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This article analyzes the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard

selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats.

Fitness is influenced by an additive trait which is under habitat-dependent directional selection. Our analysis is based on the

diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria,

it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the

conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per

locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci

due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback

between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic

stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare

habitat at significantly lower migration than predicted by deterministic arguments.

KEY WORDS: Demographic stochasticity, eco-evolutionary dynamics, extinction, local adaptation, metapopulation, polygenic

selection.

Adaptation to environmental change is often rapid (Thompson

1998; Kinnison and Hendry 2001; Grant and Grant 2006; Kokko

and López-Sepulcre 2007) and time scales of ecological and evo-

lutionary change comparable, giving a feedback between demog-

raphy and evolution. Fisher (1930) first described reciprocal in-

teractions between population size and adaptation, leading to the

notion of hard selection, whereby high genetic load drives pop-

ulations to extinction. This is an extreme example of a more

general feedback: an increase in genetic load due to deleterious

variants reduces population size; smaller populations are affected

more strongly by drift and gene flow, which increase the fixation

of locally deleterious alleles, further decreasing size.

Such eco-evolutionary feedbacks are crucial during evo-

lutionary rescue following a sudden environmental shift (Go-

∗
Joint first authors.

mulkiewicz and Holt 1995; Gonzalez et al. 2013), and are key

to the survival of marginal populations (Kawecki 2008), the

colonization of peripheral habitats (Barton and Etheridge 2018;

Sachdeva 2019), and the emergence of sharp range margins in the

absence of environmental discontinuities (Polechová and Barton

2015; Polechová 2018).

Eco-evolutionary feedbacks are especially important in frag-

mented habitats, where stochastic extinction and recolonization

of patches require recurrent bouts of rapid adaptation, especially

if selective pressures vary across patches. This type of metapopu-

lation structure may arise, for instance, if multiple hosts are avail-

able within the same region (Carroll and Boyd 1992; Dobler and

Farrell 1999), favoring host-specific adaptations. The potential

for local adaptation and the stability of subpopulations then de-

pends on the interaction between selection (which is mediated by
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the genetic architecture of selected traits), dispersal (which pro-

tects populations from inbreeding load and stochastic extinction,

but may also introduce maladapted phenotypes), and demography

(which is affected by mean genetic fitness, and in turn influences

the efficacy of selection).

Previous theory on the persistence of subdivided populations

neglects key aspects of this interplay. For instance, Blanquart

et al. (2012) analyze conditions for local adaptation in a spatially

heterogeneous metapopulation under soft selection (i.e., constant

population sizes), thus neglecting the feedback between fitness

and demography. Ronce and Kirkpatrick (2001) explicitly model

the effects of maladaptation on population sizes in a metapop-

ulation with multiple ecologically distinct habitats but neglect

all stochasticity. Another approach, exemplified by Hanski and

Mononen (2011), considers re-colonization of patches to be in-

stantaneous and extinction to depend deterministically on patch

fitness. However, this fails to address how the coupled stochastic

dynamics of genotype frequencies and population sizes influence

extinction thresholds. Conversely, almost all work on stochastic

fluctuations in metapopulations neglects natural selection (Lande

1993; Lande et al. 1998; Ovaskainen and Meerson 2010).

A better understanding of the link between maladaptation

and extinction also requires genetically realistic eco-evolutionary

models. However, at present, most metapopulation models as-

sume one of two extreme architectures (Lion 2018; Govaert et al.

2019): either mutations occur one by one (adaptive dynamics), or

there are very many infinitesimal-effect loci (quantitative genet-

ics). While the latter can describe response from standing varia-

tion (which often underlies rapid adaptation), with a few excep-

tions (Ronce and Kirkpatrick 2001; Hanski and Mononen 2011),

quantitative genetic models only deal with migration into a sin-

gle population (e.g., Tufto 2001; Chevin et al. 2017; Barton and

Etheridge 2018).

Here, we investigate the joint evolution of population size

and allele frequencies in a metapopulation consisting of infinitely

many islands connected via migration. Each island belongs to one

of two different habitats characterized by distinct selection pres-

sures. We ask: when are demographically stable, locally adapted

populations maintained within islands belonging to the “rare” or

marginal habitat? Conversely, when does maladaptive gene flow

from the abundant habitat reduce the rare habitat to a maladapted

(and possibly nearly extinct) sink? Understanding evolution in

marginal habitats has important implications for range limits and

the long-term survival of metapopulations; moreover, local adap-

tation in marginal habitats may be the first step towards specia-

tion.

A key focus of our work is on how the coupling between

population size and mean fitness (hard selection) influences lo-

cal adaptation and extinctions. Such coupling places severe con-

straints on the survival and adaptation of interconnected popula-

tions: gene flow limits local adaptation not only by overwhelm-

ing selection at individual loci but also through the effect of

migration load on population size. Segregation of locally mal-

adaptive alleles at many loci at even low frequencies substan-

tially reduces mean fitness, causing lower population numbers,

which further impairs selection at individual loci, resulting in a

positive feedback between population decline and loss of local

adaptation (“migrational meltdown”; see Ronce and Kirkpatrick

2001).

As we demonstrate next, random fluctuations in population

size (demographic stochasticity) as well as in allele frequen-

cies (genetic drift) strongly influence thresholds for maladapta-

tion and extinction. Thus, going beyond deterministic analyses

by considering both sources of stochasticity within a common

framework is crucial for understanding extinction: smaller pop-

ulations are more prone to fix maladaptive alleles due to genetic

drift and swamping from larger populations; this further reduces

the fitness and size of small populations, rendering them even

more vulnerable to demographic fluctuations and chance extinc-

tion, even in parameter regimes where demographic stochasticity

by itself (i.e., in the absence of maladaptation) is of little conse-

quence.

A second focus is to understand how the feedback between

population size and fitness is mediated by the genetic basis of se-

lected traits. In particular, is maladaptation (and possibly extinc-

tion) in the rare habitat more or less likely for more polygenic

traits? Understanding polygenic local adaptation within subdi-

vided populations is challenging due to statistical associations,

that is, linkage disequilibria (LD) between loci. Our theoretical

analysis neglects such associations, assuming linkage equilib-

rium (LE) within demes, and becomes exact in the limit where

all processes are much slower than recombination. Thus, LE al-

lows us to work solely with allele frequencies. However, LE does

not imply that loci evolve independently: under hard selection,

evolutionary dynamics of different loci become coupled through

their aggregate effects on population size, which in turn influ-

ences individual loci via genetic drift.

Our analysis is based on a diffusion approximation for the

joint stochastic evolution of allele frequencies and population

size. The diffusion approximation has been widely used in pop-

ulation genetics (Fisher 1922; Kimura 1955) but remains less

prominent in ecology, and has only been used to model stochastic

population dynamics, without genetics (e.g., Lande 1993; Mangel

and Tier 1993). Our framework incorporates both demographic

stochasticity and genetic drift, following Banglawala (2010). The

full model requires numerical solution, but explicit analytical pre-

dictions are possible in various biologically interesting limits. In

order to assess the importance of LE and other assumptions, we

compare theoretical predictions against individual-based simula-

tions with a finite number of demes.
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Model and Methods
Consider a metapopulation with infinitely many islands (demes)

that exchange genes via a common pool. We assume that any is-

land belongs to one of two local habitats, indexed by α = 1, 2.

A fraction 1 − ρ (or ρ) of islands belong to the first (or second)

habitat. We choose ρ < 1/2, such that ρ always denotes the frac-

tion in the rare habitat, indexed as habitat 2 hereafter.

