using

the amplitudes f and the slopes q. For the coupling to hydrodynamical simulations is

more convenient to use number density and energy density. Both sets of quantities

(f, q and n, e) contain equivalent information, so it is possible to use f and q for the

spectral evolution and then convert to n and e for the coupled part to

hydrodynamics. The computation of n and e based on f and q is straight forward.

The backward conversion can be done by solving the ratio of ei=ni for qi. The

amplitude fi�1=2 cancels in the ratio and the solution for qi is unique.

6 Astrophysical applications

6.1 Modeling galactic CR propagation with GALPROP

6.1.1 Examples of GALPROP model predictions

Figure 9 shows example predictions for a typical GALPROP model: protons,

secondary-to-primary boron/carbon ratio, primary electrons and secondary posi-

trons. This model includes diffusive reacceleration, and breaks in both primary
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injection spectra and diffusion coefficient. The halo height is 4 kpc. The predictions

are for the solar position in the Galaxy (though predictions are made for the entire

Galaxy). The parameters can be found in the GALPROP parameter file with name

galdef_54_reltest23 supplied with the code. Interstellar and example modulated

results (simple force-field approximation) are shown. Sample data are also shown

for comparison; the fit is reasonable, although no attempt has been made to use the

latest available data, nor is any attempt made here to fit the data; this is covered in

literature (Grenier et al. 2015; Boschini et al. 2020a, b).

Figure 10 shows sample all-sky maps from hadronic interactions with the

interstellar gas, and synchrotron radiation from electrons and positrons on the

magnetic field. The gamma-ray maps are generated by GALPROP using the

computed p and He spectra over the Galaxy, and hadronic cross-sections and the

GALPROP neutral, molecular and ionized hydrogen and Helium model, and

integration over the line-of-sight from the solar position. The synchrotron maps use

Fig. 9 Examples of GALPROP model predictions. Upper left: proton spectrum, upper right: Boron to
Carbon ratio, lower left: electrons, lower right: positrons. Top curves are interstellar at the solar position,
and lower curves are solar-modulated with the parameters shown. The plots were made with the
GALPLOT package, available at https://gitlab.mpcdf.mpg.de/aws/galplot
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the electron and positron spectra over the Galaxy, the magnetic field model, and the

full formula for synchrotron including the directional variation with respect to the

magnetic field for the regular component. Such models can be directly compared to

gamma-ray observations e.g. by the Fermi-LAT instrument and radio surveys by

radiotelescopes and the Planck satellite.

6.1.2 Diffusive reacceleration and alternatives

Diffusive reacceleration has been a process frequently included since it explains B/

C without an ad-hoc break in DxxðpÞ and is compatible with the Kolmogorov index

0.33 in this term. It is simply diffusion in momentum due to the gain and loss of

momentum off moving scatterers; hence there is a basic relation between Dpp and

Dxx (see e.g. Strong et al. 2007). However the question remains of the actual

importance of this process in the insterstellar medium. In fact in the models with

large reacceleration, a significant amount of energy is being injected into CR from

the ISM, so that CR acceleration involves more than just the standard sources like

SNR. The source of this energy poses a problem. The issue has been recently

addressed by Thornbury and Drury (2014). This article has a useful and clear

derivation of the reacceleration formula and clarifies its relation to the original

Fermi second-order mechanism. In future the energetics involved should be studied

in more detail. Reacceleration at the level often invoked seems incompatible with

low-frequency synchrotron spectrum which is sensitive to the electron and positron

spectra around a few GeV.

On the other hand, pure diffusion models without reacceleration do have a

problem to reproduce B/C without either a very large break in DxxðpÞ (Strong and

Moskalenko 1998) or an additional velocity dependence in DxxðpÞ (Ptuskin et al.

2006); the latter paper also invokes dissipation of MHD waves as an alternative way

to produce the required DxxðpÞ. The use of B/C depends however critically on the

level of solar modulation used to convert the interstellar ratio to the observed one; a

lower level of modulation than the value �500 MV often adopted would ease the

tension. Lave et al. (2013) compare both reacceleration and pure diffusion models

Fig. 10 Examples of GALPROP model predictions. Left: gamma-ray skymap at 1 GeV, hadronic
production via po-decay. Right: synchrotron skymap, 1 GHz, Stokes I (total). The maps are in Galactic
coordinates, Aitoff projection, centred on Galactic centre. The maps are GALPROP output in Healpix
format, plotted with Aladin from CDS Strasbourg
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with B/C data including the latest ACE data at a few 100 MeV; a modulation

potential of 250 MV is adopted there. More likely convection plays a role in the sub-

GeV/nucleon range as well, since it gives an energy-independent escape time.

It is also possible to include the effect of CR on the diffusion coefficient Ptuskin

et al. (2006). They studied the possibility that the nonlinear MHD cascade sets the

power-law spectrum of turbulence that scatters charged energetic particles. They

found that the dissipation of waves due to the resonant interaction with cosmic-ray

particles may terminate the Kraichnan-type cascade below wavelengths 1013 cm.

The effect of this wave dissipation has been incorporated in the GALPROP

numerical propagation code in order to asses the impact on measurable astrophys-

ical data. The energy dependence of the cosmic-ray diffusion coefficient found in

the resulting self-consistent model may explain the peaks in the secondary to

primary nuclei ratios observed at about 1 GeV nucleon-1.

6.2 CRs in star formation

Star formation occurs in the densest and coldest regions of the turbulent interstellar

medium (Mac Low and Klessen 2004; McKee and Ostriker 2007; Girichidis et al.

2020a). Typical densities of star forming cores exceed 106 cm�3 where the gas is as

cold as � 10 K. The spatial extents are small fractions of parsecs. The role of CRs in

these regions includes several aspects. As CRs penetrate deeply into the protostellar

cores, they deposit energy into regions which are opaque to electromagnetic

radiation (see e.g. recent review by Padovani et al. 2020). This effectively sets a

minimum temperature on the gas temperature in dense gas. As the Jeans mass scales

with the temperature as T3=2 the impact of CRs on the fragmentation might be

dynamically relevant. The second aspect is the impact on the chemical composition.

With their high energy, CRs are able to unbind and ionize many molecules. The

changes in the chemical reactions alter the observable tracers and contain valuable

information on the local conditions (e.g. Bisbas et al. 2017). In the context of star

formation the main focus is on low-energy CRs because of their enhanced cross

section with the thermal particles. Integrated, the CR energy density in the low-

energy component is generally not comparable to the other energy densities.

Consequently, the CR pressure is also not directly driving the motions of the gas and

to first order CRs can be treated as tracer particles or a tracer fluid.

Overall, the time scales for CR transport through star forming regions are much

shorter than the dynamical times scales of the gas. This means that adiabatic gains

and losses of CRs can be neglected contrary to galactic scales where advective and

diffusive time scales are comparable. Given the strong magnetic field strengths of

* mG (Crutcher 2012) and the low energy of CRs (.GeV) the gyro-radii are

smaller than the spatial extents of star forming cores and the CRs can be followed

collectively following the magnetic field lines along the path s.
The distribution function is generally a function of the pitch angle, which

depends on the local strength of the regular magnetic field, and CR scattering that

occurs due to resonant CR interactions with magnetohydrodynamic (MHD)

turbulence and gas nuclei. Depending on the degree of pitch angle scattering, there
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are two CR transport regimes—free streaming and diffusive (Padovani et al. 2018;

Silsbee and Ivlev 2019; Padovani et al. 2020). The free-streaming approximation

[also known as the continuous slowing-down approximation, CSDA, (see e.g.

Takayanagi 1973; Padovani et al. 2009)] is the most common approach used to

calculate the propagation of CRs in molecular clouds. Scattering processes are

inefficient in this regime, so that the resulting mean squared deviation of the pitch

angle along a CR track is small, so l is conserved. The dominant regime of CR

transport in regions surrounding dense cores embedded within molecular clouds is

debated. MHD turbulence in these regions can resonantly scatter the pitch angles of

penetrating CRs (Kulsrud and Pearce 1969), leading to spatial diffusion. The

spectrum of MHD turbulence determines the magnitude of the CR diffusion

coefficient and its dependence on the particle energy (Schlickeiser et al. 2016;

Silsbee and Ivlev 2019). However, MHD turbulence can also be driven by

anisotropy in the CR distribution function (Skilling and Strong 1976; Morlino and

Gabici 2015; Ivlev et al. 2018), which arises in response to CR absorption in dense

cores.

