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Simple Summary: In this paper we perform an introduction about pregnancy-associated cancer
(PAC) and transplacental passage of antineoplastic agents. Furthermore, we describe therapeutic
use and potential toxic effects of chemotherapeutic drug (alkylating agents, antimetabolites agents,
anthracyclines, topoisomerase inhibitors, antimitotic agents, actinomycin-D, bleomycin) and targeted
agents during pregnancy. This manuscript may be a useful and practical guide for the management
of PAC, which is a challenge for clinicians that have to consider alike maternal benefits and fetal
potential risks correlated to the antineoplastic treatment.

Abstract: The incidence of PAC is relatively infrequent among pregnant women. However, it has
gradually increased in recent years, becoming a challenging area for clinicians that should take into
account in the same way maternal benefits and fetal potential risks correlated to the antineoplastic
treatment. None of the antineoplastic drugs is completely risk-free during the pregnancy, the timing
of exposure and transplacental transfer properties influence the toxicity of the fetus. Despite the lack
of guidelines about the management of PAC, several studies have described the use and the potential
fetal and neonatal adverse events of antineoplastic drugs during pregnancy. We provide a review
of the available literature about the transplacental passage and fetal effects of chemotherapy and
targeted agents, to guide the clinicians in the most appropriate choices for the management of PAC.

Keywords: pregnancy; transplacental passage; fetus; newborn; cancer; chemotherapy; targeted agents

1. Introduction

Cancer is relatively infrequent among pregnant women, complicating about 0.1% of all
pregnancies annually. Breast cancer, cervical cancer, melanoma, lymphoma, leukaemia, and
ovarian cancer show a rising incidence curve during the reproductive years, accounting
for 70–80% of PAC [1,2]. However, also other tumors (such as thyroid, colorectal, brain,
kidney, and soft tissue sarcomas) may occur during pregnancy [3]. Metastasis to the fetus
is rare, but has been reported in pregnancies complicated by melanoma, hematopoietic
malignancies, and lung cancer; furthermore, the risk of transplacental metastases is about
30% for the melanoma [4].
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The incidence of PAC is expected to grow in the coming years, likely because of the
growing age of childbearing, associated with amplified risk of developing age-dependent
malignancies. Breast cancer is the most common PAC, reported in about 0.04% of pregnan-
cies and significantly correlated with age [5,6]. In fact, among the Italian population, its
incidence seems to be four times higher for pregnant women aged 40 years than those aged
30 years [7].

It should be noted that there is no reliable evidence that pregnancy increases the risk
of developing cancer or of worsening its prognosis, although its management strategy
generates clinical and ethical challenges regarding fetal and maternal health. The manage-
ment of PAC must take into account the same way maternal life-saving benefits and fetal
potential life-threatening risks correlated to the treatment [8].

Antineoplastic drugs are often essential for the optimal treatment of cancer, but none
of them is completely safe for use in pregnancy. Their toxicity depends mainly on the
timing of exposure to chemotherapy and on the transplacental transfer of the drug from the
mother to the fetus [9]. In the first ten days after conception embryonal cells are omnipotent
and the “all-or-nothing” phenomenon is observed, after the exposure to a toxic drug the
embryo survives if few cells are destroyed, while it dies when the number of destroyed cells
is elevated [10]. The administration of antineoplastic drugs is contraindicated from 10 days
after conception and until 14 weeks of pregnancy because of the elevated risk of major
malformations (to the hearth, neural tube, upper and lower limbs, eyes, palate and ears)
that may occur during the organogenesis [11]. After the first trimester, the administration
of chemotherapy carries an increased risk of preterm birth, intrauterine growth restriction
(IUGR), low birth weight and bone marrow suppression, but also of minor anomalies
and functional defects for eyes, gonads and genitalia, hematopoietic system and central
nervous system [12]. However, when the treatment cannot be postponed to childbirth,
chemotherapy should be performed during the fetal phase (second and third trimester).
An interval of at least three weeks should be considered between the end of chemotherapy
and the delivery, to avoid it during the period of maternal myelosuppression and drug
accumulation in the newborn. Delivery should not occur before 35–37 weeks, to avoid
iatrogenic prematurity [13].

In this narrative review, we provide an updated report on the main antineoplastic
drugs and targeted agents that may be used during pregnancy, on their transplacental
passage and adverse events that may occur in the fetus and newborns.

In Table 1 we summarize the main effects on pregnancy and fetal outcomes of each
antineoplastic agent, with the hope that it will be useful to help clinicians for the most
appropriate choices in the management of PAC.
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Table 1. Pregnancy and fetal outcomes after human intrauterine exposure to antineoplastic agents.

Antineoplastic Agents Maternal Tumor Pregnancy and Fetal Outcomes

Platinum compounds

Cisplatin Cervical cancer, ovarian cancer, non-small cell lung cancer (NSCLC)
No congenital malformations (T2–T3) [14]
Severe bilateral perceptive hearing loss (T2–T3) [15]
Cerebral ventriculomegaly and cerebral atrophy (T2–T3) [16]

Carboplatin Cervical cancer, ovarian cancer, NSCLC No congenital malformations (T2–T3) [17,18]
Spontaneous miscarriage of a fetus with gastroschisis (T2–T3) [19]

Oxaliplatin Colorectal carcinoma

No congenital malformations (T2–T3) [20]
Small for gestational age at birth (T2–T3) [21]
Hypothyroidism (T2–T3) [22]
Spontaneous miscarriage at 33 weeks of gestational age (T2–T3) [23]