Individuals are haploid and express an additive trait influ-

enced by L unlinked, biallelic loci with alternative states denoted

by X = 0, 1. The trait is assumed to be under directional selec-

tion toward one or the other extreme: thus, a genotype with all

“1” alleles or all “0” alleles has maximum fitness in the first or

second habitat, respectively. For simplicity, the maximum possi-

ble genetic fitness in either habitat is assumed to be the same.

Thus, individual fitness is given by exp[−∑L
j=1 s1, j (1 − Xj )]

and exp[−∑L
j=1 s2, jXj] in the two habitats, where s1, j > 0 (or

s2, j > 0) denotes the strength of selection against the locally dis-

favored allele at locus j in habitat 1 (or 2), and Xj the allelic state

at locus j.

The life cycle of individuals consists of dispersal, followed

by selection and mating. As our focus is on how gene flow influ-

ences selected polymorphisms, we neglect other sources of varia-

tion. However, the framework easily extends to include mutation.

In each generation, individuals migrate with probability m into

a common pool; migrants from this pool are then evenly redis-

tributed over islands. The assumption of infinitely many islands

means that genotype frequencies in the migrant pool are essen-

tially deterministic; in simulations, we model a large but finite

number of islands.

We assume hard selection, where population sizes are

stochastic but influenced by mean fitness on the island plus lo-

cal density-dependent regulation: the size n∗
i on island i, after se-

lection and regulation, is a Poisson random variable with mean

niW ier0,i (1−ni/Ki ). Here, r0,i ≥ 0 is the baseline rate of growth, Ki

the baseline carrying capacity, ni the population size prior to se-

lection, and W i the mean genetic fitness on island i. For sim-

plicity, we assume r0,i = r0 and Ki = K across all islands. The

n∗
i offspring are formed by randomly sampling 2n∗

i parents (with

replacement) from the ni individuals in proportion to individual

fitness, and then creating offspring via free recombination of each

pair of parent genotypes. Note that selection is density indepen-

dent, that is, relative fitness of genotypes is independent of pop-

ulation size.

When selection is strong relative to migration and drift, and

the number of loci not very large, populations can adapt to their

local habitat, resulting in LD between alleles favored within a

habitat. Our theoretical framework, however, assumes that selec-

tion per locus and migration are weak compared to recombina-

tion, such that LD within a deme (generated by immigration of in-

dividuals from differently adapted habitats) is rapidly dissipated

and can be neglected. This allows us to consider the coupled dy-

namics of population size and L alleles (rather than 2L genotypes)

while still accounting for stochastic effects via the diffusion ap-

proximation.

For weak growth, selection and migration (i.e., r0, s, m �
1), we can use a continuous time approximation for allele fre-

quency and population size dynamics. The size ni and the allele

frequency pi, j at the jth locus on the ith island satisfy the fol-

lowing coupled equations (see also Supporting Information Ap-

pendix A1 for details):

∂ni

∂t
=

[
r0

(
1 − ni

K

)
+ rg,i

]
ni + m(n − ni ) + λni (t ) (1a)

∂ pi, j

∂t
= pi, j (1 − pi, j )

∂rg,i

∂ pi, j
+ m

n

ni

[
npj

n
− pi, j

]
+ λpi, j (t ). (1b)

Here, rg,i is the genetic component of the growth rate (i.e., the

log fitness) averaged over all genotypes on island i. For the fit-

ness functions described above, we have: rg,i = −∑L
j=1 s1, jqi, j

for an island in the first habitat and −∑L
j=1 s2, j p2, j in the sec-

ond habitat. Here pi, j and qi, j = 1 − pi, j denote the frequencies

of the “1” and “0” alleles at locus j on island i.

Note that the dynamics of any one deme are coupled to the

dynamics of all other demes via the mean number of immigrants

mn and the mean number of immigrant alleles mnpj (at locus j)

per unit time (where n is the population size and np j the number

of allele copies per deme, averaged over the metapopulation).

Equation (1a) describes how population size evolves over

time on an island in a given habitat. The first term within the

square brackets describes logistic growth, and the second de-

scribes how growth rates are reduced relative to the baseline r0

due to habitat-dependent selection against locally disfavored al-

leles; this term rg,i couples population sizes to allele frequencies.

The second term describes migration, which makes a net posi-

tive contribution when the focal deme is smaller than the average

n across the metapopulation. The third term λni (t ) is an uncor-

related random process with E[λni ] = 0 and E[λni (t )λni (t
′)] =

ni(t )δ(t − t ′), where E[. . .] denotes an average over independent

realizations. This describes fluctuations of population size due

to demographic stochasticity, inherent in reproduction and death.

Since the number of offspring is Poisson distributed, the vari-

ance of population sizes is just ni(t ). Note that the noise term

can generate local extinctions even in well-adapted populations:

extinction arises from the stochastic dynamics, rather than being

imposed arbitrarily.

Equation (1b) describes allele frequency dynamics at locus

j: the first term corresponds to selection against the locally

deleterious allele; the second term describes the effect of migra-

tion, which pulls allele frequencies towards the metapopulation
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average (npj/n), which is the allele frequency in the migrant

pool. Islands with larger populations contribute more to the mi-

grant pool; they are also less prone to swamping by maladaptive

alleles because the migration term in equation (1b) is inversely

proportional to ni. This results in a positive feedback: better

adapted islands are more populous, send out more migrants

and are less affected by incoming, maladapted individuals,

maintaining local adaptation more easily. Fluctuations in allele

frequencies are described by λpi, j (t ), which satisfies E[λpi, j ] = 0

and E[λpi, j (t )λpi, j (t
′)] = [(pi, j (t )qi, j (t ))/ni(t )]δ(t − t ′) (where

q(t ) = 1 − p(t )), as in the haploid Wright-Fisher model.

Equations (1a) and (1b) can be made dimensionless by

rescaling population size to the carrying capacity K , and all evo-

lutionary rates to the baseline growth rate r0. This gives the

following rescaled parameters (denoted by uppercase letters):

T = r0t, M = m/r0, S = s/r0, N = n/K , and the new parame-

ter ζ = r0K , which represents the number of births per unit time

at carrying capacity, and hence governs the magnitude of demo-

graphic fluctuations. Both scaled and unscaled parameters are

tabulated in Table 1.

DIFFUSION APPROXIMATION FOR THE JOINT

DISTRIBUTION OF ALLELE FREQUENCIES AND

POPULATION SIZE

The time evolution of the joint probability distribution

�i(N, p1, . . . , pL ) of allele frequencies {p1, . . . , pL} and (re-

scaled) population size N on any island in habitat i is described

by the diffusion approximation, which depends only on the mean

and variance of the change in N and {p} per unit time. For ease

of notation, the vector (N, p1, . . . pL ) is denoted by x. We have

∂

∂τ
�i(x, τ) = − ∂

∂N

[
A(i)

N (x)�i(x)
]

+ 1

2ζ

∂2

∂N2
[BN (x)�i(x)]

−
L∑

j=1

∂

∂ p j

[
A(i)

p j
(x)�i(x)

]

+ 1

2ζ

L∑
j=1

∂2

∂ p2
j

[
Bp j (x)�i(x)

]
(2)

A(i)
N (x) = [1 − N + Rg,i]N + M(N̄ − N )

A(i)
p j

(x) = p j (1 − p j )
∂Rg,i

∂ p j
+ M

N̄

N

[
N pj

N̄
− p j

]

BN (x) = N Bp j (x) = p j (1 − p j )

N
.

The equation is expressed in terms of rescaled parameters and

ζ = r0K (see above). Here, A(i)
N and A(i)

p j
specify the expected

rate of change of the population size and allele frequencies on

an island in habitat i (see also eq. 1), and BN and Bp j the T
a
b
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variance of the change per unit time (which is independent of

habitat). The dependence on the local habitat arises only through

the average log fitness Rg,i = rg,i/r0, given by −∑L
j=1 S1, jq j and

−∑L
j=1 S2, j p j in the first and second habitats, respectively.

