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Abstract: Biological heterogeneity and low inherent immunogenicity are two features that greatly
impact therapeutic management and outcome in colorectal cancer. Despite high local control rates,
systemic tumor dissemination remains the main cause of treatment failure and stresses the need
for new developments in combined-modality approaches. While the role of adaptive immune
responses in a small subgroup of colorectal tumors with inherent immunogenicity is indisputable,
the challenge remains in identifying the optimal synergy between conventional treatment modalities
and immune therapy for the majority of the less immunogenic cases. In this context, cytotoxic agents
such as radiation and certain chemotherapeutics can be utilized to enhance the immunogenicity of an
otherwise immunologically silent disease and enable responsiveness to immune therapy. In this review,
we explore the immunological characteristics of colorectal cancer, the effects that standard-of-care
treatments have on the immune system, and the opportunities arising from combining immune
checkpoint-blocking therapy with immune-modulating conventional treatments.
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1. Introduction

Colorectal cancer (CRC) is the third-most commonly diagnosed cancer worldwide with 1.4 million
new cases annually [1], contributing to the fourth-most common cancer-related deaths [2]. Age is
considered to be the strongest risk factor with the majority of cases being diagnosed in those aged over
50, and with a significant rise in incidence from the age of 60. CRC is more prevalent in developed,
Western countries where the average lifetime risk of 3–5% rises significantly in individuals with a
family history of CRC [2].

Even though the majority of CRC cases are of a sporadic nature, a subgroup of patients presents
with hereditary forms of CRC, such as the common manifestation of Lynch syndrome or the rare
familial adenomatous polyposis. In individuals with the former, inherited mutations or epigenetic
inactivations of DNA mismatch-repair (MMR) genes result in a deficient MMR (dMMR) function.
For those developing CRC, MMR deficiency usually causes a high tumor mutational burden or
microsatellite-instable (MSI) status [3]. Apart from Lynch syndrome, sporadic cases of early-stage
dMMR tumors contribute to a total population of approximately 15% of CRC cases and are associated
with better long-term outcomes than those with proficient MMR (pMMR) function [4].

A quarter of all CRC patients present with metastatic disease at the time of diagnosis, whereas
approximately half of the total patient population will eventually have developed metastases. The most
frequently affected distant organ is the liver, followed by the lungs and peritoneum [5]. The prevailing
theory of metastatic progression in cancer is the classic seed-and-soil concept, and CRC liver metastasis
(CLM) is perfectly explained by this theory as the mesenteric venous drainage filters directly to the
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liver. Regarding primary tumors of the lower rectum, the inferior rectal vein communicates to the
inferior vena cava, making these tumors more prone to metastasize to the lungs [6,7].

Generally, no curative treatment exists for multi-organ metastasis. In the past two decades,
a number of new systemic therapies of cytotoxic and biologically targeted agents have been taken
into routine use for advanced CRC, extending patients’ lives and most importantly, alleviating their
symptoms. Nevertheless, unresectable metastases, particularly in abdominal cavity organs, remain
the cause of severe morbidity and poor survival [8]. New insights into the underlying biology of
systemic tumor dissemination may guide the next milestone in CRC management, the control of
metastatic progression.

Within this frame of reference, the potential of using the immune system to fight progressing
cancer has opened paradigm-changing therapeutic avenues. Tumor-defeating immunity involves
both tumor-antigen recognition and the action of cytotoxic T-lymphocytes. However, as the
tumor is also “self”, protective mechanisms against auto-immunity impede immune surveillance.
This counterbalance between the cancer and the immune system creates a state of equilibrium,
or immune tolerance, which can be edited therapeutically. Therefore, immune therapies are aimed
at overcoming tumor-induced immune-suppressive mechanisms and invoking antitumor immune
responses. So far, this concept has proven successful in the treatment of a limited number of
immunogenic tumors, but for less immunogenic cancers such as the majority of CRC cases, additional
stimulation is required to breach the immune tolerance and for patients to achieve beneficial and
durable treatment responses.

2. The Tumor Microenvironment (TME)

2.1. The Hypoxic TME and Its Immune Attributes

Hypoxia (low tumor oxygenation), a major TME (tumor microenvironment) hallmark,
continuously selects for tumor cell clones with aggressive phenotypes and stimulates
epithelial-to-mesenchymal transition, a process during which tumor cells lose the ability to adhere
to each other in favor of increased migration within the extracellular matrix [9]. Hypoxic conditions
promote resistance to cytotoxic therapies and contribute to metastatic progression [10–12]. Furthermore,
inflammation in the hypoxic TME provokes immune tolerance via tumor- and T-cell expression of
immune checkpoint proteins [13,14]. For example, increased expression of programmed death receptor
1 (PD-1) ligand, PD-L1, in tumor cells renders them more effective in binding to PD-1 on cytotoxic
T-cells, thereby silencing T-cell activity. On the other hand, immune checkpoint-blocking antibodies
such as anti-PD-1 and anti-PD-L1 agents, approved for treatment of immunogenic tumors such as
melanoma, classic Hodgkin lymphoma, and others, act by unleashing the cytotoxic T-cell activity
because they deblock the inhibitory binding of the PD-L1 on tumor cells to the PD-1 immune checkpoint
T-cell receptors. Thus, this phenomenon is commonly referred to as immune checkpoint blockade (ICB).