Alkylating agents

Cyclophosphamide Breast cancer, Hodgkin’s lymphoma
Teratogenic effects and multiple congenital anomalies (T1) [24,25]
No congenital malformations (T2–T3) [20]
Preterm birth (T2,T3) [26]

Ifosfamide Ewing sarcoma, soft tissue sarcoma Anhydramnios and intrauterine growth arrest (T2–T3) [27]
No congenital malformations (T2–T3) [28]

Dacarbazine Melanoma, Hodgkin’s lymphoma No congenital malformations (T1–T2–T3) [29,30]
Plagiocephaly, syndactyly (T2–T3) [31]

Busulfan Chronic myeloid leukemia, myeloablative-conditioning Teratogenic effects and multiple congenital malformations (T1–T2–T3) [32]
Renal agenesis and liver calcifications (T2) [33]

Procarbazine
Mechlorethamine

Anaplastic astrocytoma, oligodendroglioma,
Hodgkin’s disease

Hydrocephaly and perinatal death (T1) [34]
Syndactyly (T2) [34]
No congenital malformations [35]

Chlorambucil Chronic lymphocytic leukemia, Hodgkin’s lymphoma No congenital malformations [36]

Antimetabolites

Cytarabine Acute lymphocytic and non-lymphocytic leukemia, chronic
myelogenous leukemia

Teratogenic effects (T1–T2–T3) [37]
Intrauterine growth retardation (IUGR), intrauterine death [38]

Methotrexate
Leukemia, breast cancer, lung cancers, non-Hodgkin lymphoma,
osteosarcoma, autoimmune diseases, dermatologic conditions, ectopic
pregnancies, pregnancy termination

Spontaneous miscarriage and birth defects (T1) [39]
Craniofacial, cardiac, pulmonary, gastrointestinal, genitourinary and
musculoskeletal anomalies (T1–T2–T3) [40–42]
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Table 1. Cont.

Antineoplastic Agents Maternal Tumor Pregnancy and Fetal Outcomes

Gemcitabine Biliary tract cancers, pulmonary adenocarcinoma, non-small-cell lung
carcinoma (NSCLC), pancreatic adenocarcinoma

Healthy newborn (T1–T2) [43]
IUGR (T2–T3) [43]

Capecitabine Colorectal carcinoma, breast cancer Healthy children (T1) [44]

5-Fluoruracil Colorectal carcinoma, breast cancer Spontaneous abortion (T1) [45]
Multiple congenital malformations (T1) [46]

6-Mercaptopurine Acute lymphocytic leukemia No congenital malformations (T1–T2–T3) [30]
IUGR, intrauterine and neonatal death (T1–T2–T3) [30]

Antitumor antibiotics

Daunorubicin Acute lymphocytic and myeloid leukemia Teratogenic effects (T1–T2–T3) [47]

Doxorubicin Hematological cancers, various solid tumors Skeletal malformations, imperforate anus and rectovaginal fistula (T1) [48,49]
No congenital malformations, no cardiotoxicity (T2, T3) [49]

Epirubicin Breast cancer
Intrauterine death, micrognathia, syndactyly, other fingers/metatarsal
abnormalities (T1) [50]
Polycystic kidney, clubfoot and rectal atresia (T2–T3) [51]

Idarubicin Acute myeloid leukemia
No congenital malformations (T1) [52]
Dilated cardiomyopathy, fingers and limbs malformations and micrognathia
(T2–T3) [53]

Bleomycin Hodgkin’s lymphoma, ovarian cancer
No congenital malformations (T1–T2–T3) [54]
Floating thumb malformation (T1) [31]
Plagiocephaly and syndactyly (T2–T3) [31]

Topoisomerase inhibitor

Irinotecan Colorectal cancer, ovarian cancer No congenital malformations (T2–T3) [55,56]

Etoposide Ovarian cancer, hemophagocytic lymphohistiocytosis No congenital malformations except one case of ventriculomegaly with cerebral
atrophy (T2–T3) [57]

Antimitotic agents

Vincristine Acute lymphoblastic leukemia, Hodgkin’s lymphoma,
other lymphomas

Atrial septum defect, bilateral radius and fifth digit absence, hydrocephalus,
renal and cardiac abnormalities (T1) [58]

Vinblastine Acute lymphoblastic leukemia, Hodgkin’s lymphoma,
other lymphomas Hydrocephalus, spontaneous miscarriage, cleft palate (T1) [59]



Cancers 2022, 14, 3103 5 of 25

Table 1. Cont.

Antineoplastic Agents Maternal Tumor Pregnancy and Fetal Outcomes

Paclitaxel, Docetaxel Breast cancer, cervical cancer, ovarian cancer Healthy children (T1–T2–T3) [60]
Pyloric stenosis [60]

Targeted agents

Rituximab Cell B-lymphoproliferative diseases, autoimmune disorders
Cardiac malformation, clubfoot, transient hematologic abnormalities (peripheral
B-cell depletion, neutropenia, lymphopenia, thrombocytopenia and anemia),
neonatal infections [61]

Trastuzumab HER-2 positive breast cancer Oligo/anhydramnios with consequent fetal renal insufficiency [62]

Bevacizumab Various solid tumors Possible IUGR, miscarriage [63]

Imatinib, Nilotinib, Dasatinib Chronic myeloid leukemia Teratogenic effects (T1) [64]
No congenital malformations (T2–T3) [65–67]

Gefitinib, Erlotinib EGFR-mutated lung cancer No congenital malformations (T3) [68,69]

Vemurafenib Melanoma Healthy children (T2–T3) [70]

T1: first trimester; T2: second trimester; T3: third trimester; IUGR: Intrauterine growth restriction.
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In Table 2 we divided antineoplastic agents relatively safe after the first trimester from
those which are absolutely contraindicated.