Observationally, the ionisation rate of CRs can be connected to observations of

Hþ
3 , whose chemical formation chain is primarily regulated by CRs (see, e.g.

Indriolo et al. 2007; Indriolo and McCall 2012).

6.3 CRs in the interstellar medium

In this section we discuss the interactions of CRs with the interstellar medium. This

covers the effects in the immediate surroundings of a supernova, the heating in the

interstellar medium, and the dynamical impact within the ISM. The interactions on

larger scales like the impact on galactic outflows are discussed further below. We

will not cover the acceleration mechanism in SN remnant shocks as this involves the

kinetic approach of CRs and is beyond the scope of this review.

Simulations of the interstellar medium allow to resolve the different thermal

phases of the gas including the degree of ionisation. The spatial resolution also

allows to resolve MHD shocks. On the one hand this allows to investigate in more

detail the coupling of CRs with the thermal gas. On the other hand CRs can be

injected at the position of the shock and allow a more consistent injection

mechanism.

In the ISM the transport speeds of CRs and the local tubulent motions can be

comparable, so the local conditions determine whether the CRs diffuse faster than

they are advected or vice versa. Commerçon et al. (2019) perfom simulations of the

turbulent ISM and find that for most cases the effective diffusion speeds are

dominating. As a result, no significant CR pressure gradient can build up and no

dynamical effects are expected on scales of a few tens of parsecs.

Pfrommer et al. (2017) extend the two-fluid shock tube by CR injection at the

shock and applies an on-the-fly shock finder (Schaal and Springel 2015) in several

idealised setups such as a Sedov explosion (Sedov 1959) using the AREPO code

(Springel 2010). Pais et al. (2018) added an obliquity-dependent injection efficiency

with respect to the magnetic field orientation and investigated the impact of CRs
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injected in the shock region on the Sedov explosion finding that the solution remains

self-similar because the ellipticity of the propagating blast wave stays constant over

time. Furthermore, their comparison to observed SN remnants suggests a lower

injection efficiency of only 5 per cent rather than the canonical 10 per cent of the SN

energy. This result is independent of the assumed magnetic coherence length.

Dubois et al. (2019) use a similar approach to inject CRs at the loci of the MHD

shocks with an on-the-fly shock finder in the larger boxes of the interstellar medium

using RAMSES. The efficiency is also coupled to the upstream magnetic obliquity.

Their models include CR streaming as well as ansiotropic diffusion. Similar to Pais

et al. (2018) they find supernova bubbles with large polar caps in case of a

homogeneous background magnetic field, and a patchy structure of the CR

distribution in case of inhomogeneous background fields. The application in a

turbulent box shows that the presence of shock-injected CRs significantly modifies

the structure of the gas.

A more idealized study by Wiener et al. (2017a) investigates a stream of CRs

interacting with cold clouds in a hot dilute environment. Using one-dimensional

models including CR streaming they find that the bottleneck effect, which occurs

when a population of CRs undergoes the streaming instability, will accelerate and

heat the gas cloud. Corresponding two-dimensional models including radiative

cooling of the clouds (Wiener et al. 2019) confirm the acceleration of clouds by

CRs, but reveal that the thermal impact might dominate. The cooling effect will

keep the clouds intact to CR wave heating.

6.4 CR driven large-scale instabilities of the ISM

Observational data indicate that gas, magnetic fields and CRs appear in approximate

energetic equipartition, which is interpreted as the effect of dynamical coupling of

the diverse components of the interstellar medium. The stability of a system in

vertical equilibrium

d

dz
Ptherm þ PCR þ B2

8p


 �
¼ �qgz ð159Þ

without CRs was analysed in Newcomb (1961); the inclusion of CRs dates back to

Parker (1966). Zweibel and Kulsrud (1975) generalized the model for a family

equilibria. The dynamical role of CRs was first recognized by Parker (1966), who

noted that vertically stratified ISM consisting of thermal gas, magnetic fields and

CRs is unstable due to buoyancy of the weightless components, i.e., the magnetic

fields and the CRs.

The physical mechanism of the instability stems from the fact that two weightless

components—magnetic fields and cosmic rays—contribute to the total pressure of

the gravitationally stratified interstellar medium. The thermal gas component is

inflated by these nonthermal pressure contributions. The system is prone to a kind of

convective instability tending to expel the weightless components from the system

and therefore to reduce potential energy of the thermal gas. Linear stability analysis

demonstrates that small-amplitude vertical corrugations of magnetic field lines lead
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to gas motions down to valleys of magnetic fields unweighting tops of the field lines

and therefore enhancing the upward motion of the upper parts of the corrugations

and a downward motion of gas into the valleys.

The instability, hereafter named Parker instability, was recognized as a plausible

mechanism leading to the formation of clouds of gas collecting in valleys of the

large-scale galactic magnetic fields (Parker 1967; Blitz and Shu 1980). Parker

(1992) proposed, furthermore, that the instability enhanced by continues replenish-

ment of CRs in supernova remnants may lead to an amplification of large-scale

magnetic fields in galaxies.

Numerous papers addressing the Parker instability in the ISM by means of linear

stability analysis adopted a simplifying assumption that the diffusive propagation of

CRs is fast enough to ensure a constant pressure of CRs along magnetic field lines.

Ryu et al. (2003b) performed a linear analysis of the Parker instability for the

medium composed of thermal gas, horizontal magnetic field and anisotropicaly

diffusing CRs. The relevant set of equations consisted of the set of ideal MHD

equations and the diffusion-advection equation equivalent to Eq. (37) with the

diffusion tensor in the form of Eq. (88) describing the magnetic-field aligned

anisotropic propagation of CRs. Their results have shown a strong dependence of

the growth rate of the Parker instability on the value of the parallel diffusion

coefficient. Lower diffusion coefficients turned out to reduce the growth rate of the

instability with respect to the case of constant CR pressure along magnetic field

lines, representing the limit of an infinite diffusion coefficient.

The nonlinear evolution of the Parker instability with CRs was addressed by

Hanasz and Lesch (2003), who extended the ZEUS 3D code with a stable numerical

algorithm combining anisotropic diffusion and advection of CRs and coupled the

momentum-integrated diffusion equation with the MHD system equations describ-

ing a thermal plasma (see Sect. 4.2). Numerical simulations have shown that the

growth rate of the Parker instability depends essentially on the adopted value of the

CR diffusion coefficient and that results differ from predictions made on the

grounds of linear stability analysis. The difference was plausibly caused by a

different triggering mechanism of the instability, which in Ryu et al. (2003b) relied

on excitation of a specific ’idealized’ eigenmodes, while in (Hanasz and Lesch

2003) the instability was excited by an instantaneous injection of CRs in a SN

remnant.

The linear and nonlinear analysis of the effects of CR diffusion on the Parker

instability was subsequently extended by Kuwabara et al. (2004) who have shown

that the growth rate of the Parker instability becomes smaller if the coupling

between CRs and thermal gas is stronger (i.e., if the CR diffusion coefficient is

smaller). MHD simulations of the Parker instability with an appropriate perturbation

confirmed this result. Similar conclusions were derived from studies of Parker–

Jeans instability with anisotropic CR diffusion (Kuwabara and Ko 2006). The

system is less unstable when the CR diffusion coefficient is smaller (i.e., the

coupling between the CRs and plasma is stronger) and if the CR pressure is larger.

This conclusion is consistent with the fact that Jeans instability and Parker

instability are less unstable when the pressure is higher. In the nonlinear regime the

Parker–Jeans instability leads to the formation of gas filaments whose orientation
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depends on the parallel diffusion coefficient (Kuwabara and Ko 2020). When the

diffusion coefficient is large gas filaments form preferentially perpendicular to the

magnetic field and when the diffusion coefficient is small the filaments are aligned

parallel to the magnetic field.

Rodrigues et al. (2016) examined the evolution of the Parker instability in

galactic disks using 3D numerical simulations. They have found that the instability

develops a multimodal 3D structure, which cannot be quantitatively predicted from

the earlier linearized studies. They calculated synthetic polarized intensity and

Faraday rotation measure (RM) maps, and the associated structure functions. They

suggested that correlation scales inferred from RM maps can be used to probe the

cosmic-ray content of galaxies.