In principle, equation (2) can be numerically integrated to

obtain the joint distribution of N and {p j} through time. How-

ever, we focus on the stationary (equilibrium) distribution. This

depends on the numbers and genetic composition of the migrant

pool, which is determined by the average number of individuals

N and allele copies {N pj} (for each locus) across the metapop-

ulation. The stationary distribution on any island in habitat i is

given by (see Supporting Information Appendix A2 for details):

�i(N, {p j}|N, {N pj}) = 1

Z
N2ζMN−1e−ζ [(1−M )−N]2

e2ζNRg,i

L∏
j=1

p
2ζMN pj−1
j (1 − p j )

2ζM(N−N pj )−1,(3)

where Z is the normalization constant.

NUMERICAL SOLUTION FOR THE EQUILIBRIUM

The state of each deme is determined by the average number of

immigrant individuals mN and of immigrant alleles m{N pj} (at

each locus j) per unit time. Given these, we can find the expected

numbers and allele frequencies {Ei[N],Ei[N pj]} on an island

within habitat i, by integrating over the stationary distribution (eq.

3). Here, the expectations E[ ] can be thought of as averages for

a given island, obtained by averaging over replicate metapopu-

lations (or simulations) or over uncorrelated timepoints at equi-

librium within a single simulation. The crucial point is that at

equilibrium, the average across all demes in the metapopulation

at any instant (denoted by ) must equal the weighted sum of ex-

pected values across habitats (Rouhani and Barton 1993). Thus,

N = (1 − ρ)E1[N] + ρE2[N],

N pj = (1 − ρ)E1[N pj] + ρE2[N pj]. (4)

Equilibria are located by starting at an arbitrary {N, N pj}, calcu-

lating {Ei[N],Ei[N pj]} using equation (3), then computing the

new {N, N pj} using equation (4), and iterating until a fixed point.

With this procedure, either a polymorphism is found, or one or

other allele is fixed. In principle, this procedure simultaneously

yields the equilibrium population size and allele frequencies

at all the L loci (which may have different effect sizes and

hence attain different frequencies). However, iterating over an

L + 1-dimensional space is computationally intensive. We thus

restrict attention to the case with effect sizes equal at all loci,

such that S1, j = S1 and S2, j = S2 for all j. Then, we need to find

only the fixed point {N, N p}.

In principle, populations may evolve toward different equi-

libria depending on their initial state. However, we find that out-

comes are largely insensitive to initial frequencies (unless these

are very extreme) except when migration rates are close to the

threshold for loss of polymorphism and LS � 1. Here, we will

show the equilibrium that is attained starting with maximal ge-

netic variation in each population (allele frequency 0.5 at each

locus).

The above procedure for finding equilibria is exact, given

the diffusion approximation which, however, relies on three as-

sumptions. First, we assume all processes to be sufficiently slow

(r0, m, s � 1) that a continuous time approximation (eq. 1) is

valid. Second, we assume infinitely many demes, such that mean

population size and allele frequency over the metapopulation ex-

hibit negligible fluctuations, even though within any one deme,

they follow a distribution (eq. 3). This allows us to treat the mi-

grant pool as deterministic, and completely characterized by N

and N pj . Finally, we assume that demes are in LE, that is, LD

between locally adaptive alleles at different loci is negligible.

This final assumption is justified when recombination is much

faster than other processes, that is, as the unscaled parameters s,

m, r0 → 0. We investigate the sensitivity of our results to each of

these assumptions using individual-based simulations in the Sup-

porting Information (Appendix C), but focus on the most critical

assumption, namely that of LE, in the main text.

As the full model involves several parameters, and calculat-

ing the joint distribution requires a numerical solution for N and

N p, it is useful to consider some simpler limits. We first consider

population dynamics in the absence of selection (S1 = S2 = 0),

and examine how demographic stochasticity and migration af-

fect metapopulation survival. We then introduce selection, but

assume that it is weak relative to the baseline growth rate, that

is, Lsi � r0 or LSi � 1; we also neglect demographic stochastic-

ity. In this “soft selection” limit, population sizes are decoupled

from fitnesses and both well-adapted and maladapted demes are

at carrying capacity.

We then consider scenarios where selection against mal-

adapted genotypes is strong enough to affect population dynam-

ics, that is, LS1, LS2 ∼ 1 (for equal-effect loci) resulting in “hard

selection,” wherein less fit populations are smaller and may even

go extinct. We examine hard selection using the equilibrium

distribution ψ(N, p1, . . . pL ) derived above, as well as a sim-

pler “semideterministic” approximation that accounts for genetic

drift but neglects demographic stochasticity, and treats popula-

tion sizes as depending deterministically on mean fitnesses. In

the main article, we focus on symmetric selection across habitats

(S1 = S2 = S); S1 �= S2 is considered in Supporting Information

Appendix B.
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Figure 1. Deme sizes in the purely demographic model with no selection. (A) The migration threshold Mcrit , below which the entire

metapopulation goes extinct due to demographic fluctuations, versus ζ = r0K. The threshold Mcrit falls exponentially with increasing ζ.

Points show results of the diffusion approximation; the solid line depicts the large ζ approximation: Mcrit ≈ e−ζ/(2
√
πζ). (B) Probability

distribution ψ[N] of the scaled population size N = n/K (integrated over intervals of width �N = 0.02), obtained from the diffusion

approximation, for various ζ, for ζM = 0.05. The migration rate M is reduced as ζ is increased, to keep 2ζM = Km fixed. The fraction of

nearly extinct demes falls with increasing ζ. Diffusion approximation predictions are obtained from eq. S5 of the Supporting Information.

Results
EFFECT OF DEMOGRAPHIC STOCHASTICITY AND

MIGRATION IN THE ABSENCE OF SELECTION

Consider a scenario with no selection, such that population sizes

are independent of allele frequencies, and only affected by demo-

graphic fluctuations and migration. Although individual demes

fluctuate, N over the metapopulation evolves deterministically.

Demes are coupled through N , which determines the expected

number of immigrants per deme. Using equation (3), we can de-

rive the distribution ψ[N |N] of population sizes N , conditioned

on N (Supporting Information Appendix A3). The expected pop-

ulation size, E(N |N ) in any deme, given N , is obtained by inte-

grating over ψ[N |N], and then equating E(N |N ) = N . This yields

one or more equilibria for N .

There is always an equilibrium at E(N ) = N = 0, which

corresponds to extinction of the whole metapopulation. Above

a critical migration rate Mcrit , there may also be an equilibrium

with N > 0. This Mcrit is the migration rate at which the equi-

librium N = 0 becomes unstable (Supporting Information Ap-

pendix A3). Figure 1A shows that the Mcrit required for metapop-

ulation survival decreases exponentially: Mcrit ≈ e−ζ /(2
√

πζ ) as

ζ = r0K increases.

Above this migration threshold, the metapopulation survives

as a whole; however, individual islands undergo extinctions and

recolonizations if the average number of immigrants is small,

that is, for 2ζMN = 2mn < 1, which corresponds to 2ζM � 1 +
1

2ζ
+ · · · (Supporting Information Appendix A3). In this case,

the distribution of N is bimodal (Fig. 1B): a fraction of demes

is near extinction, whilst the remainder have population sizes

normally distributed around N = 1 − M (i.e., n = K (1 − m/r0)),

with variance 1/2ζ = 1/(2r0K ). The fraction of nearly extinct

demes falls with increasing ζ , for a given 2ζM (Fig. 1B). For

migration rates that are still higher (2ζM � 1), individual demes

never go extinct and exhibit essentially deterministic dynamics.