Table 2. Relatively safe and absolutely contraindicated antineoplastic agents.

Antineoplastic Agents Relatively Safe (After 1st Trimester) Absolutely Controindicated

Platinum compounds Cisplatin, Carboplatin, Oxaliplatin -

Alkylating agents Cyclophosphamide, Ifosphamide, Dacarbazine, Procarbazine,
Chlorambucile Busulphan

Antimetabolites Gemcitabine, 5-Fluoruracile, Capecitabine, 6-Mercaptopurine Methotrexate, Cytarabine
Antitumor antibiotics Doxorubicine, Epirubicin, Bleomycin, Actinomycin-D Daunorubicine, Idarubicin
Topoisomerase inhibitors Irinotecan, Etoposide -
Antimitotic agents Vincristine, Vinblastine, Docetaxel, Paclitaxel -

Targeted agents Rituximab, Lapatinib, Imatinib, Nilotinib, Dasatinib, Gefitinib,
Erlotinib, Vemurafenib Trastuzumab, Bevacizumab

2. Transplacental Passage of Chemotherapy

The placenta is the interface between the mother and the fetus which plays a cru-
cial role in fetal development, providing nutrients and oxygen required for fetal tissue
growth. Moreover, the placenta creates an immunologic barrier between the fetus and the
mother and produces cytokines and hormones necessary for fetal energy metabolism [71].
The structure of the placenta varies from one species to another. The human placenta is
classified as “hemocorial” type, as the maternal and fetal blood are separated by a sin-
gle syncytiotrophoblast cell layer. In contrast, the placenta of mice and rats is defined
as “hemotrichorial”, because of the presence of three cell layers (cytotrophoblast, syncy-
tiotrophoblast I and syncytiotrophoblast II), that separate maternal from fetal blood [72].
The main functional units of the human placenta are the chorionic villi, formed by fetal
vessels and covered by endothelium inside and the trophoblasts outside-facing maternal
blood. Maternal blood penetrates the placenta through the spiral arteries that carry blood
directly into the intervillous space. Maternal blood circulates in the intervillous space,
providing the fetus oxygen and nutrients and discharging the waste and toxic substances
(such as xenobiotics); fetal blood circulates inside the villi, through which the fetus enters
the maternal metabolism [73]. The first trimester of pregnancy is crucial for an adequate
maternal-placental flow. In fact, during the first-trimester trophoblast cells invade the spiral
arteries, causing the replacement of the smooth and elastic muscle tissue of endothelial cells
with trophoblast cells [74]. These important modifications that involve the spiral arteries
produce a reduction of resistances and around the 16th–18th week of gestation, the spiral
vessels are transformed into dilated vessels unresponsive to vasoconstriction, allowing
a low-pressure circulation to the placenta. Alteration of this mechanism may produce
high placental resistance that is typically associated with obstetric pathologies, such as
preclampsia and IUGR [75].

In conditions of physiological placental development, maternal and fetal blood es-
tablish a functional relationship, but they are separated into two different circulations
by the placental barrier. The placental barrier is an endothelial cell layer, consisting of a
thin layer of connective tissue and a continuous syncytiotrophoblast that covers an inner
mononuclear layer of cytotrophoblasts [76]. By the end of the first trimester, maternal blood
begins to flow from the maternal spiral arteries into the intervillous space and the placental
barrier is the interface of maternal-fetal exchange. The placental barrier and maternal-fetal
diffusion distance gradually thin, proceeding with gestation, decreasing from over 50 µm
in the late second month to less than 5 µm by the 37th week of pregnancy [77].

All anticancer agents can theoretically cross the placental barrier, but the extent of
placental transfer varies substantially from one compound to another, based on their physic-
ochemical properties (such as molecular weight, lipophilia, ionization at physiological pH
and plasma protein binding). Generally, highly lipophilic, low-molecular-weight (<500 Da)
molecules are not ionized at physiological pH and are weakly bound or unbound to plasma
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proteins (such as carboplatin), consequently, they are likely to cross the placental barrier
through passive diffusion more easily than hydrophilic ionized molecules. The amount
of drug that crosses the placenta through passive diffusion depends on the concentration
of the drug in the maternal circulation. Moreover, it does not require the input of energy
and is not saturable nor subject to competitive inhibition [78]. Drugs with higher molecular
weight that are more hydrophilic may be pumped across the placental barrier by various
active transporters situated on both the syncytiotrophoblast and fetal capillary endothelium
of the placental barrier, thus they pump drugs into or out of the syncytiotrophoblast. These
active transporters are powered by adenosine triphosphate (ATP), they act against a con-
centration gradient and may be saturated. They are represented mainly by P-glycoprotein
(Pgp or MDR1), multidrug resistance protein 1,2,3 (MRP1, MRP2 and MRP3) and breast
cancer resistance protein (BCRP), as described in Figure 1 [79].

Figure 1. Mechanisms of transplacental passage of drugs.