Heintz and Zweibel (2018) performed a stability analysis of a stratified layer for

three different cosmic-ray transport models: decoupled, corresponding to the classic

Parker instability, coupled with cc ¼ 4=3 but not streaming, named as modified

Parker instability, and coupled with streaming at the Alfvén speed. They

demonstrated that cosmic-ray heating of the gas is responsible for the destabilization

of the system and concluded that Parker instability with cosmic-ray streaming may

play an important role in cosmic-ray feedback. Heintz et al. (2020) expanded the

work by including radiative cooling. Heating due to CR streaming has a

destabilizing effect which affects significantly the nonlinear regime of the Parker

instability. While cooling depressurizes the dense gas, streaming CRs heat and

inflate the diffuse extraplanar gas, greatly modifying the phase structure of the

medium. The fastest growth affects typically the modes characterized by short

wavelengths in the horizontal direction perpendicular to the background magnetic

field.

6.5 Cosmic ray driven galactic dynamo

The idea of the CR-driven dynamo was originally raised by Parker (1992), who

postulated that the buoyancy of CRs together with the Coriolis-force, galactic

differential rotation and magnetic reconnection can lead to efficient amplification of

galactic magnetic fields.

Preliminary numerical experiments pursued with the aid of the thin flux-tube

approximation (Hanasz and Lesch 2000) have shown that the buoyancy of CRs

injected in SN remnants may lead, in the presence of the Coriolis force, to an

efficient generation of the poloidal magnetic field component out of the initial

azimuthal magnetic field (named as a-effect) and to the diffusive transport of

magnetic flux in the vertical direction. The CR-induced diffusive transport

coefficients for the large mean magnetic field, plugged into the mean-field dynamo

equation (Lesch and Hanasz 2003), (see also Kowal et al. 2006) resulted in

exponentially growing solutions, confirming the Parker’s conjecture that CRs may

efficiently drive the dynamo action on galactic scales.

First MHD numerical simulation models (Hanasz et al. 2004, 2006, 2009a;

Siejkowski et al. 2010) of the CR-driven dynamo were realized in a local,

rectangular patch of galactic disk with shearing boundary conditions and rotational
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pseudo-forces (tidal and Coriolis forces) incorporated to study the magnetic field

evolution in rotating galactic disks.

The first global model of the CR-driven dynamo in a Milky Way-type galaxy

(Hanasz et al. 2009b) assumed that: (1) Supernovae convert 10% of their explosion

kinetic energy into cosmic rays. (2) A weak initial magnetic field of stellar origin

was suppled to the system in selected (plerionic type) SN remnants. (3) Differential

rotation of the interstellar gas results from an assumed analytical model of an

axisymmetric galactic gravitational potential (e.g. Allen and Santillan 1991) or from

a computational model of an N-body galactic disk ( Wóltański 2015). (4) The initial

gas distribution follows the global Milky Way model by Ferriere (1998).

Magnetic field amplification originating from the small-scale, randomly oriented

dipolar magnetic fields is apparent through the exponential growth by several orders

of magnitude of both the magnetic flux and the magnetic energy. The growth of

magnetic field saturates at about t ¼ 4 Gyr, reaching values of 3 � 5 lG in the disk.

During the amplification phase, magnetic flux and total magnetic energy grow by

about 6 and 10 orders of magnitude, respectively. The average e-folding time of

magnetic flux amplification is approximately equal to 270 Myr, corresponding to

the orbital rotation period at the galactocentric radius (� 10 kpc). The magnetic field

originated from randomly oriented magnetic dipoles was initially chaotic, as shown

in Fig. 11. Later on, the toroidal magnetic field component formed a spiral structure

revealing reversals in the plane of the disk. The Magnetic field structure evolved

gradually by increasing its correlation scale. The toroidal magnetic field component

became almost uniform inside the disk around t ¼ 2:5 Gyr. The volume occupied by

the well-ordered magnetic field expanded continuously until the end of the

simulation.

To visualise the magnetic field structure in a manner resembling radio

observations of external galaxies, synthetic radio maps of the synchrotron radio-

emission were deduced in a simplified way from the distribution of CR protons. The

polarised intensity of synchrotron emission is shown in Fig. 12 together with

polarisation vectors. Electric vectors, computed on the basis of integrated Stokes

parameters, are rotated by 90� to reproduce the magnetic field direction projected

onto the plane of sky. Polarisation vectors, indicating the mean magnetic field

direction, reveal a regular spiral structure in the face-on view, and the so-called X-
shaped structure in the edge-on view. A particular similarity can be noticed between

the edge-on synthetic radio map and the radio maps of observed edge-on galaxies

such as NGC 891 (Krause 2009).

Kulpa-Dybeł et al. (2011) added an analytical elliptical component to the

axisymmetric gravitational potential. In the presence of the bar perturbation the CR-

driven dynamo reveals new properties, such as the presence of a ring-like structure

as well as a shift of the magnetic arms with respect to the crests of spiral density

waves. Wóltański (2015) used N-body simulations to compute gravitational field of

a nonaxisymmetric disk with spiral density wave perturbations. Density waves were

excited in the disk by addition of a small satellite galaxy. The amplification of

magnetic flux by the CR-driven dynamo leads the large-scale magnetic field to the

saturation level around 10 lG with local maxima reaching 20 � 30 lG, located near

the spiral crests of gas density. Magnetic field vectors are parallel to the gaseous
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spiral arms as it is observed in real galaxies (Fletcher et al. 2011). The strongest

magnetic fields are generated in between gaseous spiral arms (Kulpa-Dybeł et al.

2011, 2015) similarly to magnetic arms observed in some galaxies, such as: NGC

6946 (Beck 2007) and IC 343 (Beck 2015).

The edge-on synchrotron radio maps of the galaxy exhibit polarized synchrotron

emission, extending several kiloparsecs above and below the disk. Similar structures

are common in radio-images of edge on galaxies (see e.g Krause 2009; Soida et al.

2011; Mora and Krause 2013). The X-type structures are present in all global

models of CR-driven galactic dynamo (Hanasz et al. 2009b; Kulpa-Dybeł et al.

2011, 2015). Global-galactic winds accompanying the magnetic field amplification

Fig. 11 Distribution of toroidal magnetic field at t ¼ 20 Myr (top-left), t ¼ 700 Myr (top-right), t ¼
2:5 Gyr (bottom-left), and t ¼ 4:8 Gyr (bottom-right). Unmagnetised regions of the volume are white,
while positive and negative toroidal magnetic fields are marked with red and blue respectively. Note that
the colour scale in magnetic field maps is saturated to enhance weaker magnetic field structures in disk

peripheries. The maximum magnetic field strength are 5:9 � 10�4, 4:4 � 10�3, 1.5 and 29 lG at t ¼ 0:02,
0.7, 2.5 and 4.8 Gyr respectively. Image reproduced with permission from Hanasz et al. (2009b),
copyright by AAS
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are present in practically all numerical realizations of the CR-driven dynamo. The

commonly present CR-driven winds leaving galaxies imply magnetic field transport

out of the disk and effective magnetisation of intergalactic space. This process is

particularly efficient in dwarf galaxies (Siejkowski et al. 2014).

An interesting observation has been made by Butsky et al. (2017) who performed

numerical simulations of an isolated galaxy with a stellar feedback prescription in

which thermal energy and magnetic energy are supplied by supernova explosions,

but CRs are not included. They noted that, similarly to the model of the CR-driven

dynamo, the magnetic field reaches equipartition levels over gigayear timescales

and raised the question of the relative importance of the two primary types of energy

supplied by supernovae: turbulence driven by the thermal expansion of the remnants

themselves, or energy released as CRs, since either by itself appears to be sufficient.

Fig. 12 Synthetic radio maps of polarised intensity (PI) of synchrotron emission, together with
polarisation vectors are shown for the edge-on and face-on views of the galaxy at t ¼ 4:8 Myr. Vectors
direction resembles electric vectors rotated by 90�, and their lengths are proportional to the degree of
polarisation. Image reproduced with permission from Hanasz et al. (2009b), copyright by AAS
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6.6 Cosmic ray driven galactic winds

As supernovae drive strong shocks into the interstellar medium (ISM), some

fraction of the explosion energy is consumed to accelerate ionised particles to

relativistic energies, which are then injected into the ISM (Krymskii 1977; Bell

1978; Blandford and Ostriker 1978). This relativistic fluid is coupled to the galactic

magnetic field and, in particular the hadronic component, is less prone to energy

losses than the gaseous component of the ISM.

The idea of CR wind driving has been proposed by Ipavich (1975) and developed

by numerous authors including Breitschwerdt et al. (1991, 1993), Zirakashvili et al.