The parameter ζ = r0K thus governs the extent of demo-

graphic stochasticity: it determines the threshold for global ex-

tinction (Fig. 1A), the probability of local extinctions (Fig. 1B),

as well as the variance of population numbers around carrying ca-

pacity (among occupied demes). Henceforth, we consider growth

rates and carrying capacities that are sufficiently high (i.e., ζ =
r0K � 1) that local extinctions in the absence of maladaptation

are exceedingly unlikely. However, even for ζ � 1, maladapted

populations may be affected by demographic stochasticity and

become extinct.

SOFT SELECTION (CONSTANT POPULATION SIZE)

We next introduce selection, but assume that the evolutionary

change it effects is slow compared to population growth (i.e.,

LS � 1), and that ζ = r0K � 1 (as above). Then the model re-

duces to the classical infinite island model with soft selection

(Wright 1932), where population sizes are fixed at carrying ca-

pacity (n = K) on each island. Unlike in the case with hard se-

lection, allele frequencies at different loci evolve independently

under soft selection (assuming LE) because genetic drift at any
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Figure 2. Local adaptation under soft selection. (A) Expected allele frequencies in the two habitats (dashed), and the overall mean

over the metapopulation (solid), versus Ks, as obtained from the diffusion. The fraction of demes in the rare habitat is ρ = 0.3, the

average number of migrants per generation is Km = 8; selection is symmetric: s1 = s2 = s. (B) The critical selection coefficient Ksc , above

which a polymorphic equilibrium with 0 < p < 1 can be maintained, as a function of Km, the average number of migrants exchanged

between demes, for various ρ. Points show the diffusion prediction; lines show the approximation Ksc = 1
2 log( 1−ρ

ρ
) + Km(1 − 2ρ). Allele

frequencies under soft selection are obtained from the diffusion approximation by using equation (S6) in the Supporting Information.

locus just depends on a fixed population size, and not on adap-

tation at other loci. Thus, we need only consider the allele fre-

quency distribution ψ[p] at one locus: this was first derived by

Wright (1932), and also emerges from the joint distribution in

equation (3) (Supporting Information Appendix A4). This is also

the basis of Blanquart et al.’s (2012) single-locus analysis.

The expected allele frequency E(p|p) in a deme, given the

mean p in the migrant pool, is obtained by integrating over ψ[p]

(Supporting Information Appendix A4). Allele frequencies in

different demes are coupled via the mean allele frequency, p,

among migrants: within any deme, migration pulls the expected

allele frequency toward p, whereas selection drives E1[p] toward

1 (or E2[p] toward 0). Since all demes have equal sizes, they con-

tribute equally to the migrant pool. Thus at equilibrium, we have

p = (1 − ρ)E1(p|p) + ρE2(p|p), which allows us to numerically

find the equilibrium allele frequency in each habitat and across

the metapopulation (Fig. 2A).

There are always equilibria corresponding to p = 1 or p = 0

(i.e., when the whole metapopulation is fixed for one or other al-

lele). A polymorphic equilibrium (with 0 < p < 1) can be main-

tained when selection exceeds a threshold sc (Fig. 2A), such that

alleles favored in the rare habitat can invade. As selection be-

comes stronger, the different habitats approach fixation for dif-

ferent alleles. Thus, both habitats may be simultaneously adapted

only if s > sc. For s < sc, alleles that confer a selective advantage

in the common habitat fix across the entire metapopulation. In-

terestingly, the critical selection strength sc approaches a nonzero

value as m → 0 (Fig. 2B) as long as one habitat is rarer than the

other. Thus, this bias toward alleles favored in the common habi-

tat persists even in the limit of very low migration, for which we

would have (erroneously) expected allele frequencies in different

demes to evolve independently.

To understand the dependence of sc on m, it is useful to first

consider a purely deterministic analysis, which ignores genetic

drift (and thus requires Ks, Km � 1). This predicts that poly-

morphism can only be maintained above a critical selection coef-

ficient sc = m(1 − 2ρ) (Supporting Information Appendix A4),

where ρ is the fraction of demes in the rare habitat. However, as

s → sc, we expect q → 0 and thus Kmq → 0 (Fig. 2A). In other

words, irrespective of how large Km is, near the threshold for loss

of polymorphism, the numbers of alleles (of the rarer type) enter-

ing any deme will be very low and subject to random fluctuations

due to drift. Thus the deterministic prediction only provides a

lower bound on the true sc, as drift will further erode polymor-

phism.

In the opposite limit of low migration (Km → 0), loci will

be near fixation for one or other allele, making it necessary to

account for drift. The rates of fixation toward and away from an

allele with advantage s, at frequency p in the migrant pool, are

in the ratio ∼ (p/q)e2Ks, such that the expected frequency of the

favored allele in the deme is pe2Ks/(pe2Ks + q) (Supporting In-

formation Appendix A4). Thus, with s1 = s2 = s, the metapopu-

lation reaches an equilibrium at

p = (1 − ρ)
pe2Ks

pe2Ks + q
+ ρ

p

p + qe2Ks
. (5)

A polymorphic equilibrium at p = (1−ρ)e2Ks−ρ

e2Ks−1 becomes possi-

ble if Ks > Ksc where Ksc = 1
2 log( 1−ρ

ρ
) (in the Km → 0 limit).

Thus, even in the limit of very low migration, selection must ex-

ceed a critical threshold to prevent swamping of locally favored
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alleles in the rare habitat. Note that this effect is not captured

by the deterministic analysis above (which erroneously predicts

sc → 0 as m → 0).

Numerically computing the equilibrium allele frequency, we

find that the threshold sc increases linearly with m (points in

Fig. 2B). This is approximated by: Ksc ≈ 1
2 log( 1−ρ

ρ
) + Km(1 −

2ρ) (solid lines in Fig. 2B), where the first term is the Km → 0

prediction (which accounts for drift) and the second term the cor-

responding deterministic prediction (which neglects drift).

HARD SELECTION

When net selection against maladapted phenotypes is comparable

to the baseline growth rate, that is, Ls ∼ r0 or LS ∼ 1 (assuming

L equal-effect loci), changes in mean fitness have a substantial ef-

fect on population size, and maladapted populations are prone to

extinction. Selection at individual loci need not be strong: typical

effect sizes may be small enough (i.e., ζS = Ks ≤ 1) that drift

can degrade adaptation at individual loci. However, if the num-

ber of loci L affecting fitness is large, selection, in aggregate, is

strong. If local adaptation is to be possible even in large popula-

tions, then migration must be weak relative to selection per locus,

that is, M(1 − 2ρ) < S. Further, we assume ζ = r0K � 1, so that

local extinctions in the absence of maladaptation are highly im-

probable.

In the following, we use the joint distribution (eq. 3) to iden-

tify the conditions under which locally adapted, stable popula-

tions are maintained in both habitats. We first analyze two ex-

amples in detail to illustrate the qualitatively different outcomes

under weak vs. strong coupling (feedback) between population

size and mean fitness (Fig. 3). We also compare theoretical pre-

dictions (which assume LE) with the results of individual-based

simulations for these two examples, to clarify when LD can

be neglected and the diffusion approximation becomes accurate

(Fig. 4). We then explore more generally how critical migration

(or selection) thresholds for local adaptation depend on demo-

graphic stochasticity, the number of selected loci, and the fraction

of the rare habitat.

Figure 3 shows how polygenic adaptation collapses within

the rare habitat as migration increases above a critical value in a

scenario with weak coupling between population size and mean

fitness, that is, LS < 1 (Fig. 3A and B) and in a strong coupling,

that is, LS > 1 scenario (Fig. 3C and D). Figure 3 shows theoreti-

cal predictions for the expected allele frequencies and population

sizes in the two habitats, as well as the distribution of population

sizes in the rare habitat (insets). Figure 4 compares theoretical

predictions with results of individual-based simulations.