Studies have demonstrated major responses and long-term survival to ICB in early-stage, locally
advanced, and metastatic dMMR CRC, characterized by high tumor mutational burden and positive
MSI status and therefore high densities of tumor-associated antigens [15–19]. Additionally, strong
ICB responsiveness has been observed in advanced CRC with a rare gene locus copy-number
gain that causes enhanced PD-L1-mediated immune checkpoint activity [20]. However, unlike the
case for melanoma and non-small-cell lung cancer, tumor-cell expression of PD-L1 has not shown
utility as a predictive biomarker for ICB response in CRC [21]. Because the efficient activation of
tumor-defeating T-cells requires their neo-antigen priming by antigen-presenting dendritic cells,
the dominant population of CRC patients with pMMR disease and low tumor mutational burden
is inherently non-immunogenic [22,23]. In theory, either the eradication of TME hypoxia or the
enhanced release of tumor-associated antigens may breach the immune tolerance, a notion supported
by recent findings [24] where CRC patients with poor prognosis in any disease stage had tumors that
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were concurrently hypoxic and sparse in stromal T-cells and displayed an epithelial-to-mesenchymal
transition molecular signature [25].

2.2. Molecular CRC Subtypes

The heterogeneous nature of CRC at the molecular and clinical level has warranted a more
comprehensive method of classification that combines molecular signatures of tumor cells with
TME features (immune cells and other stromal components) [22]. The consensus molecular subtype
(CMS) classification, which is the one most commonly used, is based upon data from six different
classification systems and categorizes CRC primary tumors into four different subtypes (CMS1-4)
with varying degrees of mutations, immune-cell infiltration, metabolic activations, and other TME
changes [26]. For example, CMS1, also referred to as the Immune Subtype, applies to 14% of cases
and includes hypermutated tumors with a high degree of immune-cell infiltration and strong immune
activation. CMS4, also referred to as the Mesenchymal Subtype, is characterized by upregulation of
genes involved in the epithelial-to-mesenchymal transition, angiogenesis, and matrix remodeling.
The CMS classification has been validated in preclinical models and holds promise with respect to
clinical utility [27,28].

2.3. The CRC Immunoscore

It has been over a decade since Galon and colleagues elegantly demonstrated that the tumor’s
immune–cell contexture, as assessed in large cohorts of CRC patients with early-stage disease, was better
at predicting patient survival than well-established histopathological methods [29]. This contexture,
which describes the type, density, and location of adaptive immune cells in the TME, varies greatly
between individual patients [30]. Specifically investigated in localized CRC, both tumor infiltration of
cytotoxic T-cells and molecular T-cell signatures were correlated with the absence of histological signs
of invasiveness and good clinical outcome [29,31]. This work was further expanded to show that the
Immunoscore, a quantification of cytotoxic T-cells in the tumor core and invasive margin, exceeded the
capability of positive MSI status and was independent at predicting disease-free survival in patients
undergoing primary tumor resection [30,32,33]. Finally, an international consortium consisting of
14 centers in 13 countries assessed samples from more than 2600 patients with localized colon cancer
by standardized protocols for immunohistochemistry and digital image analysis, and validated that
the Immunoscore was independent of factors such as age, sex, TN-stage, and MSI status at predicting
disease-free survival [34]. The prognostic power of the Immunoscore was recently confirmed within
a prospective adjuvant chemotherapy study [35]. Furthermore, it has been approved as an in vitro
diagnostic device in clinical practice but at present without reimbursement by the public health
services [36].

However, it has been argued that the Immunoscore fails to include other immune-cell populations
hosted by the TME such as macrophages, dendritic cells, and natural killer cells, all of which may
also be important for predicting prognosis [37]. These cell types have been studied extensively in
predominantly early-stage CRC, where high infiltration within the tumor, and peripherally in the case
of dendritic cells, is associated with favorable prognosis [38–41]. Paradoxically, this is also true for
regulatory T-cells, which are central in the maintenance of immune tolerance [39,41]; however, this
may be due to an alternative T-regulatory population that participates in immune surveillance [42].
To date, the Immunoscore and CMS classification have not been integrated nor evaluated head-to-head
with regard to clinical utility by the respective developers. In T1 CRC (the most superficially invasive
tumors with excellent prognosis and consequently few CMS4 cases), no significant association was
found between the Immunoscore and CMS subtypes [43].
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3. Immune Modulation by Cytotoxic Therapies