(1996), Ptuskin et al. (1997), Breitschwerdt et al. (2002), Uhlig et al. (2012), Dorfi

and Breitschwerdt (2012), who find that CRs together with magnetic fields and

thermal pressure can contribute to the galactic winds phenomenon. Everett et al.

(2008) applied a wind model, driven by combined cosmic-ray and thermal-gas

pressure, to the Milky Way, and shown that the observed Galactic diffuse soft X-ray

emission can be better explained by a wind than by previous static gas models. They

find that cosmic-ray pressure is essential to driving the observed wind.

CRs are strongly coupled to magnetic fields and their mutual interaction should

be followed in a self-consistent way. Hanasz et al. (2004, 2009b), Siejkowski et al.

(2010), Kulpa-Dybeł et al. (2011) and Heintz and Zweibel (2018) have shown that

CRs induce buoyancy effects in the ISM, leading to the break-out of magnetic fields

from galactic disks (Parker 1992). Plausibly, such processes are also relevant for

star-forming galaxies at high redshift which are observed to have significant

magnetic fields at the level of tens of lG (Bernet et al. 2008). Recent observations

even demonstrate the existence of large magnetic fields up 50 kpc away from the

galaxy, indicating strong large-scale magnetised winds (Bernet et al. 2013).

6.6.1 1D models

An early popular model for investigating the impact of CRs on galactic winds are

one-dimensional models. Usually, they focus on large scales compared to the details

of galactic substructure, such that details of the interstellar medium and

substructures inside the galaxy are neglected. The infinitesimally thin disc is

modelled as the source of CRs. The simplified geometry does not allow for details

of the magnetic field or turbulence to be included, but under the assumption of

external confinement of CRs by isotropic turbulent motions or a magnetic field

model the radial dynamics of a wind including CRs can be modelled. The first

application of CRs hydrodynamics in the context of galactic winds was performed

by Breitschwerdt et al. (1991) assuming a steady state flow along magnetic flux

tubes. They found that CRs can drive supersonic mass loss for a wide range of

parameters. Exploring the parameter space of thermal and CR pressure on the mass

loss has been done by Everett et al. (2008) finding that in the Milky Way CRs and

thermal pressure contribute equally to the outflow. Extensions of the models to

time-dependent winds Dorfi and Breitschwerdt (2012) confirm asymptotic solutions

of previous steady state problems and also offer an explanation to the observed

galactic CR spectrum. More recent models include a full CR spectrum in a semi-
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analytic model of advective and diffusive CR transport (Recchia et al.

2016b, a, 2017). Whereas the qualitative results of winds are reproduced, the

inferred spectra are in tension with observed ones.

6.6.2 3D models

Three dimensional models of the interstellar medium and galaxies including CRs

allow for a more natural combination of turbulent motions, a dynamical magnetic

field evolution and the interactions with CRs. However, the numerical cost only

allows for reduced CR physics and a small parameter range to be explored. Jubelgas

et al. (2008) conduct simulations of isolated galaxies including the feedback of the

diffusive CR component included in the GADGET code. They find that CRs can

significantly reduce the star formation efficiencies of small galaxies, with virial

velocities below � 80 km s�1, an effect that becomes progressively stronger

towards low-mass scales. Yang et al. (2012) simulate the onset of a CR-driven

outflow comparable to the Milky Way Fermi bubbles using anisotropic CR

diffusion. Uhlig et al. (2012) use SPH simulations of entire isolated galaxies to test

the wind dynamics including CRs including CR heating due to streaming. Without

magnetic fields, the simulations approximated the Alfvén velocity by the sound

speed and only focus on isotropic transport. Similar approaches have been employed

by Booth et al. (2013), Salem and Bryan (2014) using isotropic CR diffusion. Both

studies find that CRs are able to drive winds, but only for some fraction of the

probed parameter space. Booth et al. (2013) note that the effects of CR-driven

winds are much larger in dwarf galaxies compared to their Milky Way models,

which is still affected by CRs. More recent simulations by Dashyan and Dubois

(2020) investigate in more detail the impact of CR on dwarf systems with different

CR transport mechanisms. They report a stronger impact on the different transport

mechanism than the effective diffusion coefficient.

In a similar framework Salem et al. (2016) investigate the impact of CRs on a

forming 1012M	 halo. They find that CR-inclusive runs, contrasted with a run with

star formation and energetic feedback, but no CRs, substantially enrich the

circumgalactic medium with metals due to robust and persistent outflows from the

disk. The CR-inclusive models reveal more diffuse gas at lower temperatures, down

to 104 K , than the non-CR cases. The CR inclusion leads to a better match of HI,

SiIV, CII, and OIV line intensities than the case without CRs. Comparison of

gamma-ray luminosity to observational data favor CR diffusion coefficients close to

the Milky Way canonical values 3 � 1028 cm2 s�1.

Galaxy simulations including magnetic fields and anisotropic CR diffusion are

performed by Hanasz et al. (2013). Their models are not only able to drive galactic

winds with mass loading factors of order unity but also sustain a CR-driven dynamo

with magnetic field strength at a several lG level. Pakmor et al. (2016b) compare

isotropic and anisotropic diffusion models finding that anisotropic diffusion leads to

more realistic magnetic field strengths than in the isotropic case. Including CR

streaming in galactic models was investigated by Wiener et al. (2017b),

Ruszkowski et al. (2017b). Butsky and Quinn (2018) compare the role of isotropic
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and anisotropic diffusion and streaming mechanisms for shaping the structure of

circumgalactic medium (CGM). They find that all three transport mechanisms result

in strong, metal-rich outflows but differ in the temperature and ionization structure

of their CGM. Isotropic diffusion results in a spatially uniform, warm CGM that

underpredicts the column densities of low ions. Anisotropic diffusion develops a

reservoir of cool gas that extends farther from the galactic center, but disperses

rapidly with distance. CR streaming projects cool gas out to radii of 200 kpc,

supporting a truly multiphase medium.

A systematic parameter study of the impact of CR for different halo masses was

performed by Jacob et al. (2018) finding that CRs only have a significant effect on

the launching of a wind for halo masses below 1012 M	. The combined effects of

AGN and CRs has been simulated by Wang et al. (2020) in isolated galaxies, where

the authors argue that CR streaming and the corresponding heating has to be

included in order to prevent too efficient cooling of the circumgalactic medium.

Besides the isolated disc setups, recent models include CR transport in

cosmological zoom simulations, in which individual galaxies are evolved with

high resolution. Buck et al. (2020) rerun simulations from the AURIGA project

including CRs. They limit the transport coefficients to the Alfvén speed and include

the corresponding heating effect, which changes the structure of the outflow. The

modified structure of the circumgalactic medium results in a different distribution of

angular momentum and thereby alters the stellar and gaseous disk. In a similar

cosmologial setup Hopkins et al. (2021) compare a large variety of subgrid models

for CR confinements, which are connected to the MHD equations using effective

transport coefficients in the diffusion, the streaming as well as combined unified CR

transport. Besides the moderate effect that CRs have on the galactic winds, their

models favour effective diffusion coefficients that range from 1029 � 1033 cm2 s�1,

which is based on the comparison with gamma-ray emission.

The details of how CR winds are driven and in particular the relative importance

and dynamical interplay between SN-driven motions and CR dynamics cannot be

investigated in full galactic models at the current resolutions. Instead simulations of

a smaller fraction of the galaxy are needed. Girichidis et al. (2016, 2018) and Peters

et al. (2015) compare thermally and CR driven winds in more sophisticated model

of the ISM, which includes a chemical evolution to accurately model the phases of

the ISM. The models confirm that CRs alone are able to drive and support an

outflow with mass loading of order unity. The CR driven outflows are denser, cooler

and smoother than their thermally driven counterparts. Figure 13 illustrates the

difference between outflows that are only driven by thermal energy injection by SNe

(left-hand panel) and the outflows driven 10% of the energy injected as CRs (three

right-hand panels). The two central panels show two different diffusion coefficients.

The column density on the right-hand side depicts the structure of the ISM if all SNe

explode in dense regions. The resulting strong overcooling illustrates that CRs alone

are able to lift gas out of the disk. Similar models by Simpson et al. (2016) compare

simulations with advection only and advection plus diffusion. They conclude that

diffusion is needed in order to drive an outflow. The decoupling of CR and the

thermal gas in a neutral environment leads to a broader spatial distribution of
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cosmic rays and higher wind speed compared to the uniformly applied advection-

diffusion approach (Farber et al. 2018). A more sophisticated, locally determined

coupling between CRs and the gas confirms these results (Holguin et al. 2019).