Pgp is located on the maternal side of the placental barrier and shows a great capacity
to carry its substrates from the fetal to the maternal direction, playing a feto-protective
role. Consequently, drugs that are known as substrates of Pgp (such as paclitaxel) should
be preferred to others during pregnancy. MRP1 and MRP3 are particularly copious in
fetal endothelial cells of the placenta microcapillary, whereas MRP2 was detected on the
maternal side, in the apical membranes of the syncytiotrophoblast. MRP and BRCP proteins
seem to play a feto-protective role, by the removal of metabolites from the fetus to the
mother, creating pharmacological sanctuaries. BCRP is highly expressed on the maternal
side and it may render tumor cells resistant to the anticancer drugs topotecan, mitoxantrone,
doxorubicin and daunorubicin, reducing their passage to the fetus [80].

Van Calsteren et al. investigated the transplacental transfer of different chemother-
apeutic drugs from mother to fetus in a mouse and baboon model. The baboon model
should be considered an animal model with a close phylogenetic relationship to humans
concerning embryological development, reproductive physiology, placental structure and
function and drug metabolism. In the baboon model, they found fetal plasma concentra-
tions differ significantly for each chemotherapeutic drug. Anthracyclines (doxorubicin and
epirubicin) and taxanes (paclitaxel) showed a limited transplacental transfer (<10% and
<2%, respectively). Conversely, carboplatin was the only one found in higher concentration
(>55%) in the fetal compartment, as an expression of its elevated transplacental passage [81].

Finally, physiological changes in the metabolism of pregnant women may influence
the pharmacokinetics of drugs, resulting in a lower plasma exposure [82]. The volume
of distribution of many drugs increases by almost 50% during pregnancy, reducing their
peak plasma concentration and enhancing the distribution volume for water-soluble drugs.
Moreover, renal clearance is improved, due to the augmented renal blood flow and glomeru-
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lar filtration rate (GFR). In addition, upregulation of liver oxidative metabolism is observed,
with the improved activity of cytochrome P450 isoform 3A4, which potentially leads
to reduced maternal exposure to several drugs that are metabolized by this isoenzyme.
However, there is no sure evidence of lower therapeutic responses in pregnant than in
non-pregnant women and consequently of the need for higher therapeutic doses [13].

3. Anticancer Agents during Pregnancy
3.1. Platinum Compounds

Platinum compounds induce the formation of DNA crosslinks, which interrupt DNA
replication and transcription with consequent cellular apoptosis. Furthermore, they form
covalent DNA adducts with other subcellular components, such as proteins, lipids, RNA
and mitochondrial RNA.

3.1.1. Cisplatin

Cisplatin is the oldest member of platinum compounds, characterized by a low molec-
ular weight and a high binding to plasma or tissue proteins (80–88%). Its half-life is about
ten days, so after the administration, cisplatin progressively accumulates in the plasma
and shows renal excretion. An in vitro study about the placental transfer of cisplatin
showed a negligible transport: only 9% of the maternal drug arrives in the fetal circula-
tion. However, this study should be interpreted with caution, because a short perfusion
time of five minutes was used in this in vitro model [83]. The transplacental transfer of
cisplatin in pregnant mice changes with the gestational age, increasing during later stages
of gestation [84]. Cisplatin has been found in the fetal and neonatal tissues of monkeys and
rats [85]. In human umbilical cord blood and amniotic fluid, cisplatin concentrations were
found, respectively, 31–65% and 13–42% of that in maternal blood [86]. During pregnancy,
cisplatin has been used for the treatment of cervical cancer, ovarian cancer and non-small
cell lung cancer (NSCLC) [87]. Regarding the effects on the fetus, a case of a child with
severe bilateral perceptive hearing loss was reported after intrauterine exposure to cisplatin
during the second and third trimesters of pregnancy [15]. However, most of the literature
agrees on the safety of cisplatin administration during the second and third trimesters
of pregnancy. A case report regarding the treatment with cisplatin (in association with
etoposide) for NSCLC in a pregnant woman during the second and the third trimester
described the delivery of a baby in good conditions, without other information about its
long-term outcome [14]. Cardonick et al. reported hearing loss in only one that had a
genetic predisposition, among seven women treated during the second and third trimester
with cisplatin for different malignancies [31]. The use of cisplatin during the second and
third trimesters of pregnancy appears to be safe and not related to an increased risk of
malformations in children of women treated for ovarian or cervical cancer [88]. Zagouri
et al. analyzed 47 pregnant patients treated with cisplatin administered as monotherapy
or combined with bleomycin, 5-fluorouracil, paclitaxel, vincristine and bleomycin. All
children were healthy, with a median follow-up of 12.5 months. Moreover, in the majority
of women, chemotherapy was well tolerated and the median progression-free survival was
48.5 months [89]. Only one baby with cerebral ventriculomegaly and cerebral atrophy is
described after intrauterine exposure to cisplatin (with bleomycin and etoposide) for mater-
nal ovarian cancer during the second and third trimesters of pregnancy, but its etiology is
not clear [16]. In a systematic review of 43 cases of pregnant women treated with platinum
compounds, among 36 patients who received cisplatin, two fetal malformations occurred
(microphthalmos and ventriculomegaly), but the role of cisplatin is not clear, because of the
short period between malformation time and cisplatin administration [90,91].