3.1. Fluoropyrimidines

This class of agents constitutes the mainstay of most CRC treatment regimens. Their mechanism
of action relies on disruption of DNA synthesis by the incorporation into DNA and RNA structures
and by inhibition of the DNA synthesis enzyme thymidylate synthase [44]. The most commonly used
fluoropyrimidine over the years is fluorouracil, which is usually given with folinic acid to increase its
affinity for thymidylate synthase. With respect to its immune-related effects, fluorouracil is shown to
have an ambivalent role through its selective targeting of myeloid-derived suppressor cells (MDSC),
an innate immune-cell population. By targeting MDSC, fluorouracil lifts some of the inhibition
that MDSC impose on T-cell activation, but at the same time, the activation of the inflammasome
complex in the dying MDSC leads to the release of pro-inflammatory cytokines that ultimately promote
angiogenesis and tumor growth [45,46]. Additionally, an in vitro study showed that fluorouracil
increased PD-L1 expression in CRC cell lines [47].

3.2. Oxaliplatin

This agent is a third-generation platinum analog. The mechanism behind its cytotoxicity relies
on the adduct formation with DNA, resulting in the blocking of DNA replication and transcription.
Reduction of thymidylate synthase synthesis is considered as a secondary effect of oxaliplatin that
contributes to the synergy observed when oxaliplatin is combined with fluorouracil [48].

Oxaliplatin perfectly illustrates the interplay between cytotoxic and immune-modulating effects
of chemotherapy, the latter in terms of immunogenic cell death (ICD) [49,50] (Figure 1). In the dying
tumor cell, ICD is preceded by the translocation of calreticulin, an endoplasmic reticulum stress
response protein, to the plasma membrane and the extracellular release of ATP and the high-mobility
group box-1 (HMGB1) protein. Calreticulin serves as an “eat me” signal, ATP recruits dendritic cells
to the tumor sites to cause their maturation to antigen-presenting cells, and HMGB1 facilitates the
Toll-like receptor 4 dependent cross-presentation of the released tumor antigens to cytotoxic T-cells.
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Figure 1. The concept of immunogenic cell death by oxaliplatin. Cytotoxic damage by oxaliplatin (1)
causes release of tumor antigens from the dying tumor (2). These are taken up (3) by dendritic cells
(DC) and presented to cytotoxic T-cells (4), resulting in their activation and clonal proliferation (5).
This will in principle enable specific T-cell-targeting of any tumor manifestation systemically (6).

The ability of oxaliplatin to initiate ICD may play a critical role with respect to its rational
combination with ICB therapy. Preclinical studies demonstrated that oxaliplatin provoked TME
infiltration of cytotoxic T-cells and sensitization of CRC and other adenocarcinomas to ICB
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therapy [51–53]. Another study using a CLM model showed that oxaliplatin (in cooperation with
interleukin-12) reduced the TME content of immune-suppressive T-regulatory cells and MDSC
independently of HMGB1 and calreticulin release [54].

Another platinum analog, cisplatin, was unable to sensitize CRC models to ICB therapy [51].
Interestingly, both oxaliplatin and cisplatin induced the release of HMGB1, but it was only oxaliplatin
that caused calreticulin translocation and effectively contributed towards tumor immunogenicity [55].
Moreover, HMGB1 binding to Toll-like receptor 4 seemed to be critical for the oxaliplatin efficacy, since
patients carrying a loss-of-function TLR4 allele had impaired progression-free survival (PFS) when
given oxaliplatin for metastatic disease [55].

3.3. Radiation

Approximately 50% of cancer patients receive radiotherapy during the disease course [56]. Ionizing
radiation is cytotoxic in the sense that DNA damage in the targeted cells causes senescence or cell
death by means of apoptosis, necrosis, autophagy, or mitotic catastrophe [57]. In addition to the release
of tumor-associated antigens, radiation also provokes the release of calreticulin and ATP, leading to the
recruitment and activation of dendritic cells. As such, radiation can be viewed as an in situ vaccine with
the potential to induce tumor regression systemically [58]. Systemic effects of radiation, away from
the radiotherapy target volume, constitute the phenomenon known as abscopal effect. Even though
abscopal events are rare, they have been observed both in experimental and clinical settings [58,59].
The clinical manifestation of the abscopal effect occurs when radiotherapy has been administered
together with factors that enhance the antitumor immune response, such as the dendritic-cell
stimulator granulocyte-macrophage colony-stimulating factor or ICB therapies [59–65]. The majority
of studies combining radiation with ICB therapy have utilized single-site irradiation, a setting that
has been recently proposed to be partially responsible for low response rates. The heterogeneity
of tumor-associated antigens in the metastatic lesions and the varying degrees of immunogenicity
generated by different organs may warrant irradiation at different sites in order to achieve an adequate
immune response [66,67].