6.7 Cosmic rays in galaxy clusters

CRs are also expected to affect galaxy clusters. One particularly important aspect is

the possible heating effect provided by CR protons from AGN. Simulations

Fig. 13 Comparison of the column density structure in simulations of the interstellar medium. The left-
hand column shows a setup with only thermal energy injection. The three other simulations include CR
injection with an efficiency of 10% of the SN energy. The two central panels show two different diffusion
coefficients. In the right-hand panel the SNe all explode in dense regions, which limits their thermal
impact. This illustrates that CRs alone are able to lift gas out of the galactic disc. Image adapted from
Girichidis et al. (2018), copyright by the authors
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including CR protons produced at shocks reveal that they could provide a

substantial additional pressure in the intracluster medium (Miniati et al. 2001b). A

follow-up study included CR electrons as an additional non-thermal component

(Miniati et al. 2001a). In both cases the CRs are transported with the gas and include

cooling effects. Simulations including diffusion of CR protons that are injected in

shock regions close to the AGN find large X-ray cavities and radio lobes in the hot

diffuse gas of the central regions of galaxy clusters. The cavities are long-lived if the

diffusion coefficient does not exceed 1028 cm2 s�1 (Mathews and Brighenti

2007, 2008; Ruszkowski et al. 2008). A range of galaxy clusters and shock related

CR injection models has been performed by Pfrommer et al. (2007) omitting CR

diffusion. They find that CRs can be efficiently accelerated in strong structure

formation shocks such as accretion and merger shocks. The high relative fraction of

CR pressure in the central region increases the compressibility and allows for more

star formation. A detailed discussion on the differences between CR advection,

diffusion and streaming by Enßlin et al. (2011) suggest that the details of the

transport mechanisms are essential to understand the non-thermal signatures of

clusters. Hydrodynamical simulations including CR streaming and the resulting

heating effect have been run by Ruszkowski et al. (2017a) find that the CR can

efficiently heat the gas and provide a viable channel for the AGN energy

thermalization. More recently, Ehlert et al. (2018) couple CRs to an AGN jet model

and simulate galaxy clusters including a simplified streaming approach. They

introduce an effective CR diffusion coefficient jcr � lcrvA with the CR gradient

length lcr and the Alfvén speed vA, which emulates the combined effects of

streaming and spatial diffusion (Sharma et al. 2009; Wiener et al. 2017b). They

conclude that the CR-induced Alfvén heating matches the CR heating rates needed

to solve the cooling flow problem. Vazza et al. (2012b) model CRs in galaxy

clusters by injecting them in numerically identified shocks and advect them with the

gas flow. The simulations reveal a small but not dominant impact of CRs on the

evolution with changes at the percent level for the temperature, pressure and density

distribution.

One of the first attempts to investigate the spectrum of relativistic electrons in

cosmological shocks has been made by Keshet et al. (2003) who studies the

radiation emitted due to inverse Compton process by shock-accelerated electrons in

hydrodynamic cosmological simulations of a Lambda cold dark matter (KCDM)

universe. They performed a posteriori detection and analysis of shocks forming in

cosmological simulations to predict the spectrum of CR electrons and the spectrum

of c-ray photons emitted from cosmological shocks. They subsequently constructed

all-sky maps of c-ray emission from the nearby universe.

Pfrommer et al. (2006) derived an analytic solution to the one-dimensional

Riemann shock tube problem for a composite plasma of CRs and thermal gas. They

applied their solution to study the properties of structure formation shocks in high-

resolution hydrodynamic simulations of the KCDM universe. They found that most

of the energy is dissipated in weak internal shocks with Mach numbers M� 2. They

recognized the dynamical importance of shock-injected CRs which is comparatively

large in the low-density, peripheral halo infaling regions, buts is less important for
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the weaker flow shocks ocuring in central high-density regions of haloes. They

raised questions of cosmological implications of the CRs component and for

observational signatures of this radiation.

In the context of AGN feedback Sijacki et al. (2008) include CRs together with

thermal feedback. The two-component fluid with an effectively softer equation of

state and the less efficient cooling for CRs compared to the thermal gas allows CR

supported bubbles to rise to the outskirts of the clusters and leak into the

surrounding intergalactic medium. However, neither the accretion rates onto the

black hole nor the star formation rate are significanty affected by the non-thermal

component.

7 Conclusions and outlook

We have reviewed the numerical treatment of CRs assuming a fluid description of

this high-energy component. We identified three main approaches in treating CRs

numerically. The first is a spectrally resolved approach with a focus on the physical

processes of CRs like the primary CRs and the production of secondaries. The most

prominent code that represents this approach is GALPROP with more recent

frameworks DRAGON and PICARD. The second numerical model focuses on the

dynamical coupling of CRs and the thermal gas in (magneto)-hydrodynamical

simulations. Here, CRs take the role of dynamical drivers of hydrodynamical flows.

In the context of the interstellar medium and galaxy formation CRs are an important

additional reservoir of energy. The numerical complexity in this approach is more in

the interaction between the two fluids. Simple linear diffusion models are

challenged by more complex models that account for the CR streaming instability

and couple CRs to the gas including more plasma effects. A third approach tries to

spectrally resolve CRs and at the same time include the dynamical impact onto the

gas dynamics. The numerical and computational complexity forces this approach to

be limited in both spectral complexity and multiple species of CRs and in the details

of plasma interactions of relativistic and thermal gas.

Depending on the application the currently developed models still face major

limitations. In the interstellar medium and for the dynamics of galaxies all three

approaches would need to be merged and coupled. For the connection with

observations—in particular for a comparison with the Milky Way—a detailed

modeling of secondaries is of major importance. Similarly, a spectrally resolved

modeling of CR electrons as tracers of local thermal and CR properties are key to

understand the galaxies. The structure of the magnetic field in galaxies is strongly

connected to the dynamics of CRs. Magnetohydrodynamical simulations naturally

include an evolving magnetic field that follows and/or shapes spiral structures and

interacts with dynamos and local instabilities of the gas like Parker loops. The

combined CR-MHD models using a single CRs fluid approach reveal that CRs can

be dynamically important for shaping the magnetic field, structuring the interstellar

medium, and driving galactic outflows and winds. However, the relative importance

of CRs compared to other processes in galaxies as well as which details of CR

physics are the crucial ones to resolve, include and simulate are still strongly
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debated. Currently, there is converging consensus that CRs—in particular the

dynamically more relevant CR protons—should be coupled to the thermal gas and

treated in a time-dependent manner. The missing physical aspects in this approach

like a spectral CR description and the inclusion of multiple species and secondaries

are on the agenda for the near future.
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Commerçon B, Debout V, Teyssier R (2014) A fast, robust, and simple implicit method for adaptive time-

stepping on adaptive mesh-refinement grids. Astron Astrophys 563:A11. https://doi.org/10.1051/

0004-6361/201322858. arXiv:1401.1112 [astro-ph.IM]
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Dubois Y, Commerçon B, Ar Marcowith, Brahimi L (2019) Shock-accelerated cosmic rays and streaming

instability in the adaptive mesh refinement code Ramses. Astron Astrophys 631:A121. https://doi.

org/10.1051/0004-6361/201936275. arXiv:1907.04300 [astro-ph.GA]

Duvernois MA, Simpson JA, Thayer MR (1996) Interstellar propagation of cosmic rays: analysis of the