3.1.2. Carboplatin

Carboplatin is a platinum compound of relatively low molecular weight (371 g/mol),
mainly excreted by the kidneys. Only 24–50% of plasmatic carboplatin is bound to plasma
proteins, so its high free fraction and low molecular weight may explain its extensive
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transplacental passage. Van Calsteren et al. showed carboplatin fetal concentrations of
up to 57.5% of the maternal concentration in the baboons’ model and up to 117% in the
rats’ model [81,92]. During the pregnancy, carboplatin has been used in cervical and
ovarian cancer (in association with bleomycin and etoposide or etoposide) [86], and in
the rare NSCLC [93]. Regarding the effects on the fetus, Tabata et al. described normal
growth and no evidence of disease in a baby born by a woman with ovarian cancer
treated with carboplatin from the 21th week of gestation until the delivery at 33 weeks
of gestation [17]. In follow-up periods of 12–18 months, several other studies evidence
the absence of any complications in babies born by mother who received carboplatin
chemotherapy for epithelial ovarian cancer during the second and third trimesters of
pregnancy [18]. Only one case of congenital malformation (gastroschisis) has been described
in a fetus who underwent spontaneous miscarriage at the 20th week of pregnancy: the
mother was treated with carboplatin after the first trimester for a recurrent CNS malignancy.
In conclusion, the latest guidelines seem to be in favor of the use of platinum derivatives
after the first trimesters of pregnancy, giving priority to carboplatin, when possible, because
of its favorable fetal toxicity profile (such as the minor risk of ototoxicity) [19].

3.1.3. Oxaliplatin

Oxaliplatin is the youngest platinum compound, with a half-life of about ten days,
but without accumulation in the plasma; on the contrary, the erythrocytes represent an
important deep compartment for oxaliplatin. During pregnancy, oxaliplatin has been used
in gastrointestinal cancers, especially in the FOLFOX regimen (which includes calcium
folinate, 5-fluorouracil and oxaliplatin) for colorectal carcinoma [94]. To our knowledge, no
study has focused on the transplacental transfer of oxaliplatin. There are case reports only
about the use of the FOLFOX regimen during the second and third trimesters of pregnancy,
without any congenital malformations observed [20]. Furthermore, reports describe the
birth of a neonate small for gestational age [21], another affected by hypothyroidism [22]
and one case of intrauterine fetal loss at the 33rd week of gestational age [23].

3.2. Alkylating Agents

Alkylating agents are chemotherapeutic drugs that determine DNA cross-links and
strand breaks binding covalently to DNA via an alkyl group.

3.2.1. Cyclophosphamide

Cyclophosphamide is an anticancer and immunosuppressive drug. Cyclophosphamide
is an inactive prodrug, requiring hepatic microsomal enzymatic bioactivation to form
4-hydroxycyclophosphamide (4-OHCP), which has the cytostatic activity. It has a low de-
gree of plasma protein binding, with consequent easy and complete penetration of transpla-
cental membranes. Conversely, 4-OHCP is more strongly bound to plasma proteins, with a
lower transplacental passage. In the baboon model, a cyclophosphamide placental transfer
has been documented, with comparable fetal and maternal plasma levels within the first 2 h
after infusion, whereas the fetal plasma levels of the active metabolite were about 25% of
maternal plasma concentrations [81]. In humans, an in-vivo study confirmed in amniotic
fluid the 25% of maternal plasma concentration of cyclophosphamide one hour after taking
the drug [95]. During pregnancy, cyclophosphamide can be used for the treatment of breast
cancer and Hodgkin’s lymphoma. Regarding fetal outcomes, case reports or larger case
series provide strong evidence for the teratogenic effects of cyclophosphamide used during
the first trimester: absent toes/thumbs, single coronary artery, imperforate anus, umbil-
ical hernia, cleft palate, multiple eye abnormalities, esophageal atresia, later developed
thyroid cancer at age 11 years and neuroblastoma at age 14 years [24]. After exposure to
multidrug regimens containing cyclophosphamide after the first trimester, a case of rectal
atresia and a case of hip subluxation was found. Cardonick et al. analyzed 110 pregnant
women treated with multidrug regimens, containing cyclophosphamide and they found
1 intrauterine death (normal fetal autopsy), 1 neonatal death (due to autoimmune disorder),
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1 IgA deficiency, 1 pyloric stenosis, 1 holoprosencephaly, 7 IUGR [25]. One of the major
concerns is the inability to explore the teratogenic effects of cyclophosphamide from those
of other drugs administered as combination therapy [96]. On the contrary, two other
studies report no congenital malformation in neonates born after intrauterine exposure to
chemotherapy containing cyclophosphamide during the second and third trimesters [97].
Another study on 18 pregnant women exposed to systemic chemotherapy showed a major
risk of preterm birth (mean gestational age at birth 35.7 ± 2 weeks) but confirmed the
absence of no stillbirths or congenital malformations when cyclophosphamide is used
after the first trimester [26]. Finally, a recent study demonstrated that prenatal exposure to
cyclophosphamide does not impact fetal brain growth [98].

3.2.2. Ifosfamide

Ifosfamide is an antineoplastic drug chemically related to cyclophosphamide. It has
high lipid solubility and a lack of protein binding. Data on transplacental transport of
ifosfamide are limited. A recent study on animal models investigated the role of ifosfamide
on pregnancies of female rats exposed before mating. Treatment with high doses of ifos-
famide caused small placentas, fewer viable fetuses, greater post-implantation losses and
more resorbed fetuses. Reduced progesterone and increased prolactin levels also were
found [99]. During the pregnancy, ifosfamide may be used in polychemotherapy for the
treatment of Ewing sarcoma and soft tissue sarcoma, but limited data on the safety of this
drug during pregnancy have been published. An old case report described the develop-
ment of anhydramnios and complete intrauterine growth following the administration
of ifosfamide (in association with vincristine and actinomycin D) during the second and
third trimesters of pregnancy, with consequent premature birth and neonatal death. Large
areas of ischaemic necrosis of the placenta were found, without kidney malformation in
the fetus [27]. Contrariwise, a case study of nine patients treated with the association of
doxorubicin and ifosfamide during the second and third trimester of pregnancy showed
favorable outcomes for the neonates [28].