However, not all radiation effects are in favor of the antitumor response, and radiation has been
shown to also enhance TME immune-suppressive features in experimental models. For example,
dendritic cells co-cultured with irradiated murine mammary carcinoma cells had significantly reduced
surface expression of both antigen-presenting and co-stimulatory markers [68]. Transforming growth
factor-β1, one of the major immune-suppressive factors induced by radiation, contributes to inhibition of
T-cell cytotoxicity [69], immune evasion [70], expansion of T-regulatory cells [71], inhibition of dendritic
cell activation, as well as to the induction of pro-tumorigenic phenotypes in both tumor-associated
neutrophil and macrophage populations [72,73]. This complex role of radiation in immune responses
emphasizes the necessity for combination treatments aimed at enhancing the synergy among the
various modalities. Preclinically, radiation has been shown to enhance pro-immunogenic responses for
both ICD-inducing chemotherapeutic agents and immune checkpoint inhibitors [74,75]. Importantly,
radiation dose and fractionation are determinative for suppressive or activating effects; therefore, dose
and sequence of delivery, especially in conjunction with other modalities, should be considered [76].
For example, in a mammary carcinoma mouse model, irradiation with high doses induced a DNA
exonuclease, which through degradation of immunogenic DNA fragments accumulating in the cytosol
in irradiated cells caused a decline in the recruitment of dendritic cells crucial for T-cell-mediated
systemic tumor rejection. However, lower dose fractions did not result in the exonuclease induction [77].

4. Immune-Modulating Opportunities in the Standard-of-Care

4.1. Cytotoxicity and Tumor-Defeating Immunity

In principle, three scenarios can be set for “on-target” cytotoxicity combined with “off-target”
tumor-targeting immune responses in the standard-of-care CRC management. They are: neoadjuvant
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treatment of locally advanced disease in order to impede metastatic progression, neoadjuvant treatment
of oligometastatic disease in order to achieve systemic tumor clearance, and early-line therapy in
unresectable metastatic disease for durable systemic control.

4.2. Neoadjuvant Treatment of Locally Advanced Disease

In locally advanced rectal cancer (LARC), neoadjuvant chemoradiotherapy (CRT) with a
fluoropyrimidine in a non-cytotoxic radiosensitizing dose and resection of the residual tumor result in
low local recurrence rates [78], but metastatic progression remains a dominant cause of failure [79,80].
While there is no consensus whether postoperative systemic therapy may reduce metastatic
risk [79,81–83], various regimens involving neoadjuvant chemotherapy (NACT) prior to or immediately
following radiation have been investigated. Specifically, oxaliplatin-/fluoropyrimidine-based NACT
has been administered before CRT (in trials not randomized for the induction therapy) or following
short-course radiation prior to surgery (the experimental arm of the RAPIDO trial) with the aim of
delivering adequate systemic therapy for metastasis prevention without compromising local disease
control [84–92]. Because radiation has the ability to deliver cytotoxic effects in a focused tumor volume,
it has been argued that improved systemic outcome may be achieved by intensifying the local effects
that enhance elimination of clonogenic cells [93]. In that regard, only two of seven randomized
studies that have evaluated the potentially radiosensitizing effect of concomitant oxaliplatin in
fluoropyrimidine-based CRT met the primary efficacy endpoint [80,94–99]. The same two studies
showed high patient compliance to the chosen dose scheduling of oxaliplatin [80,95]. It is tempting to
speculate that oxaliplatin-based neoadjuvant therapy, when administered at an intensity that does
not compromise patient compliance to the multimodal treatment protocol, may promote an abscopal
immune response [100].

4.3. Neoadjuvant Treatment of Oligometastatic Disease

In liver-confined metastatic CRC with a therapeutic intent for surgical resection or radiofrequency
ablation, oxaliplatin-based NACT can be used for patient selection with respect to tumor aggressiveness,
disease down-sizing, or conversion of initially unresectable disease [101], three sides to the same
story. Although the EPOC trial showed no overall survival (OS) benefit for patients randomized to
perioperative oxaliplatin-based chemotherapy compared to those receiving only surgery, perhaps
explained by the study power to investigate PFS and the inclusion of more than 50% of patients with a
single metastatic lesion, the combined-modality study arm has become the standard-of-care [101–103].
A correlative examination of the surgical specimens revealed that the neoadjuvant therapy caused
tumor infiltration of CD3-positive lymphocytes and that a high count of the CD3-positive cells at
the invasive margin between tumor and the liver tissue was beneficial for PFS [104]. In terms of
response rates of initially unresectable CLM, the best outcomes in randomized trials were observed
for regimens containing irinotecan or cetuximab in addition to oxaliplatin-based NACT [105,106],
with improved long-term outcomes for both resected and non-resected patients reported for the former
regimen [107,108]. Meta-analyses have been discordant regarding survival benefit of perioperative
chemotherapy in patients with initially resectable CLM [109,110].