Ulysses primary and secondary elemental abundances. Astron Astrophys 316:555–563

123

Simulations of cosmic ray propagation Page 81 of 92 2

https://doi.org/10.1086/426537
https://doi.org/10.1086/426537
https://doi.org/10.3847/1538-4357/aaeac2
http://arxiv.org/abs/1803.06345
https://doi.org/10.3847/1538-4357/aa799f
https://doi.org/10.3847/1538-4357/aa799f
http://arxiv.org/abs/1610.08528
https://doi.org/10.1088/0004-637X/783/2/91
http://arxiv.org/abs/1310.2943
https://doi.org/10.1103/PhysRevD.65.023002
https://arxiv.org/abs/astro-ph/0109223
https://doi.org/10.1007/BF00642346
https://doi.org/10.1016/0021-9991(84)90143-8
https://doi.org/10.1051/0004-6361/201322858
https://doi.org/10.1051/0004-6361/201322858
http://arxiv.org/abs/1401.1112
https://doi.org/10.1051/0004-6361/201833809
https://doi.org/10.1051/0004-6361/201833809
http://arxiv.org/abs/1811.11509
https://doi.org/10.1023/A:1013820309913
https://doi.org/10.1023/A:1013820309913
https://doi.org/10.1146/annurev-astro-081811-125514
https://doi.org/10.1146/annurev-astro-081811-125514
https://doi.org/10.3847/0004-637X/831/1/18
https://doi.org/10.1051/0004-6361/201936339
http://arxiv.org/abs/2003.09900
https://doi.org/10.1063/1.1324351
https://doi.org/10.1063/1.1324351
https://doi.org/10.1088/0004-637X/791/1/51
http://arxiv.org/abs/1402.1475
https://doi.org/10.1051/0004-6361/201118082
https://doi.org/10.1051/0004-6361/201118082
http://arxiv.org/abs/1304.1311
https://doi.org/10.1093/mnras/223.2.353
https://doi.org/10.1086/159159
https://doi.org/10.1051/0004-6361/201527126
https://doi.org/10.1051/0004-6361/201527126
http://arxiv.org/abs/1509.07037
https://doi.org/10.1051/0004-6361/201936275
https://doi.org/10.1051/0004-6361/201936275
http://arxiv.org/abs/1907.04300


Ehlert K, Weinberger R, Pfrommer C, Pakmor R, Springel V (2018) Simulations of the dynamics of

magnetized jets and cosmic rays in galaxy clusters. MNRAS 481(3):2878–2900. https://doi.org/10.

1093/mnras/sty2397. arXiv:1806.05679 [astro-ph.CO]

Elmegreen BG, Scalo J (2004) Interstellar turbulence I: observations and processes. Annu Rev Astron

Astrophys 42:211–273. https://doi.org/10.1146/annurev.astro.41.011802.094859

Enßlin T, Pfrommer C, Miniati F, Subramanian K (2011) Cosmic ray transport in galaxy clusters:

implications for radio halos, gamma-ray signatures, and cool core heating. Astron Astrophys

527:A99. https://doi.org/10.1051/0004-6361/201015652. arXiv:1008.4717 [astro-ph.CO]

Evans CR, Hawley JF (1988) Simulation of magnetohydrodynamic flows: a constrained transport model.

Astrophys J 332:659. https://doi.org/10.1086/166684

Everett JE, Zweibel EG, Benjamin RA, McCammon D, Rocks L, John Gallagher IS (2008) The Milky

Way’s Kiloparsec-Scale wind: a hybrid cosmic-ray and thermally driven outflow. Astrophys J

674(1):258–270. https://doi.org/10.1086/524766. arXiv:0710.3712 [astro-ph]

Evoli C, Yan H (2014) Cosmic ray propagation in galactic turbulence. Astrophys J 782:36. https://doi.org/

10.1088/0004-637X/782/1/36. arXiv:1310.5732 [astro-ph.HE]

Evoli C, Gaggero D, Vittino A, Di Bernardo G, Di Mauro M, Ligorini A, Ullio P, Grasso D (2017)

Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients. JCAP

2:015. https://doi.org/10.1088/1475-7516/2017/02/015. arXiv:1607.07886 [astro-ph.HE]

Falgout RD, Yang UM (2002) hypre: A library of high performance preconditioners. In: Sloot PMA,

Hoekstra AG, Tan CJK, Dongarra JJ (eds) Computational science—ICCS 2002. Lecture notes in

computer science, vol 2331. Springer, Berlin, pp 632–641. https://doi.org/10.1007/3-540-47789-6_

66

Falle SAEG, Giddings JR (1987) Time-dependent cosmic ray modified shocks. MNRAS 225:399–423.

https://doi.org/10.1093/mnras/225.2.399

Farber R, Ruszkowski M, Yang HYK, Zweibel EG (2018) Impact of cosmic-ray transport on galactic

winds. Astrophys J 856:112. https://doi.org/10.3847/1538-4357/aab26d. arXiv:1707.04579 [astro-

ph.HE]

Ferriere K (1998) Global model of the interstellar medium in our galaxy with new constraints on the hot

gas component. Astrophys J 497:759. https://doi.org/10.1086/305469

Ferrière KM (2001) The interstellar environment of our galaxy. Rev Mod Phys 73:1031–1066. https://doi.

org/10.1103/RevModPhys.73.1031. astro-ph/0106359

Fletcher A, Beck R, Shukurov A, Berkhuijsen EM, Horellou C (2011) Magnetic fields and spiral arms in

the galaxy M51. MNRAS 412:2396–2416. https://doi.org/10.1111/j.1365-2966.2010.18065.x.

arXiv:1001.5230 [astro-ph.CO]

Frank A, Jones TW, Ryu D (1994) Oblique magnetohydrodynamic cosmic-ray-modified shocks: Two-

fluid numerical simulations. Astrophys J Suppl 90:975–980. https://doi.org/10.1086/191935. astro-

ph/9404073

Frank A, Jones TW, Ryu D (1995) Time-dependent simulation of oblique MHD cosmic-ray shocks using

the two-fluid model. Astrophys J 441:629–643. https://doi.org/10.1086/175388

Gabici S, Evoli C, Gaggero D, Lipari P, Mertsch P, Orlando E, Strong A, Vittino A (2019) The origin of

Galactic cosmic rays: challenges to the standard paradigm. Int J Mod Phys D 28(15):1930022–339.

https://doi.org/10.1142/S0218271819300222. arXiv:1903.11584 [astro-ph.HE]

Gaggero D, Maccione L, Grasso D, Di Bernardo G, Evoli C (2014) PAMELA and AMS-02 eþ and e�

spectra are reproduced by three-dimensional cosmic-ray modeling. Phys Rev D 89(8):083007.

https://doi.org/10.1103/PhysRevD.89.083007. arXiv:1311.5575 [astro-ph.HE]

Gaisser TK (1991) Cosmic rays and particle physics. Cambridge University Press, Cambridge

Gaisser TK, Stanev T, Tilav S (2013) Cosmic ray energy spectrum from measurements of air showers.

Front Phys 8(6):748–758. https://doi.org/10.1007/s11467-013-0319-7. arXiv:1303.3565 [astro-

ph.HE]

Garcia-Munoz M, Mason GM, Simpson JA (1975) The isotopic composition of galactic cosmic-ray

lithium, beryllium, and boron. Astrophys J 201:L145–L148

Garcia-Munoz M, Simpson JA, Guzik TG, Wefel JP, Margolis SH (1987) Cosmic-ray propagation in the

Galaxy and in the heliosphere—the path-length distribution at low energy. Astrophys J Suppl

64:269–304. https://doi.org/10.1086/191197

Genel S, Vogelsberger M, Nelson D, Sijacki D, Springel V, Hernquist L (2013) Following the flow: tracer

particles in astrophysical fluid simulations. MNRAS 435(2):1426–1442. https://doi.org/10.1093/

mnras/stt1383. arXiv:1305.2195 [astro-ph.IM]

123

2 Page 82 of 92 M. Hanasz et al.

https://doi.org/10.1093/mnras/sty2397
https://doi.org/10.1093/mnras/sty2397
http://arxiv.org/abs/1806.05679
https://doi.org/10.1146/annurev.astro.41.011802.094859
https://doi.org/10.1051/0004-6361/201015652
http://arxiv.org/abs/1008.4717
https://doi.org/10.1086/166684
https://doi.org/10.1086/524766
http://arxiv.org/abs/0710.3712
https://doi.org/10.1088/0004-637X/782/1/36
https://doi.org/10.1088/0004-637X/782/1/36
http://arxiv.org/abs/1310.5732
https://doi.org/10.1088/1475-7516/2017/02/015
http://arxiv.org/abs/1607.07886
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1093/mnras/225.2.399
https://doi.org/10.3847/1538-4357/aab26d
http://arxiv.org/abs/1707.04579
https://doi.org/10.1086/305469
https://doi.org/10.1103/RevModPhys.73.1031
https://doi.org/10.1103/RevModPhys.73.1031
https://doi.org/10.1111/j.1365-2966.2010.18065.x
http://arxiv.org/abs/1001.5230
https://doi.org/10.1086/191935
https://doi.org/10.1086/175388
https://doi.org/10.1142/S0218271819300222
http://arxiv.org/abs/1903.11584
https://doi.org/10.1103/PhysRevD.89.083007
http://arxiv.org/abs/1311.5575
https://doi.org/10.1007/s11467-013-0319-7
http://arxiv.org/abs/1303.3565
https://doi.org/10.1086/191197
https://doi.org/10.1093/mnras/stt1383
https://doi.org/10.1093/mnras/stt1383
http://arxiv.org/abs/1305.2195


Giacalone J, Jokipii JR (1994) Charged-particle motion in multidimensional magnetic-field turbulence.