3.2.3. Dacarbazine

Dacarbazine is a cell cycle nonspecific antineoplastic alkylating, with minimal plasma
protein binding and is metabolized into an active metabolite. A study on the pharmacoki-
netics of dacarbazine during pregnancy showed that pregnancy decreases the metabolism
of the drug, resulting in increased concentrations of dacarbazine and lower exposure to
its active metabolites [100]. To our knowledge, there have been no human studies on the
placental transfer of dacarbazine in the literature [81]. During the pregnancy, dacarbazine
can be used with interferon-alpha for the second or third-line therapies of melanoma and
chemotherapy for Hodgkin’s lymphoma. One study analyzed a cohort of 43 pregnant
patients treated for Hodgkin’s lymphoma also in the first trimester, demonstrating that
chemotherapy with ABVD regimen (adriamycin, bleomycin, vinblastine and dacarbazine)
is associated with excellent outcomes for both mothers and children and no clinical mal-
formations were observed; also, the development of newborns was physiological without
evidence of cardiac and neurological damage [29]. No congenital malformations have
been described also in a cohort of 16 women treated for Hodgkin’s disease in all three
trimesters [30]. Instead, Cardonick et al. analyzed 20 women with lymphoma treated with
ABVD during the second and third trimesters and found a case of plagiocephaly and one
of syndactyly [31].

3.2.4. Busulfan

Busulfan is an alkylating agent, used as a myeloablative-conditioning regimen before
stem cell transplantation. An old study found an increased frequency of chromosome
aberrations in bone marrow, oocytes, and liver cells of embryos of mice exposed to busul-
fan [101]. Teratogenic effects of busulfan on rats are also described, such as microencephaly,
microphthalmia, microtia, micrognathia, microabdomen, brachydactylia, polydactyly, syn-
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dactyly, cleft hand or foot [102]. Furthermore, it has been recognized to induce neural pro-
genitor cell damage in fetal rat brains [32]. Microphthalmia, bilateral corneal opacities, cleft
palate, thyroid and parathyroid agenesis, ovarian dysgenesis, microabdomen, pulmonary
dysgenesis were reported in a human newborn exposed in utero to 6-mercaptopurine and
busulfan. One case of pyloric stenosis and another of unilateral renal agenesis with liver
calcifications were reported among two newborns exposed to busulfan during the second
trimester [33].

3.2.5. Procarbazine and Mechlorethamine (Chlormethine)

Procarbazine is an alkylating agent with renal and hepatic metabolism and half-time
of an hour, used as neoadjuvant or adjuvant chemotherapy for anaplastic astrocytoma and
anaplastic oligodendroglioma (in association with lomustine and vincristine). Procarbazine
is also adopted in association with mechlorethamine (which belongs to the group of nitrogen
mustard alkylating agents) for the treatment of Hodgkin’s disease in MOPP regimen
(Mechlorethamine, Vincristine, Prednisone, Procarbazine) [103]. In rat models, procarbazine
seems to affect intrauterine fetal development, without any teratological effects [104].
Another study showed the occurrence of clefts in the palate area after the administration
of procarbazine to rats during the pregnancy [105]. In humans, Aviles et al. described the
absence of any congenital malformations detected in newborns from women treated with
MOPP regimen for Hodgkin’s disease during all the trimesters of pregnancy [97]. A case
of hydrocephalus and perinatal death occurred after prenatal exposure to MOPP regimen
during the first trimester; moreover, a case of syndactyly occurred after prenatal exposure
to MOPP regimen during the second trimester [34]. Blumenthal et al. reported the case of a
healthy infant after prenatal exposure to the procarbazine–lomustine–vincristine regimen
for the treatment of maternal malignant glioma [35].

3.2.6. Chlorambucil

Chlorambucil is a direct-acting cytotoxic agent that does not require any metabolic
activation and is used for the treatment of chronic lymphocytic leukemia and Hodgkin’s
lymphoma. In rat models, teratogenic effects are associated with prenatal exposure to
chlorambucil, such as alterations of prosencephalon or limb, tail, renal, cranial and axial
skeleton abnormalities [106]. In humans, the use of chlorambucil during pregnancy has
been described only in two reports, that reported normal infants without any abnormal-
ity [36].

3.3. Antimetabolites

Antimetabolites are anticancer drugs that act in the S phase of the cell cycle as a
false substrate during DNA and RNA synthesis; this results in the formation of truncated
cellular proteins.

3.3.1. Cytarabine

Cytarabine (Cytosine arabinoside, Ara-C) is a prodrug with low molecular weight,
that requires the conversion into an active metabolite (cytarabine-5′-triphosphate) which
inhibits the DNA polymerase. Moreover, it is incorporated into DNA and RNA, impairing
their synthesis and function. This anticancer drug is adopted for the treatment of acute
lymphocytic and non-lymphocytic leukemia, and chronic myelogenous leukemia. Transpla-
cental transport of cytarabine is documented in mice. Cytarabine may induce teratogenic
effects in mice, rats and chicks, including skeletal defects, cleft palate, cerebellar hypoplasia,
microcytic renal changes and retinal dysplasia [107]. In humans, teratogenic effects of
intrauterine exposure to cytarabine have been documented over all three trimesters in
various case reports, such as skeletal malformations of the face, skull and limbs, ear defects,
atrial septal defects, cardiomyopathy [37]. Furthermore, recurrence of intrauterine growth
restrictions and intrauterine death have been described [38].
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3.3.2. Methotrexate