Hepatic artery infusion (HAI) chemotherapy is attractive as it limits systemic toxicity and allows
combination with systemic therapy. A number of early-phase trials have investigated the concept,
using oxaliplatin as the HAI compound for unresectable CLM with treatment toxicity and response
as endpoints, but only one study has been carried on with the aim of transforming to resectable
disease by using oxaliplatin, irinotecan, and fluorouracil [111]. The investigators have also examined
systemic exposure of the HAI chemotherapeutics in terms of pharmacokinetics analyses [112] and
pharmacogenetics determinants of outcome [113].

It is clear that immune responses arise from the ”off-target” effects of these various treatment
approaches. However, their involvement towards the eradication of occult tumor at other sites
(abscopal effect) has been essentially unexamined. Thus, we studied antitumor immunity invoked by
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oxaliplatin-HAI and the long-term outcome of primarily unresectable CLM in patients who had their
first recurrence of oxaliplatin-naïve isolated CLM that was considered technically unresectable [114].
Those who presented a rapid and substantial rise in a circulating ICD factor over the initial treatment
and at its completion could proceed to CLM ablation (hepatic resection or radiofrequency ablation)
or had complete response, were alive at final follow-up 8–12 years later, which is a remarkable
outcome. In contrast, those who remained with technically unresectable CLM or had the disease
converted to resectability but presented a slow and gradual accretion of the ICD factor, later died
of the metastatic disease. Consequently, complete and durable tumor eradication appeared to be
contingent on CLM conversion to resectable disease (for macroscopic tumor clearance) along with
a strong antitumor immune response (for elimination of disseminated microscopic tumor cells that
might cause systemic failure).

4.4. Early-Line Therapy in Unresectable Metastatic Disease

Patients with disseminated CRC make up an extremely heterogeneous group, with survival rates
depending on the metastatic sites, tumor load, and severity of systemic inflammation; however, median
OS has improved to approximately 30 months in clinical trials [115]. The powerful ICB effects with
respect to tumor regression rates and disease control durability in patients with dMMR/MSI-high
CRC have not been seen in pMMR cases. A variety of studies that investigate strategies to enhance
cytotoxic T-cell activation and tumor infiltration in combination with ICB therapy are ongoing [116],
and the first reports on outcomes can soon be expected [117,118]. Examples of how to combine ICB
with immune-modulating conventional therapies will be discussed below. If such attempts succeed to
become early-line treatments of metastatic disease, advanced CRC may be converted into a lifelong
controllable illness for the dominant pMMR patient population.

5. High-Risk Rectal Cancer—A Case Study

5.1. Blood-Based Indicators of Treatment Outcome and Tolerance

As conveyed in the above sections, the effects that cytotoxic therapies have on the immune
system are complex and often hanging on a balance between activating and suppressive responses.
Despite the accumulating preclinical evidence displaying synergies between cytotoxic and immune
therapies, the heterogeneous nature of cancer as it progresses and the individual differences of the
hosts’ immune systems present practical barriers that need to be overcome for this partnership to
be clinically successful. A better biological insight into the individual patient’s systemic responses
to conventional treatment is an important step towards a rational integration of immune therapy in
this context. Conceptually, detection of circulating proteins that may reflect the changing TME and
its systemic manifestations, as well as the constitutional and acquired physiology of the patient, is a
promising path to treatment-related biomarker discovery. We employed an antibody array technology
to monitor serial serum samples collected throughout an intensified neoadjuvant treatment course in
LARC study patients, in order to dissect the contribution of the individual modalities to treatment
outcome and tolerance [119]. The commercial antibody array detected approximately 500 proteins
that included immune factors, epithelial and vascular growth factors, and proteinases. Alterations
in serum levels of these proteins were anticipated to reflect treatment-induced effects on the tumor
mass and other tissues. The advantage of simultaneously analyzing a myriad of circulating proteins
on an array lies in the ability to achieve a more complete picture of the patient’s systemic responses to
the treatment.

5.2. The Clinical and Translational Study Design

The particular study (NCT00278694) prospectively enrolled 97 patients with T2-4N0-2M0 rectal
cancer between 2005 and 2010, who were given oxaliplatin-/fluorouracil-containing induction NACT
and sequential CRT with concomitant oxaliplatin weekly and capecitabine daily on the days of
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radiotherapy before pelvic surgery [120,121]. The study population consisted of cases that were
considered high-risk: the T2 cases presented a primary tumor threatening the anal levator muscles;
the T3 cases had mesorectal fascia margin of 2 mm or less; the T4 cases had organ-infiltrating tumor;
the majority of patients had involved lymph nodes in the pelvic cavity. In LARC, it is increasingly
appreciated that the sequence and combination of the various treatment modalities should be optimized
in accordance with the patient’s risk stratification; hence, the aim of this study on high-risk patients
was to deliver systemic therapy in the neoadjuvant setting and to intensify local radiation effects.
However, since protraction of the total treatment time may theoretically permit tumor cell repopulation
and selective pressure towards the survival of therapy-resistant cell clones, only four weeks of the
induction NACT (two cycles of the Nordic FLOX regimen [122]) were given. This induction phase was
highly tolerable [120] and alone led to substantial tumor volume reduction [123]. Moreover, an adapted
oxaliplatin dose intensity during CRT maintained patient compliance to the radiotherapy protocol [100].
In this study population with a high proportion of T4 disease and lymph node involvement, 5-year PFS
(almost all PFS events were metastatic progression) and OS were remarkably good [120], an observation
that prompted us to explore the possible mechanisms involved.