Astrophys J 430:L137–L140. https://doi.org/10.1086/187457

Giacalone J, Jokipii JR (1999) The transport of cosmic rays across a turbulent magnetic field. Astrophys J

520:204–214. https://doi.org/10.1086/307452

Ginzburg VL, Ptuskin VS (1976) On the origin of cosmic rays: some problems in high-energy

astrophysics. Rev Mod Phys 48:161–189

Ginzburg VL, Syrovatskii SI (1964) The origin of cosmic rays. Macmillan, New York

Girichidis P, Naab T, Walch S, Hanasz M, Mac Low MM, Ostriker JP, Gatto A, Peters T, Wünsch R,
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models for cosmic ray transport coefficients on galactic scales: self-confinement and extrinsic

turbulence at �GeV energies. MNRAS 501(3):4184–4213. https://doi.org/10.1093/mnras/staa3691.

arXiv:2002.06211 [astro-ph.HE]

Indriolo N, McCall BJ (2012) Investigating the cosmic-ray ionization rate in the galactic diffuse

interstellar medium through observations of Hþ
3 . Astrophys J 745(1):91. https://doi.org/10.1088/

0004-637X/745/1/91. arXiv:1111.6936 [astro-ph.GA]

Indriolo N, Geballe TR, Oka T, McCall BJ (2007) Hþ
3 in diffuse interstellar clouds: a tracer for the

cosmic-ray ionization rate. Astrophys J 671(2):1736–1747. https://doi.org/10.1086/523036. arXiv:

0709.1114 [astro-ph]

Ipavich FM (1975) Galactic winds driven by cosmic rays. Astrophys J 196:107–120. https://doi.org/10.

1086/153397

Ivlev AV, Dogiel VA, Chernyshov DO, Caselli P, Ko CM, Cheng KS (2018) Penetration of cosmic rays

into dense molecular clouds: role of diffuse envelopes. Astrophys J 855(1):23. https://doi.org/10.

3847/1538-4357/aaadb9. arXiv:1802.02612 [astro-ph.HE]

Jacob S, Pakmor R, Simpson CM, Springel V, Pfrommer C (2018) The dependence of cosmic ray-driven

galactic winds on halo mass. MNRAS 475(1):570–584. https://doi.org/10.1093/mnras/stx3221.

arXiv:1712.04947 [astro-ph.GA]

Jiang YF, Oh SP (2018) A new numerical scheme for cosmic-ray transport. Astrophys J 854(1):5. https://

doi.org/10.3847/1538-4357/aaa6ce. arXiv:1712.07117 [astro-ph.HE]

Jokipii JR (1971) Propagation of cosmic rays in the solar wind. Rev Geophys Space Phys 9:27

Jokipii JR (1976) Consequences of a lifetime greater than 10 to the 7th power years for galactic cosmic

rays. Astrophys J 208:900–902

Jones FC (1978) The history of cosmic rays in a dynamical halo: a retrodictive probability approach.

Astrophys J 222:1097–1103. https://doi.org/10.1086/156226

Jones FC (1979) The dynamical halo and the variation of cosmic-ray path length with energy. Astrophys J

229:747–752. https://doi.org/10.1086/157010

Jones TW, Kang H (1990) Time-dependent evolution of cosmic-ray-mediated shocks in the two-fluid

model. Astrophys J 363:499–514. https://doi.org/10.1086/169361

Jones TW, Kang H (1993) Cosmic-ray acceleration during the impact of shocks on dense clouds.

Astrophys J 402:560–573. https://doi.org/10.1086/172158

Jones TW, Kang H (2005) An efficient numerical scheme for simulating particle acceleration in evolving

cosmic-ray modified shocks. Astropart Phys 24:75–91. https://doi.org/10.1016/j.astropartphys.2005.

05.006

Jones TW, Kang H, Tregillis IL (1994) Cosmic bullets as particle accelerators and radio sources.

Astrophys J 432:194–206. https://doi.org/10.1086/174560

Jones TW, Ryu D, Engel A (1999) Simulating electron transport and synchrotron emission in radio

galaxies: shock acceleration and synchrotron aging in axisymmetric flows. Astrophys J

512:105–124. https://doi.org/10.1086/306772. arXiv:astro-ph/9809081

Jones FC, Lukasiak A, Ptuskin V, Webber W (2001a) The modified weighted slab technique: models and

results. Astrophys J 547:264–271. https://doi.org/10.1086/318358

Jones FC, Lukasiak A, Ptuskin VS, Webber WR (2001b) K-capture cosmic ray secondaries and

reacceleration. Adv Space Res 27:737–741

Jubelgas M, Springel V, Enßlin T, Pfrommer C (2008) Cosmic ray feedback in hydrodynamical

simulations of galaxy formation. Astron Astrophys 481:33–63. https://doi.org/10.1051/0004-6361:

20065295. astro-ph/0603485

Jun BI, Jones TW (1999) Radio emission from a young supernova remnant interacting with an interstellar

cloud: magnetohydrodynamic simulation with relativistic electrons. Astrophys J 511:774–791.

https://doi.org/10.1086/306694

123

2 Page 84 of 92 M. Hanasz et al.

https://doi.org/10.3847/1538-4357/ab7453
http://arxiv.org/abs/1910.03588
https://doi.org/10.1086/344510
https://doi.org/10.1093/mnras/stz2568
https://doi.org/10.1093/mnras/stz2568
http://arxiv.org/abs/1807.05494
https://doi.org/10.1093/mnras/staa3691
http://arxiv.org/abs/2002.06211
https://doi.org/10.1088/0004-637X/745/1/91
https://doi.org/10.1088/0004-637X/745/1/91
http://arxiv.org/abs/1111.6936
https://doi.org/10.1086/523036
http://arxiv.org/abs/0709.1114
http://arxiv.org/abs/0709.1114
https://doi.org/10.1086/153397
https://doi.org/10.1086/153397
https://doi.org/10.3847/1538-4357/aaadb9
https://doi.org/10.3847/1538-4357/aaadb9
http://arxiv.org/abs/1802.02612
https://doi.org/10.1093/mnras/stx3221
http://arxiv.org/abs/1712.04947
https://doi.org/10.3847/1538-4357/aaa6ce
https://doi.org/10.3847/1538-4357/aaa6ce
http://arxiv.org/abs/1712.07117
https://doi.org/10.1086/156226
https://doi.org/10.1086/157010
https://doi.org/10.1086/169361
https://doi.org/10.1086/172158
https://doi.org/10.1016/j.astropartphys.2005.05.006
https://doi.org/10.1016/j.astropartphys.2005.05.006
https://doi.org/10.1086/174560
https://doi.org/10.1086/306772
https://arxiv.org/abs/astro-ph/9809081
https://doi.org/10.1086/318358
https://doi.org/10.1051/0004-6361:20065295
https://doi.org/10.1051/0004-6361:20065295
https://doi.org/10.1086/306694


Jun BI, Clarke DA, Norman ML (1994) The evolution of cosmic-ray-mediated magnetohydrodynamic

shocks: a two-fluid approach. Astrophys J 429:748. https://doi.org/10.1086/174358

Kang H, Jones TW (1990) Diffusive cosmic-ray acceleration—two-fluid models with in situ injection.

Astrophys J 353:149–158. https://doi.org/10.1086/168601

Kang H, Jones TW (1997) Diffusive shock acceleration in oblique magnetohydrodynamic shocks:

comparison with Monte Carlo methods and observations. Astrophys J 476:875. https://doi.org/10.

1086/303646

Kang H, Jones TW (2007) Self-similar evolution of cosmic-ray-modified quasi-parallel plane shocks.

Astropart Phys 28(2):232–246. https://doi.org/10.1016/j.astropartphys.2007.05.007. arXiv:0705.

3274 [astro-ph]

Kang H, Ryu D (2013) Diffusive shock acceleration at cosmological shock waves. Astrophys J 764(1):95.

https://doi.org/10.1088/0004-637X/764/1/95. arXiv:1212.3246 [astro-ph.HE]

Kennel CF, Engelmann F (1966) Velocity space diffusion from weak plasma turbulence in a magnetic

field. Phys Fluids 9(12):2377–2388. https://doi.org/10.1063/1.1761629

Keshet U, Waxman E, Loeb A, Springel V, Hernquist L (2003) Gamma rays from intergalactic shocks.