In both strong and weak coupling scenarios, alternative alle-

les are close to fixation in either habitat at low migration. As M

increases, the frequency of the locally favored allele (Fig. 3A and

D) and the expected population size N (Fig. 3B and D) decline in

both habitats due to increasing migration load. At a critical mi-

gration rate Mc, the rarer allele is lost, the population in the rare

habitat crashes, and the overall N falls to a minimum. For LS > 1,

the loss of local adaptation results in near extinction of the (mal-

adapted) deme, while with weak coupling (LS < 1), completely

maladapted demes survive at a finite fraction of carrying capacity.

As M increases beyond Mc, populations in the rare habitat

increase marginally, signifying that this habitat is now a mal-

adapted demographic sink. The emergence of source-sink dy-

namics at high M causes numbers in the common habitat to de-

cline slightly with M. This is outweighed by the faster increase

in numbers in the rare habitat, resulting in a slight increase in

overall N at large M. There is another migration threshold be-

low which the whole metapopulation collapses because coloniza-

tion is too rare (Fig. 1A); however, this threshold is negligibly

small (∼ e−ζ /(2
√

πζ )) for large ζ (here, ζ = 40), and is not

visible here.

Figure 3B and D also depicts how the distribution ψ[N] of

the (scaled) population size in the rare habitat changes across the

threshold Mc (insets). With weak coupling (LS < 1), population

sizes are approximately normally distributed about a nonzero ex-

pected value E[N] irrespective of local adaptation, that is, for

both M < Mc and M > Mc (inset, Fig. 3B). Further, E[N] ∼ 1 −
LSE[p], where E[p] is the expected allele frequency of the lo-

cally deleterious allele in the rare habitat. By contrast, with strong

coupling (i.e., LS > 1), the distribution is bimodal for M ≤ Mc

(i.e., when the rare habitat is locally adapted): a small fraction of

demes is nearly extinct and the remaining have numbers that are

approximately normally distributed around E[N] ∼ 1 − LSE[p].

The fraction of nearly extinct demes in the rare habitat increases

on approaching Mc (solid vs. dashed distribution, inset Fig. 3D).

Above the threshold Mc, the distribution collapses to a single

peak at N = 0 (i.e., all demes are nearly extinct) and decays ex-

ponentially with N . The threshold for loss of local adaptation is

sharper for larger LS—a finding that we clarify next.

The theoretical results shown in Figure 3 are based on the

joint distribution of population size and allele frequencies (eq.

3), derived by neglecting LD. As discussed above, we expect LD

to be negligible and our analytical predictions to hold exactly in

the limit where recombination is much faster than all other pro-

cesses. This corresponds to taking the limit s, m, r0 → 0, K →
∞, while holding the scaled parameters S = s/r0, M = m/r0 and

ζ = r0K fixed.

To test this expectation, we compare theoretical predic-

tions for the expected allele frequency in the rare habitat with

individual-based simulations where the unscaled parameters r0,

s and m are progressively reduced and the carrying capacity K

increased, while holding fixed the scaled parameters ζ = r0K ,

S = s/r0, and M = m/r0 (note that the equilibrium is fully de-

termined by scaled parameters under LE). These comparisons
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Figure 3. Loss of local adaptation at a critical migration rate under hard selection. Expected allele frequencies of the “1” allele (left

panels), which is favored in the common habitat and disfavored in the rare habitat, and expected population sizes (right panels) versus

scaled migration rate M = m/r0, for (A)–(B) weak coupling (S = 0.05, LS = 0.5) and (C)–(D) strong coupling (S = 0.2, LS = 2) between

population size and mean fitness. The number of selected loci is L = 10 and selection is symmetric, with S1 = S2 = S = s/r0 at each locus;

the rare habitat comprises 30% of demes (ρ = 0.3) and ζ = r0K = 40. The plots show the expected allele frequencies and sizes in the rare

and common habitat (blue, red) as well as the mean p and N across the whole metapopulation (black). For both weak coupling (i.e.,

LS < 1 in (A) and (B)) and strong (i.e., LS > 1 in (C) and (D)), there is a critical migration threshold, Mc , above which alleles favored in the

rare habitat are lost from the metapopulation. The insets in (B) and (D) depict the probability distribution ψ[N] of population sizes in the

rare habitat (integrated over intervals of width �N = 0.02) for M <Mc (solid line, corresponding toM = 0.005 in B andM = 0.014 in D),

M ∼ Mc (dashed line, corresponding to M = 0.013 in B and M = 0.0219 in D), and M >Mc (dotted line, corresponding to M = 0.021 in B

andM = 0.03 in D). For weak coupling,ψ[N] peaks at a nonzeroN, irrespective ofM. For strong coupling,ψ[N] is bimodal forM � Mc , with

one peak close to N = 0 (corresponding to nearly extinct demes) and the other peak at N ∼ 1 − LSE[p] (corresponding to a well-adapted

demes). For M >Mc , the second peak disappears and the distribution is concentrated at N = 0 (all demes nearly extinct). All plots are

obtained from the diffusion approximation by numerically determining fixed points (eqs. 3 and 4) using the joint distribution �[N, p].

(Fig. 4) show that the migration threshold for loss of local adap-

tation in simulations can be significantly higher than the theoret-

ical Mc if LS is high (Fig. 4B). High values of LS correspond

to high values of Ls, which governs the extent to which the ef-

fective migration rate of a deleterious allele is reduced due to its

genetic background, when the two habitats are nearly fixed for

alternative alleles at multiple loci (see also Supporting Informa-

tion Appendix C). However, as expected, the critical migration

threshold in simulations converges to the theoretical prediction

(for a given set of scaled parameters ζ , S, M) as evolutionary and

ecological processes become weaker (r0, s, m → 0) relative to re-

combination. Note that for LS < 1 (Fig. 4A), the allele frequen-

cies in individual-based simulations are very close to the theo-

retical (LE) prediction for all r0, suggesting that LD is already

negligible even for the highest value of r0 (red). The minor dis-

crepancy between simulations and theory in this case is due to

the relatively few demes in the simulation, and vanishes as we

simulate metapopulations with more demes (results not shown).
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Figure 4. Comparison of the predictions of the diffusion approximation (which assumes LE) with individual-based simulations (which

incorporate LD). Expected allele frequencies of the locally disfavored allele in the rare habitat versus scaled migration rateM = m/r0, for

(A) weak coupling (S = 0.05, LS = 0.5) and (B) strong coupling (S = 0.2, LS = 2) between population size and mean fitness. All parameters

are the same as in Figure 3. In each plot, the different colors show results of individual-based simulations (of 100 islands) for different

values of r0. All other unscaled parameters s, m, K are varied (as described in the text) as we vary r0, such that the scaled parameters

S = s/r0, M = m/r0 and ζ = r0K are the same for the different colors. The results of individual-based simulations deviate significantly

from the diffusion prediction which assumes LE (dashed line) for larger r0, especially for LS > 1 (panel B), but converge toward the LE

prediction as we approach smaller r0 while holding scaled parameters fixed. We only simulate 2 values of r0 in panel A, as deviations

from the LE prediction are already small even with the highest value of r0.

In the following, we will only present theoretical predictions

obtained from equations (3) and (4) (which assume LE), with

the understanding that these will accurately describe evolutionary

outcomes in the well-defined limit in which LD is negligible.

SEMIDETERMINISTIC APPROXIMATION

The fact that population sizes are approximately normally dis-

tributed about E(N ) for LS ≤ 1, suggests that in this “weak cou-

pling” regime, we can use a simpler approximation by neglecting

fluctuations in N and assuming that, at any instant, it is close to

its expected value E(N ), which depends deterministically on the

expected fitness E[Rg] through E(N ) ≈ 1 + E[Rg]. This semide-

terministic approximation (details in Supporting Information

Appendix A5) thus accounts for how allele frequencies within

any deme are influenced by genetic drift (whose strength is

inversely proportional to the local population size N), but as-

sumes that N itself is largely unaffected by demographic fluctua-

tions and determined by the expected allele frequencies (through

E[Rg]). This approximation is thus only meaningful if ζ � 1,

so that demographic fluctuations in well-adapted populations are

weak. As shown next, the semideterministic approximation accu-

rately predicts the threshold for loss of local adaptation if LS ≤ 1

(i.e., when the distribution of N is unimodal about the expected

population size).