The study biobank consists of serum and plasma samples collected at the time of diagnosis,
immediately following NACT and then CRT completion, and at the time of treatment evaluation four
weeks after the neoadjuvant treatment. Following the initial screening with the antibody array [119],
we systematically investigated circulating factors likely reflecting the therapeutic eradication of
TME hypoxia and local invasiveness as well as immune-related responses: carbonic anhydrase
9 (CA9), matrix metallopeptidase 9 (MMP9), osteoprotegerin (OPG; formally denoted TNFRSF11B),
and fms-related tyrosine kinase 3 ligand (FLT3LG) [100,119,124,125].

5.2.1. CA9

The almost exclusively tumor-specific CA9, whose gene is induced by the hypoxia-inducible
factor-1α, is a transmembrane enzyme aimed at controlling intracellular pH changes that result from
the accumulation of acidic metabolites under hypoxic conditions. Specifically, CA9 catalyzes the
reversible hydration of carbon dioxide to bicarbonate and protons, which restores physiological
intracellular pH [126]. However, as this enzymatic reaction normalizes intracellular pH, inefficient
metabolic waste clearing from the abnormal TME vasculature leads to TME acidification. This induces
metallopeptidase activation with remodeling of the extracellular matrix and enhanced tumor-cell
invasiveness, which may be one of the links between high tumor CA9 expression and poor
prognosis [127,128]. Active metallopeptidases further cause proteolytic CA9 cleavage and consequently
its ectodomain shedding [129]. We therefore measured circulating CA9 in the study patients to
investigate any possible association of CA9 release with therapeutic outcome [124].

We found that patients who from their individual baseline level showed a strong increase in
circulating CA9 after completion of the short-course induction NACT, had significantly better survival
without metastatic progression than patients with low post-NACT versus baseline alteration. Strikingly,
this strong CA9 increase was significantly correlated with tumor down-staging and node sterilization,
but not with the degree of surviving tumor cells relative to fibrosis (i.e., tumor regression grade) of
the surgical specimen [124]. The histological observations raised the speculation that a response from
CA9-expressing TME stromal cells to the induction NACT [130], in addition to the response from the
actual tumor cells, might have been conditional for the favorable survival outcome. This entire set of
observations further indicated that the oxaliplatin-containing chemotherapy might have specifically
targeted hypoxic, CA9-expressing tumor components.

5.2.2. MMP9

This metallopeptidase belongs to a family of proteases with critical roles in extracellular
matrix degradation and remodeling as well as angiogenesis [131]. Lipocalin-2, which is
predominantly produced in neutrophils, forms a covalent complex with MMP9 and protects it



Cancers 2020, 12, 2193 9 of 22

from auto-degradation [132]. MMP9 production occurs in both TME stromal and inflammatory cells
such as macrophages and neutrophils [133,134], the latter storing MMP9 in secretory granules for rapid
release [135]. Circulating MMP9 is elevated in CRC patients, and in resected primary CRC, tumor
MMP9 expression is an independent predictor of disease-free survival [136–139].

We found that circulating MMP9, together with lipocalin-2, had significantly declined from the
baseline values at completion of the induction NACT and gradually reverted over the remaining
neoadjuvant course. Moreover, the greater the fall in post-NACT and post-CRT MMP9 levels, the more
favorable survival without metastatic progression [119]. These observations made it tempting to
speculate that the induction NACT, aided by the sequential CRT, might have specifically eradicated
TME components with MMP9-regulated inflammatory and invasive properties [140] in good-prognosis
patients. Additionally, the serum MMP9 decline might have reflected a myelosuppressive effect of
NACT and CRT (i.e., a systemic adverse effect on neutrophils) as we could not exclude the possibility
that MMP9 (and lipocalin-2) alterations might mirror deleterious normal tissue effects. With the
particular study design, the pelvic CRT caused enteritis [96], but we did not find any correlation
between the actual factors and diarrhea scores, the clinical correlate of adverse intestinal effects [119].

5.2.3. OPG

This soluble tumor necrosis factor decoy receptor is a glycoprotein that binds to the ligand of the
receptor activator of nuclear factor-kappaB (RANK), RANKL [141]. The OPG/RANKL/RANK system is
involved in a wide variety of biological processes and is essential for bone-resorbing osteoclast activity
of the bone remodeling process [142,143]. In particular, RANKL-induced signaling is implicated in the
antigen-specific interaction between dendritic cells and T-cells [143].