Astrophys J 585(1):128–150. https://doi.org/10.1086/345946. arXiv:astro-ph/0202318 [astro-ph]

Kissmann R (2014) PICARD: a novel code for the Galactic Cosmic Ray propagation problem. Astropart

Phys 55:37–50. https://doi.org/10.1016/j.astropartphys.2014.02.002. arXiv:1401.4035 [astro-ph.HE]

Kotera K, Olinto AV (2011) The astrophysics of ultrahigh-energy cosmic rays. Annu Rev Astron

Astrophys 49(1):119–153. https://doi.org/10.1146/annurev-astro-081710-102620. arXiv:1101.4256

[astro-ph.HE]

Kotera K, Silk J (2016) Ultrahigh-energy Cosmic Rays and Black Hole Mergers. Astrophys J 823(2):L29.

https://doi.org/10.3847/2041-8205/823/2/L29. arXiv:1602.06961 [astro-ph.HE]

Kowal G, Otmianowska-Mazur K, Hanasz M (2006) Dynamo coefficients in Parker unstable disks with

cosmic rays and shear. The new methods of estimation. Astron Astrophys 445:915–929. https://doi.

org/10.1051/0004-6361:20053582

Krause M (2009) Magnetic fields and star formation in spiral galaxies. Rev Mex Astron Astrofis Conf Ser

Rev Mex Astron Astrofis 36:25–29 (arXiv:0806.2060

Krumholz MR, Crocker RM, Xu S, Lazarian A, Rosevear MT, Bedwell-Wilson J (2020) Cosmic ray

transport in starburst galaxies. MNRAS 493(2):2817–2833. https://doi.org/10.1093/mnras/staa493.

arXiv:1911.09774 [astro-ph.HE]

Krymskii GF (1977) A regular mechanism for the acceleration of charged particles on the front of a shock

wave. Akad Nauk SSSR Dokl 234:1306–1308

Kudoh Y, Hanawa T (2016) A new scheme to solve the two-fluid cosmic-ray magnetohydrodynamic

equations. J Phys Conf Ser 719:012021. https://doi.org/10.1088/1742-6596/719/1/012021

Kulpa-Dybeł K, Otmianowska-Mazur K, Kulesza-Zydzik B, Hanasz M, Kowal G, Wóltański D, Kowalik
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Ogrodnik MA, Hanasz M, Wóltański D (2021) Implementation of cosmic ray energy spectrum (CRESP)

algorithm in PIERNIK MHD code. I. Spectrally resolved propagation of cosmic ray electrons on

123

2 Page 86 of 92 M. Hanasz et al.

https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1103/RevModPhys.76.125
https://doi.org/10.1007/s41115-020-0007-6
https://doi.org/10.1007/s41115-020-0007-6
http://arxiv.org/abs/2002.09411
https://doi.org/10.1016/j.asr.2003.08.057
https://doi.org/10.1086/513691
https://doi.org/10.1086/527429
https://doi.org/10.1086/527429
http://arxiv.org/abs/0711.4384
https://doi.org/10.1016/j.cpc.2019.106942
https://doi.org/10.1086/321496
https://doi.org/10.1051/0004-6361:20021176
https://doi.org/10.1051/0004-6361:20021176
https://doi.org/10.1146/annurev.astro.45.051806.110602
http://arxiv.org/abs/0707.3514
https://doi.org/10.1088/0004-637X/696/2/1142
https://doi.org/10.1088/0004-637X/696/2/1142
http://arxiv.org/abs/0811.1143
https://doi.org/10.1016/S0010-4655(01)00293-4
https://doi.org/10.1016/j.jcp.2007.08.013
http://arxiv.org/abs/astro-ph/0611499
https://doi.org/10.1086/317027
http://arxiv.org/abs/astro-ph/0005444
http://arxiv.org/abs/astro-ph/0005444
https://doi.org/10.1086/323434
https://doi.org/10.1086/322375
https://doi.org/10.1086/322375
https://doi.org/10.1051/0004-6361/201321043
http://arxiv.org/abs/1312.3648
https://doi.org/10.1093/mnrasl/slv074
https://doi.org/10.1093/mnrasl/slv074
http://arxiv.org/abs/1503.02435
https://doi.org/10.1086/305152
https://arxiv.org/abs/astro-ph/9710124
https://doi.org/10.1086/324402
https://doi.org/10.1086/324402
https://doi.org/10.1146/annurev-astro-081913-040019
http://arxiv.org/abs/1612.06891
https://doi.org/10.1063/1.1706342


Eulerian grids. Astrophys J Suppl 253(1):18. https://doi.org/10.3847/1538-4365/abd16f. arXiv:2009.

06941 [astro-ph.HE]

Owens AJ, Jokipii JR (1977a) Cosmic rays in a dynamical halo. I. Age and matter traversal distributions

and anisotropy for nuclei. Astrophys J 215:677–684

Owens AJ, Jokipii JR (1977b) Cosmic rays in a dynamical halo. II. Electrons Astrophys J 215:685–689.

https://doi.org/10.1086/155402

Padovani M, Galli D, Glassgold AE (2009) Cosmic-ray ionization of molecular clouds. Astron Astrophys

501:619–631. https://doi.org/10.1051/0004-6361/200911794. arXiv:0904.4149 [astro-ph.SR]

Padovani M, Galli D, Ivlev AV, Caselli P, Ferrara A (2018) Production of atomic hydrogen by cosmic

rays in dark clouds. Astron Astrophys 619:A144. https://doi.org/10.1051/0004-6361/201834008.

arXiv:1809.04168 [astro-ph.GA]

Padovani M, Ivlev AV, Galli D, Offner SSR, Indriolo N, Rodgers-Lee D, Marcowith A, Girichidis P,

Bykov AM, Kruijssen JMD (2020) Impact of low-energy cosmic rays on star formation. Space Sci

Rev 216(2):29. https://doi.org/10.1007/s11214-020-00654-1. arXiv:2002.10282 [astro-ph.GA]

Pais M, Pfrommer C, Ehlert K, Pakmor R (2018) The effect of cosmic ray acceleration on supernova blast

wave dynamics. MNRAS 478(4):5278–5295. https://doi.org/10.1093/mnras/sty1410. arXiv:1805.

00128 [astro-ph.HE]

Pakmor R, Pfrommer C, Simpson CM, Kannan R, Springel V (2016a) Semi-implicit anisotropic cosmic

ray transport on an unstructured moving mesh. MNRAS 462(3):2603–2616. https://doi.org/10.1093/

mnras/stw1761. arXiv:1604.08587 [astro-ph.GA]

Pakmor R, Pfrommer C, Simpson CM, Springel V (2016b) Galactic winds driven by isotropic and

anisotropic cosmic-ray diffusion in disk galaxies. Astrophys J 824:L30. https://doi.org/10.3847/

2041-8205/824/2/L30. arXiv:1605.00643

Pakmor R, Springel V, Bauer A, Mocz P, Munoz DJ, Ohlmann ST, Schaal K, Zhu C (2016c) Improving

the convergence properties of the moving-mesh code AREPO. MNRAS 455(1):1134–1143. https://

doi.org/10.1093/mnras/stv2380. arXiv:1503.00562 [astro-ph.GA]

Parker EN (1966) The dynamical state of the interstellar gas and field. Astrophys J 145:811. https://doi.

org/10.1086/148828

Parker EN (1967) The dynamical state of the interstellar gas and field. II. Non-linear growth of clouds and

forces in three dimensions. Astrophys J 149:517. https://doi.org/10.1086/149282

Parker EN (1992) Fast dynamos, cosmic rays, and the galactic magnetic field. Astrophys J 401:137.

https://doi.org/10.1086/172046

Peters T, Girichidis P, Gatto A, Naab T, Walch S, Wünsch R, Glover SCO, Clark PC, Klessen RS,
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Vazza F, Brüggen M, Gheller C, Brunetti G (2012a) Modelling injection and feedback of cosmic rays in

grid-based cosmological simulations: effects on cluster outskirts. MNRAS 421(4):3375–3398.

https://doi.org/10.1111/j.1365-2966.2012.20562.x. arXiv:1201.3362 [astro-ph.CO]
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