In this regime (i.e., when the semideterministic approxima-

tion is accurate), outcomes are governed by three parameters. For

a given ρ (i.e., fraction of demes in the rare habitat), and assum-

ing symmetric selection S1 = S2 = S, these are: ζS = Ks, which

governs the strength of drift relative to selection in a population

at carrying capacity, ζM = Km, which determines the average

number of migrants exchanged between demes at carrying ca-

pacity, and LS, which determines how much population sizes are

reduced below carrying capacity due to maladaptation (see also

Supporting Information Appendix A5). Next, we clarify the roles

of these parameters in the low migration limit ζM = Km � 1,

which is most conducive to local adaptation, and then build upon

this to understand the more complex scenario where gene flow

impairs adaptation more strongly.

LOW MIGRATION LIMIT

Under rare migration, loci are near fixation for one or other allele

within a deme. As with soft selection, this implies that the fixa-

tion rates of alternative alleles (at a given locus) on island i are

in the ratio ≈ (N p/N )e2ζSiNi : 1 − (N p/N ), where ζ = r0K , and

Si is the (scaled) selective advantage of the locally favored allele

at that locus on island i. Further, N p/N is the frequency (within

the migrant pool) of alleles favored on island i. A comparison

of this heuristic (for fixation rates) under hard selection with the

analogous approximation under soft selection (eq. 5) highlights

two important features of allele frequency evolution under hard

selection.

First, the rate of fixation and hence the frequency of the fa-

vored allele at any locus within any deme depends on the degree

of maladaptation at all other loci via the local population size Ni.
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In particular, locally deleterious alleles at very many loci, at even

modest frequencies, can have substantial effects (in aggregate)

on mean fitness, thus reducing size. This further accentuates drift

at individual loci, causing locally deleterious alleles to increase

or even fix, further reducing population size, thus generating a

positive feedback between loss of fitness and decline in numbers.

Second, any island contributes to the allele frequency N p/N

in the migrant pool in proportion to its size, which depends on the

fitness of the island. Since locally adaptive alleles are at slightly

lower frequency in the rare as opposed to the common habitat

(even when both are locally adapted), demes are also somewhat

smaller in the rare habitat. Thus, demes in the rare habitat con-

tribute less to the allele frequency in the migrant pool than demes

within the common habitat in proportion to the ratio of popula-

tion sizes. This causes the allele frequency in the migrant pool to

shift further toward the optimum for the common habitat, which

increases migration load and reduces numbers in the rare habi-

tat, generating a second positive feedback loop. Crucially, both

types of feedback depend on the strength of coupling between

population size and mean fitness, and are thus stronger for larger

LS = L(s/r0).

Figure 5A shows how local adaptation depends on the selec-

tive advantage of the favored allele per locus S = s/r0 or alter-

natively, the number of selected loci L, for a fixed LS under very

weak migration (ζM = 0.005). These plots thus reveal how local

adaptation is influenced by the genetic architecture of (i.e., the

number and selective effects of loci contributing to) genetic load,

for a given total load LS, which translates into a given maximum

possible reduction in population size under hard selection.

Figure 5A shows that given a certain maximum load LS, lo-

cal adaptation in the rare habitat is possible only above a crit-

ical Sc per locus. For S < Sc, drift overpowers selection at in-

dividual loci, causing alleles favored in the common habitat to

eventually fix across the entire metapopulation, despite very low

genetic exchange, as with soft selection (Fig. 2B). Alternatively,

given a certain (maximum) load LS, local adaptation is possible

only if the selected trait is determined by a modest number of

loci (i.e., for L < Lc, where Lc = L(S/Sc )), and fails for highly

polygenic traits.

Further, local adaptation in the rare habitat requires stronger

selection per locus when the total cost of maladaptation, LS, is

higher (solid vs. dashed lines in Fig. 5A). In fact, the critical

selection threshold Sc increases with increasing number of loci

under divergent selection, such that local adaptation is not possi-

ble for any S for sufficiently large L even under weak migration

(Fig. 5B). As we argue next, higher S increases the efficacy of

selection at individual loci (via ζS) but also results in stronger re-

duction in population size N due to load (via LS): the latter effect

is especially strong for more polygenic traits, so that an increase

in S may actually result in weaker selection relative to drift.

Thus, as selection becomes less “hard,” that is, LS = L(s/r0)

becomes smaller with ζS = Ks and Km = ζM held fixed, allele

frequencies in the two habitats should approach those under soft

selection. This is indeed what we see (Fig. 5C): for a given ζS,

the frequency of the locally favored allele under hard selection

increases towards the soft selection prediction as we approach

lower S (and hence lower LS). Note that keeping ζS fixed corre-

sponds to increasing carrying capacities as selection is reduced,

such that the strength of selection relative to drift remains un-

changed even as it becomes weaker relative to population growth.

Finally, Sc is lower for larger ρ (orange vs. blue plots in

Fig. 5A), that is, if the rare habitat encompasses a larger frac-

tion (but still less than half) of the islands. In this case, the rare

habitat is subject to a lower migration load (because allele fre-

quencies in the migrant pool are more intermediate), resulting in

a weaker reduction in population size as well as weaker swamp-

ing at individual loci.

We now ask: for a given ζM = Km, does local adaptation

depend only on the composite parameters ζS = Ks and LS, as

one would expect under a semideterministic regime? To inves-

tigate this, we determine the threshold ζc (such that local adap-

tation occurs for ζ > ζc), as a function of S, for various L and

fixed ζM. Here, ζM is held constant by reducing the rescaled

migration rate M = m/r0 as ζ = r0K increases, such that the av-

erage number of migrants (between demes at carrying capacity)

remains unchanged.

Figure 5D shows that the semideterministic prediction for

ζcS (dashed line, obtained from eq. S7 of the Supporting In-

formation) is extremely accurate for LS � 1: in this regime, the

threshold ζcS for local adaptation in the rare habitat depends on

the number of selected loci only via the combination LS (which

governs the reduction in population size due to maladaptation).

Moreover, this threshold only increases sublinearly with LS for

LS � 1. By contrast, for LS � 1, the semideterministic approx-

imation fails: the critical ζcS threshold increases much faster

(nearly linearly) with LS than predicted by the semideterminis-

tic approximation. However, even in this regime, the threshold

for adaptation ζcS depends only weakly on the number of loci,

and is essentially governed by LS.

Note that the semideterministic approximation significantly

underpredicts ζcS (i.e., the extent to which selection per locus

must prevail over drift) for large LS (Fig. 5D). For LS > 1,

individual demes within the habitat may be maladapted and

nearly extinct, even when the rare habitat is adapted as a whole.