We found that circulating OPG appeared to show contradictory biological behavior. On the one
hand, high baseline levels were associated with metastatic progression after the pelvic surgery [125].
It might be that high de novo circulating OPG reflected a rescue mechanism to high osteoclast activity
that is commonly associated with disease of grave severity. On the other hand, patients who responded
to the induction NACT by elevating the circulating OPG, had considerably better metastasis-free
survival than those who did not achieve a rise, even though patients with and without increase
were equally distributed with regard to tumor down-staging and node sterilization as well as tumor
regression grade locally. The change in OPG during NACT was unrelated to the diarrhea scores.
However, at each serum sampling point during the active neoadjuvant therapy, a correlation was
found between the OPG level and the actual monocyte count [125]. Since OPG is expressed by
monocyte-derived dendritic cells [144], these observations suggest that the study treatment might have
affected the dendritic cell pool.

5.2.4. FLT3LG

This is a hematopoietic factor that can activate functionally mature dendritic cells [145–147] and is
a potent growth factor for a rare subset of professional antigen-presenting cells that stimulate cytotoxic
T-cells [148]. FLT3LG may reflect recovery from chemotherapy-induced myelosuppression [149,150]
and in a preclinical model, it mediated radiation abscopal effects [59]. When administered to patients
with metastatic CRC, it has led to expansion of the dendritic cell population both in the tumor periphery
and systemically [59,151].

We showed that circulating FLT3LG increased following NACT and the sequential CRT and
that the post-NACT increase was associated with favorable survival outcome. We further observed
that patients who had an oxaliplatin dose intensity under CRT that maintained compliance to the
radiotherapy protocol, had low probability of metastatic progression after the definitive surgery [100].
Our interpretation was that oxaliplatin, in the short-course NACT and then dosed at an adapted
intensity under CRT, caused repetitive myelosuppression and elevated circulating FLT3LG as a rescue
response, which may have resulted in an increase of functionally active immune cells, enabling
eradication of occult microscopic tumor cells at distant sites (abscopal effect) in a patient population
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prone to metastatic progression. The data also supported the notion in which cytotoxic therapies, after
transient immune suppression, may reset the immune system to reinstate immune surveillance by
creating new immune cell repertoires [152,153]. The increase in circulating FLT3LG in response to
NACT and CRT was also validated in an independent cohort of LARC patients [100].

5.3. New Insights and New Concepts

In this LARC study, the initial modality of the oxaliplatin-containing neoadjuvant therapy course,
consisting of two well-tolerated cycles of the Nordic FLOX regimen [120], led to a considerable
reduction of the tumor burden [123], which comprised eradication of hypoxic tumor components [124]
and invasive attributes of the TME [119]. Moreover, the induction NACT invoked systemic antitumor
immunity that was maintained by the sequential oxaliplatin-containing CRT [100,125] (Figure 2).
These observations suggest that CRC can be transformed into an immunogenic condition by oxaliplatin,
and thereby large patient populations may benefit from the addition of ICB therapy in order to improve
the outcome of oxaliplatin-based standard-of-care regimens.
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Figure 2. Tumor-defeating immunity under neoadjuvant cytotoxic therapy in high-risk rectal cancer.
Short-course induction chemotherapy and sequential chemoradiotherapy in locally advanced rectal
cancer cause repetitive myelosuppression and a resulting replenishment of the hematopoietic cell pool
(1) when both treatment modalities contain oxaliplatin. The enhanced recruitment of maturing dendritic
cells (2) enables the presentation of tumor antigens, released from the dying tumor, to cytotoxic T-cells
(3), which after clonal expansion (4) may eliminate microscopic tumor cells at distant sites in the patient
at high risk of metastatic progression.

6. Opportunities—Ongoing Combined-Modality Studies

Conventional chemotherapy and radiotherapy are particularly appealing now that more is known
about their effects on the immune system, and about the fact that dose and timing of the administration
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play a decisive role. From this, a next step in CRC management will be the rational combination of
cytotoxic agents with ICB therapy in patients with locally advanced or advanced pMMR CRC (Table 1),
as for example illustrated by the NSABP FR-2 (NCT03102047) and METIMMOX (NCT03388190) trials.
In the former, a PD-L1 inhibitor is administered following CRT completion in patients with pMMR
LARC. If CRT invokes ICD, the sequential ICB therapy may improve the primary outcome measure,
the neoadjuvant rectal score, which is a composite short-term surrogate endpoint for long-term survival
in rectal cancer [154].

Table 1. Trials (recruiting as per July 2020) that investigate combined-modality cytotoxic agents and
immune checkpoint inhibitors in colorectal cancer proficient in the DNA mismatch-repair function.