Methotrexate is an antineoplastic drug that inhibits the enzyme dihydrofolic acid
reductase and consequently the synthesis of purine nucleotides and thymidylate which
allow DNA replication and repair. Methotrexate has an elevated molecular weight and
it’s bound to the plasma proteins for 50% [108]. It’s used for the treatment of neoplastic
diseases (leukemia, breast cancer, epidermoid cancers of the head and neck, lung can-
cers, non-Hodgkin lymphoma, osteosarcoma), autoimmune and dermatologic diseases,
and ectopic pregnancies [109]. Teratogenic effects were documented after high doses of
methotrexate, but more recent studies have demonstrated that spontaneous miscarriage
and birth defects may occur even after prenatal exposure to low-dose during the first
trimester of pregnancy [39]. Skeletal abnormalities (cranial dysostosis with delayed ossi-
fication, hypertelorism, wide nasal bridge, micrognathia, microcephaly, abnormalities of
the limbs), cardiac defects (Tetralogy of Fallot, pulmonary valve atresia), ear anomalies,
ambiguous genitalia are described after early methotrexate exposure during pregnancy [40].
Fetal methotrexate syndrome was an embryopathy with craniofacial, cardiac, pulmonary,
gastrointestinal, genitourinary and musculoskeletal anomalies. A minor incidence of
congenital malformations due to the administration of methotrexate during the last two
trimesters of pregnancy was observed, consequently, its use is contraindicated during
pregnancy [41,42].

3.3.3. Gemcitabine

Gemcitabine is an analog of cytarabine, from which it differs structurally due to its
fluorine substituents on position 29 of the furanose ring. Like Ara-C, gemcitabine is a pro-
drug that requires cellular uptake and intracellular phosphorylation [110]. Transplacental
transfer of gemcitabine is documented in rat models, with a major risk of toxicity when
high doses are administered [111]. Gemcitabine may be used for the treatment of advanced
biliary tract cancers (with platinum compounds in the GEMOX regimen), pulmonary ade-
nocarcinoma or non-small-cell lung carcinoma, and pancreatic adenocarcinoma. It has been
administered during the first trimester of pregnancy for a pulmonary adenocarcinoma,
without any negative effect on the child. No evidence of congenital malformations is re-
ported after the administration of gemcitabine during the last two trimesters of pregnancy,
but cases of IUGR are described [43].

3.3.4. 5-Fluoruracil (5-FU)

5-FU is an anticancer drug with low molecular weight and negligible protein binding.
As yet, there are no data about its transplacental transfer in humans. On the contrary, one
study about its transplacental transfer in a rat model revealed that a significant amount of
5-FU crossed the placenta, with fetal exposure that increased in a dose-dependent manner.
5-FU was poorly eliminated in the rat fetus, thus fetal toxicity results lower than maternal
toxicity at dosage levels [112]. 5-FU can be used for chemotherapy of breast cancer and
colorectal carcinoma in FOLFOX or FOLFIRI regimens (that include 5-FU, leucovorin and
irinotecan). Based on the literature, prenatal exposure to 5-FU seems to be associated with
a higher risk of fetal congenital malformations in the first trimester than in the last two
trimesters. In addition, exposure to 5-fluorouracil in the first trimester increases the rate of
spontaneous abortion (incidence of 25% versus 13% of the general population) [45]. The
exposure during the first trimester of pregnancy is associated with major malformations,
such as microcephaly, ventriculomegaly, colpocephaly, hypertelorism, flat nasal bridge,
skeletal deformities of the hand and feet (including syndactyly and hypoplasia of the
digits), bicuspid aortic valve [46].

3.3.5. Capecitabine

Capecitabine is a prodrug metabolized to 5-FU. Capecitabine has low molecular weight
and a moderate plasma protein-binding (it is bound to albumin for about the 35%). During
pregnancy, it can be used for the treatment of solid tumors such as colorectal and breast
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cancers. Literature about the effect of fetal exposure to capecitabine is scarce. No congenital
malformations were described in a baby born from a woman treated with capecitabine
and oxaliplatin during the first trimester of pregnancy for colorectal cancer, but once the
pregnancy was discovered treatment was stopped. The child was reported to be healthy at
two years of age. A pregnant patient affected by high-grade neuroendocrine carcinoma was
treated with capecitabine during the first trimester of pregnancy, without any consequence
for the newborn [44].

3.3.6. 6-Mercaptopurine

6-Mercaptopurine is an anti-metabolite drug, with low molecular weight and poor
binding with plasma proteins. Transplacental transfer of 6-MP has not been studied in
humans. 6-MP is used for the treatment of acute lymphocytic leukemia. No congenital
malformations were described in fifty women treated with 6-MP-containing regimens
during all three trimesters of pregnancy. However, four cases of IUGR, one of intrauterine
death and two cases of neonatal death were reported. To our knowledge, there were no
major congenital malformations following the exposure to 6-mercaptopurine after the first
trimester [30].

3.4. Antitumor Antibiotics

This is a group of anticancer drugs that work in all phases of the cell cycle binding
DNA, preventing RNA synthesis, inhibiting the enzyme topoisomerase and generating
highly reactive free radicals that damage intercellular molecules.