Thus, the distribution of population sizes is intrinsically bimodal

(Fig. 3D) and poorly approximated by a single population size

(as assumed by the semideterministic approximation). Moreover

demographic stochasticity may be important at low population

numbers, even if it has negligible effects near carrying capacity

(i.e., if ζ = r0K � 1). Thus, accounting for the full stochastic
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Figure 5. Local adaptation in the rare habitat under hard selectionwithweakmigration (ζM = Km � 1); selection is symmetric across the

two habitats (S1 = S2 = S = s/r0). (A and B) Expected frequency of the locally favored allele in the rare habitat vs. ζS = Ks, for ζ = r0K = 50,

M = 0.0001 for (A) fixed LS (B) fixed L (and ρ = 0.2). (A) As we move along the x-axis, the scaled selection coefficient S and the number

of loci L are changed simultaneously such that maximum possible genetic load LS is constant (for any one curve). Solid versus dashed

lines correspond to LS = 1 and LS = 2, respectively. Different colors correspond to different fractions ρ of demes in the rare habitat. Local

adaptation in the rare habitat is lost when selective architectures are highly polygenic with weak selective effect per locus (high L, low

S). (B) Local adaptation in the rare habitat is not possible at any selection strength S, for larger L (blue), which depends on ζ. (C) Expected

frequency of the locally favored allele in the rare habitat versus ζS = Ks for different S = s/r0, for ζM = Km = 0.01, ρ = 0.2, and L = 10.

For a given S, the composite parameter ζS = Ks is varied by varying ζ; M is changed accordingly so that ζM is constant. The dashed line

shows the corresponding prediction for allele frequencies as a function of Ks when population sizes are fixed, that is, decoupled from

fitness (soft selection). For a given ζS = Ks, populations approach the soft selection prediction as S and hence LS (which determines the

coupling between population size and fitness) decrease. (D) Comparison of the predictions of the full stochastic model for the critical

selection threshold ζcS against the semideterministic prediction (which neglects demographic fluctuations and treats population size on

each island as being determined by the local expected fitness). The threshold ζcS for local adaptation in the rare habitat is plotted against

LS for different values of L (depicted by different symbols), for ζM = 0.1 and ρ = 0.2. For given L, we vary LS by changing S, and then

compute the critical ζc for each S. The migration rateM is changed accordingly such that ζM is constant at 0.1. The symbols and solid lines

represent predictions of the full stochastic model while the dashed line represents predictions of the semideterministic approximation.

There is good quantitative agreement between the full model and the semideterministic approximation for LS � 1, but not for larger LS.

Predictions of the full stochastic model with hard selection are obtained by determining fixed points numerically (eqs. 3 and 4) using the

joint distribution �[N, p]; the soft selection prediction (dashed line in (C)) is obtained by determining fixed points under soft selection

(eq. S6 in Supporting Information); the semideterministic prediction (dashed line in (D)) is obtained by determining fixed points of the

semideterministic equations (eq. S7 in Supporting Information).
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A B

Figure 6. Critical migration rates for loss of local adaptation in the rare habitat. Critical (scaled) migration rateMc = mc/r0 versus (scaled)

selection coefficient S = s/r0 per locus for (A) different values of ζ for L = 20, (B) different values of L for ζ = 50, with S1 = S2 = S and

ρ = 0.2 in both cases. Symbols with solid lines depict Mc obtained from the joint stochastic distribution of population size and allele

frequencies; dotted lines represent the predictions of the semideterministic approximation (obtained from eq. S7 of the Supporting

Information); dashed line in (B) represents the deterministic prediction. Mc falls with S for large S: this effect is not captured by the

semideterministic or the deterministic prediction. For any S, the critical migration rate Mc increases with increasing ζ (in panel A).

distribution of population sizes and allele frequencies is crucial

for predicting evolutionary outcomes in this regime.

CRITICAL MIGRATION RATES FOR LOSS OF LOCAL

ADAPTATION IN THE RARE HABITAT

Where selection is strong relative to drift (for a given LS), so that

both habitats are locally adapted under low genetic exchange, we

ask: how high can migration be while still allowing adaptation to

the rare habitat and polymorphism overall? Figure 6 shows Mc,

the critical migration rate above which polymorphism collapses,

as a function of S for symmetric selection (S1 = S2 = S), for dif-

ferent values of ζ with L fixed (Fig. 6A) or different values of

L with ζ fixed (Fig. 6B). The points represent results of the full

stochastic model (based on the joint distribution of N and p);

dotted lines show predictions of the semideterministic approxi-

mation (which neglects demographic stochasticity); the dashed

line in Figure 6A shows the fully deterministic prediction (which

neglects both demographic stochasticity and drift).

It is useful to first consider the deterministic (dashed lines in

Fig. 6A) and semideterministic (dotted lines) predictions for the

critical migration rate Mc: both analyses predict that Mc should

increase with S when selection is weak but then saturate to a

constant value for large S. The semideterministic prediction for

Mc is lower than the deterministic prediction due to the contri-

bution of drift to maladaptation but approaches the determinis-

tic prediction as ζ (and hence ζS) increase. The emergence of

a selection-independent threshold Mc at large S (under the de-

terministic analysis) is most easily demonstrated in the ρ → 0

limit, in which one of the habitats is extremely rare and does not

affect allele frequencies in the other habitat. In this simple limit,

we can show that Mc ∼ 1/(4L) for L � 1 and large S (Support-

ing Information Appendix A6). More generally, this reflects the

fact that under hard selection, a population is viable only while

its total migration load is less than its intrinsic growth rate r0.

Since genetic load per locus is at least m in the limit of a very

rare habitat (ρ → 0), and is typically greater than m under hard

selection (Supporting Information Appendix A6), this limits how

many polymorphic loci can be maintained without extinction.

Now, consider the predictions of the fully stochastic analysis

(symbols in Fig. 6A), which accounts for both drift and demo-

graphic stochasticity. When selection is weak, the critical migra-

tion rate Mc increases with S and is accurately predicted by the

semideterministic analysis. However, beyond a certain threshold

selection strength, which corresponds approximately to LS ∼ 1

(Fig. 6B), Mc declines with increasing S. Thus, the range of

migration rates allowing local adaptation in the rare habitat is

widest (i.e., Mc largest), for intermediate selection. As expected,

Mc decreases with increasing L (in accordance with the difficulty

of maintaining polygenic local adaptation under hard selection)

and increases with increasing ζ (where higher ζ = r0K implies

weaker stochastic fluctuations in both population sizes and al-

lele frequencies). However, even for ζ as high as 200 (i.e., 200

births per generation in a well-adapted population), Mc is much

lower than the corresponding deterministic threshold for large LS

(Fig. 6A).

The nonmonotonic dependence of Mc on selection per lo-

cus appears quite generally, that is, for various ζ (Fig. 6A), L

(Fig. 6B) and ρ (results not shown), and is in sharp contrast to
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expectations under soft selection (where Mc is predicted to in-

crease linearly with S), or to predictions for hard selection that

fail to account for the stochastic distribution of population sizes

(dashed and dotted lines in Fig. 6). More specifically, loss of local

adaptation in the large LS regime is accompanied by an increase

in the fraction of nearly extinct demes; demographic stochastic-

ity further exacerbates extinction risk in populations that may be

already shrinking due to maladaptive gene flow, thus causing Mc

to be several times lower than the deterministic prediction.

Discussion
Existing theory on maladaptation and extinction in metapopula-

tions is largely based on simple genetic models and fails to ad-

dress the stochastic coevolution of population sizes and allele

frequencies. While various models include one or other stochas-

tic process, for example, genetic drift in subdivided populations

(Whitlock and Barton 1997; Blanquart et al. 2012), stochastic

extinction-recolonization dynamics in metapopulations (Hanski

and Mononen 2011), demographic and environmental fluctua-

tions in the absence of selection (Mangel and Tier 1993; Lande

et al. 2003; Black and McKane 2012), very few model the

combined effects of different types of stochasticity (though see

Chevin et al. 2017).

Our modeling framework is based on a diffusion approx-

imation for the joint evolution of population sizes and allele

frequencies under hard selection (Banglawala 2010; Barton and

Etheridge 2018), which we extend here to a metapopulation with

multiple ecological niches. It assumes a polygenic architecture

for local adaptation, and accounts for both genetic drift and de-

mographic stochasticity. It predicts the full stationary distribu-

tion of population sizes and allele frequencies in different habi-

tats, thus clarifying the conditions under which local adaptation

is maintained across habitats under divergent selection, or con-

versely, those that result in maladaptation and extinction in rare

habitats. The underlying approximations (especially, LE) can be

formally justified as r0 → 0 (Fig. 4). Thus, they may not be ac-

curate in typical populations, where growth rates may be high.