Condition Study Agents Identifier Main Study Endpoints Phase

Locally advanced
rectal cancer

Radiation
Fluoropyrimidine

Durvalumab
NCT03102047

Efficacy and tolerability of
immune checkpoint blockade

following completion of
neoadjuvant

chemoradiotherapy

2

Locally advanced
rectal cancer

Radiation
Fluoropyrimidine

Atezolizumab
NCT03127007

Efficacy and tolerability of
concomitant immune

checkpoint blockade under
neoadjuvant

chemoradiotherapy

1/2

Oligometastatic
colorectal cancer

Radiation
Toripalimab NCT03927898

Efficacy and tolerability of
immune checkpoint blockade

following first-line
chemotherapy and stereotactic

body radiotherapy

2

Metastatic
colorectal cancer

Radiation
Nivolumab
Ipilimumab

NCT03104439
Efficacy of dual immune

checkpoint blockade under
palliative radiotherapy

2

Metastatic
colorectal cancer

Oxaliplatin
Fluoropyrimidine

Nivolumab
NCT03388190

Efficacy and tolerability of
repeat sequential

chemotherapy and immune
checkpoint blockade

2

Metastatic
colorectal cancer

Oxaliplatin
Irinotecan

Fluoropyrimidine
Binimetinib

Pembrolizumab

NCT03374254

Efficacy and tolerability of
concomitant chemotherapy,

inhibitor of mitogen-activated
protein kinase 1 and 2, and

immune checkpoint blockade

1

Metastatic
colorectal cancer

Oxaliplatin
Irinotecan

Fluoropyrimidine
Bevacizumab
Atezolizumab

NCT03721653

Efficacy and tolerability of
concomitant combination

chemotherapy, angiogenesis
inhibitor, and immune
checkpoint blockade

2

Metastatic
colorectal cancer

Oxaliplatin
Fluoropyrimidine

Durvalumab
Tremelimumab

NCT03202758

Safety, efficacy, and tolerability
of concomitant chemotherapy
and dual immune checkpoint

blockade

1/2

Locally advanced
or metastatic

colorectal cancer

Fluoropyrimidine
Bevacizumab

Pembrolizumab
NCT03396926

Efficacy of concomitant
chemotherapy, angiogenesis

inhibitor, and immune
checkpoint blockade

2

In our own study, METIMMOX: Colorectal Cancer Metastasis—Shaping Antitumor Immunity
by Oxaliplatin, patients with unresectable and previously untreated metastatic pMMR CRC are
randomized to either the standard-of-care Nordic FLOX regimen or repeat sequential two FLOX cycles
and two cycles of the PD-1 inhibitor nivolumab (Figure 3). The primary objective is to compare PFS in
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the experimental versus standard-of-care arm. Secondary objectives are to compare safety, tolerability,
quality-of-life, and OS in the two study arms, and the tertiary objective is to compare costs for the
resource use. Exploratory objectives are to develop circulating, tissue-based, and functional magnetic
resonance imaging indicators of TME immune responses within a companion biomarker program.
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Figure 3. The METIMMOX study flow chart. Each treatment arm consists of intermittent sequences of
active therapy over 8 cycles (16 weeks), before break until disease progression, when the therapy is
reintroduced and administered for another 8 cycles before a new break. This “go-and-stop” schedule is
continued until disease progression on ongoing therapy (defining progression-free survival in terms of
failure of treatment strategy), intolerable toxicity, withdrawal of consent, or death, whichever occurs
first. Circles indicate study visits with appendant activities. During a break period, radiographic
assessment (CT), blood biobanking, and visits are done every 8 weeks until start of a new therapy
sequence. Adverse events are recorded at each visit. Quality-of-life assessments are done before Week
1, at the end of Sequence 1 (Week 16), and at disease progression on study treatment. Timing for blood
and biopsy biobanking and functional magnetic resonance imaging (fMRI) recordings is indicated.

7. Conclusions

As discussed in this review, there is clear evidence that the effects of cytotoxic therapies extend
beyond the shrinking of the tumor masses and involve factors with critical roles in tumor-targeting
immunity. Investigations of these factors, as they appear systemically and intratumorally over the course
of treatment, will lead to a better understanding of the immune-modulating effects of conventional
cancer therapies and match the accumulating knowledge on the immunologic characteristics of
individual tumors. In CRC, with a complex TME consisting of hypoxic regions with highly invasive
propensity and immune tolerance that pose therapeutic challenges, the next therapeutic milestone is
likely found here.
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CMS consensus molecular subtype
CRC colorectal cancer
CRT chemoradiotherapy
dMMR deficient MMR function
FLT3LG fms-related tyrosine kinase 3 ligand
HAI hepatic artery infusion
HMGB1 high-mobility group box-1
ICB immune checkpoint blockade
ICD immunogenic cell death
LARC locally advanced rectal cancer
MDSC myeloid-derived suppressor cells
MMP9 matrix metallopeptidase 9
MMR DNA mismatch-repair
MSI microsatellite-instable
NACT neoadjuvant chemotherapy
OPG osteoprotegerin
OS overall survival
PD-1 programmed death receptor 1
PD-L1 PD-1 ligand
pMMR proficient MMR function
PFS progression-free survival
TME tumor microenvironment
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