Similarly, fluctuations in population size are assumed to be only

due to demographic stochasticity, and so may be greatly underes-

timated. Nevertheless, our modeling approach captures key pro-

cesses involved in local adaptation, and our approximations apply

over a broader range. We aim at understanding fundamental pro-

cesses, rather than precise prediction.

We identify two distinct reasons why local adaptation fails

within a rare habitat. First, if selection on locally favored alleles

is weak relative to drift, then alleles favored in the common habi-

tat tend to fix across the metapopulation, even when migration is

extremely rare, that is, M → 0 (Fig. 5). A somewhat paradoxi-

cal consequence of this result is that in the low M limit, loci that

are under weak divergent selection across habitats are expected to

show weaker differentiation than neutral loci, due to a net bias to-

wards alleles favored in the abundant habitat in the former case.

In practice, we expect the time scale for loss of divergence at

weakly selected loci to increase as M → 0. Thus, local adapta-

tion may be metastable and the loss of polymorphism extremely

slow in this regime: this is also observed in individual-based sim-

ulations (results not shown).

The loss of local adaptation due to swamping from the abun-

dant habitat, even under weak migration, is not predicted by de-

terministic arguments, and requires selection (per locus) to be

weak relative to drift. This drift-dominated regime also emerges

with soft selection, where we obtain an explicit expression for

the critical selection threshold required for polymorphism (eq.

5). This threshold depends on the relative proportions of the two

habitats: increasingly stringent selection per locus is required to

maintain local adaptation in the rare habitat as it becomes more

marginal (i.e., ρ decreases; Fig. 2B). Conversely, when the two

habitats are equally abundant (ρ = 1/2), the critical selection

threshold goes to zero as M → 0 (see also Blanquart et al. (2012),

who analyze this case with soft selection).

Local adaptation in the rare habitat can fail, even when se-

lection per locus dominates over drift, if migration exceeds a crit-

ical threshold. Such thresholds emerge quite generally also with

single loci under soft selection that are subject to maladaptive

gene flow. In the present model (with hard selection and mul-

tiple selected loci), the total migration load sets a more severe

constraint: it must be sufficiently low that the population can still

grow. Since migration load scales with the number of loci under

divergent selection, moderate maladaptation at many loci is suffi-

cient to cause the population to crash. Declining population sizes

further reduce the efficacy of selection at individual loci via in-

creased drift but also result in stronger swamping, generating a

positive feedback that extinguishes populations in the rare habi-

tat. This feedback sets an upper limit on the migration rate (given

L), or alternatively, on the number of loci that can be divergently

selected across the two habitats (given M), while still allowing lo-

cal adaptation in both. Interestingly, we find that the critical level

of maladaptive gene flow that populations can withstand actu-

ally decreases with increasing selection per locus, if the number

of divergently selected loci is large, such that LS � 1 (Fig. 6).

The decrease in local adaptation with increasing intensity of se-

lection, at a given M, was also noted by Ronce and Kirkpatrick

(2001) in their deterministic analysis of two habitats under sta-

bilizing selection. However, in the regime where maladaptation

leads to extinction, that is, for LS � 1, critical migration rates are

poorly predicted by deterministic analyses (Fig. 6A) which fail to

account for the stochastic distribution of population sizes and the

risk of extinction (of individual demes) within habitats that are

adapted as a whole.
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Our analysis thus highlights the difficulty of maintaining

more than a few divergently selected alleles across habitats un-

der hard selection, especially when one habitat is rarer. Selection

per allele must be sufficiently strong to prevent swamping from

the common habitat (even under extremely weak migration), but

not so strong that the total fitness cost of maladaptation (due to

migration load at multiple divergently selected loci) overwhelms

population growth, triggering extinction. Thus, with increasing

L, the conditions under which populations in the rare habitat can

escape one or the other mode of failure become increasingly re-

strictive (Figs. 5A and B, and 6B).

Note that in our model, polygenic adaptation is difficult be-

cause of the rather extreme form of environmental heterogeneity,

in which any selected allele has opposite effects on fitness in the

two habitats. In an alternative model, where fitness depends on

traits under stabilizing selection toward habitat-specific optima

(as in Ronce and Kirkpatrick 2001), migration load would be in-

dependent of the number of trait loci in the large L limit (Barton

and Etheridge 2018), and would thus not constrain the number

of polymorphisms that can be maintained under hard selection.

In this case, local adaptation is accomplished via small and tran-

sient allele frequency differences at multiple loci.

A key result is that local adaptation in the rare habitat be-

comes more difficult as selection becomes more “hard” (Fig. 5C):

hard selection depresses population sizes, causing both drift and

migration to become stronger relative to selection at individ-

ual loci. Thus, hard selection and random drift can substantially

increase the damage that gene flow may cause, for example,

when farmed fish escape into wild populations (Glover et al.

2017).

We focus here on the case where locally adapted popula-

tions are demographically stable. However, the joint distribution

derived in equation (3) can be used to explore alternative regimes.

For instance, we might consider a metapopulation with many

very small demes and frequent extinction (i.e., ζ = r0K ∼ 1).

The whole metapopulation can still adapt to global selection

pressures (if migration is sufficiently high), even when selec-

tion within each deme is weaker than local drift. Indeed, Wright

(1932) argued that such a “shifting balance” allows efficient

search across alternative adaptive peaks (see Rouhani and Barton

1993; Coyne et al. 1997). However, it would not be possible for

populations to adapt to local variations in environment between

demes in this regime.

The framework presented here is quite general, and ap-

plies directly to a wider range of cases, for example, when

the metapopulation encompasses more than two habitats or

patches with heterogeneous carrying capacities and/or growth

rates. While we have focused on local adaptation, the framework

can be used to address other questions. For example, the model

extends to include dominance, and so could be used to understand

how heterosis and inbreeding depression influence local extinc-

tions.

Our analysis neglects LD between locally adaptive alle-

les, which facilitates simultaneous local adaptation over a wider

range of migration rates than predicted by the diffusion (Fig. 4),

because sets of introgressing alleles from differently adapted pop-

ulations are eliminated together, thus reducing the effective rate

of gene flow (Barton and Bengtsson 1986). This effect is espe-

cially marked in the strong coupling regime (Fig. 4B), where

there is a strong positive feedback between a reduction in mi-

gration load (due to LD) and an increase in population size. The

effects of LD can be incorporated, at least approximately, within

the diffusion framework via the heuristic of effective migration

rates; we defer analysis to future work. It may also be possible

to estimate the extent of local adaptation, and the extent to which

it reduces effective gene flow, by observing how divergence and

LD vary along the genome (cf. Aeschbacher et al. 2017).

Local adaptation in a metapopulation may lead to parap-

atric speciation, despite gene flow: as populations diverge, se-

lection against introgressing alleles increases, reducing effective

migration, and allowing further divergence. A key issue here is

whether a heterogeneous environment will lead to distinct clus-

ters, separated by strong barriers to gene flow, which eventually

become good biological species. This may depend on the distri-

bution of available habitats. If these are broadly continuous, and

select along multiple environmental dimensions, then there may

be substantial local adaptation without clusters being apparent.

However, with distinct environments, local adaptation may lead

to strong isolation, as multiple divergent loci become coupled

together (Barton and De Cara 2009). The framework developed

here may be used to investigate how the distribution of selective

challenges influences whether populations evolve as generalists,

adapting to a range of local environments, or split into distinct

and well-isolated species.
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