3.4.1. Anthracyclines: Daunorubicin, Doxorubicin, Epirubicin, Idarubicin

Daunorubicin is an anthracycline with high molecular weight. The presence of
daunorubicin in the organ tissue of a dead fetus exposed in utero was reported, but
no other data about its transplacental transfer are available [113]. Daunorubicin is used for
the treatment of acute lymphocytic and non-lymphocytic leukemia. When administered
during pregnancy, it is associated with the development of congenital malformations dur-
ing both the first trimester and the last two trimesters. Ocular and cardiac defects, skeletal
malformations of the distal limbs and cranium, and premature closure of cranial sutures
were reported after early exposure. Syndactyly and rectal atresia were reported after later
exposure [47].

Doxorubicin (Adriamycin) is an anthracycline with high molecular weight and high
binding with plasma proteins (about 70–75%). Animal models show an average maternofe-
tal transfer rate from 4% to 7.5% [81]. In human in-vivo studies, doxorubicin is detectable
in fetal organs at the delivery, but not in cord blood, amniotic fluid or placenta [114]. PE-
Gylated liposomal doxorubicin doesn’t seem to be able to cross the placental barrier, as
opposed to the non-PEGylated liposomal doxorubicin [115]. Doxorubicin is indicated for
the treatment of hematological cancers (acute lymphoblastic leukemia, acute myeloblastic
leukemia, multiple myeloma, Hodgkin lymphoma), solid tumors (cancers of breast, ovary,
stomach, thyroid, Wilms tumor, neuroblastoma, soft tissue and bone sarcomas, transitional
cell bladder cancer and bronchogenic carcinoma). Both mouse model studies and in vitro
studies on human placental tissue, explants and trophoblast cells demonstrated the toxicity
of doxorubicin on cells and tissue viability [116]. In mouse models, the administration
of doxorubicin during pregnancy led to offspring’s brain development and behavior im-
pairments [117–119]. According to several case reports, in humans, the use of doxorubicin
appears relatively safe during pregnancy [58,120]. Brito et al. demonstrated that exercise
performed by mothers protects the neonatal heart against doxorubicin-induced toxicity,
inducing the modulation of antioxidant enzyme and the expression of SIRT6 protein, which
inhibits cardiomyocyte hypertrophy, formation of atheromatous plaque and infiltration of
inflammatory cells, ameliorating the cardiac remodeling and preventing the development
of cardiovascular diseases [54]. As shown by Gziri et al., no significant differences in
conventional cardiac measurements, TDI velocities, and strain measurements were found
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between patients exposed to fetal anthracyclines and controls [48]. Furthermore, Aviles
et al. evaluated 81 children whose mothers were treated with anthracyclines during preg-
nancy (70 with doxorubicin) to detect cardiac toxicity and they did not find any clinical
or echocardiogram evidence of late cardiac toxicity [49]. No congenital malformations,
cardiotoxicity, growth and development impairment were reported in two studies, which
analyzed the outcome of pregnant women with hematological malignancies treated with
doxorubicin during pregnancy [121]. Similarly, no congenital malformations were detected
in hundred cases of women treated with doxorubicin and cyclophosphamide during the
second and third trimesters of pregnancy. Congenital malformations observed after the
intrauterine exposure to doxorubicin occurred during the first trimester and consisted
of skeletal malformations of digits or cranial bones, imperforate anus and rectovaginal
fistula [122]. Epirubicin is an anthracycline with high molecular weight and it binds to
the plasma proteins (about 77%). Epirubicin is indicated for the treatment of breast cancer.
Placental transport of epirubicin is unknown in humans, but it has been documented in
animal models [81]. A case of intrauterine death after exposure to epirubicin used for breast
cancer has been reported. Fetal epirubicin exposure during the first trimester is associated
with a rate of major malformations of about 20%, with the occurrence of micrognathia,
syndactyly and other fingers and metatarsal abnormalities [50]. Moreover, major malfor-
mations, such as polycystic kidney, clubfoot and rectal atresia were reported after fetal
exposure also after the first trimester [51]. Parodi et al. describe the case of a newborn
who developed transient ventricular hypokinesia after in utero exposure to four epirubicin
cycles for pregnancy-associated breast cancer. Epirubicin was administered from the 25th
week of gestational age and an elective cesarean delivery was planned 3 weeks after the last
cycle of chemotherapy at 36 + 6 weeks of gestational age. Echocardiography at four days of
life showed bilateral ventricular hypokinesia, which completely disappeared at the ultra-
sound performed at 1 and 6 months of life [123]. Framarino-dei-Malatesta et al. reported
the death of one twin (who was small for gestational age and in oligohydramnios) and a
transient cardiotoxicity (with high levels of troponin and transient left ventricular septal
hypokinesia) in the surviving fetus after the administration of two cycles of epirubicin for
maternal breast cancer [122].

Idarubicin is an anthracycline as daunorubicin, with high molecular weight, great
bound to the plasma proteins (for 90–94%) and elevated lipophilicity, which allows a higher
rate of cellular uptake than other anthracyclines. It has been hypothesized that its high
liposolubility and long half-life may facilitate the transplacental transport. However, after
the delivery, undetectable levels of the drug (administered two weeks before) have been
found in the maternal serum and umbilical cord blood samples. Idarubicin is indicated for
the treatment of acute myeloid leukemia. Its administration during the first trimester of
pregnancy doesn’t seem to be associated with any congenital malformations [52]. However,
fingers and limbs malformations and micrognathia were reported after exposure to idaru-
bicin from the 21st week of pregnancy, making unclear its associations to the malformations.
Fetal and neonatal dilatative cardiomyopathy after the exposure to idarubicin during the
last two trimesters has been documented in several studies [53].

3.4.2. Other: Actinomycin-D, Bleomycin

Actinomycin D is a cytotoxic antibiotic with high molecular weight, produced by
Streptomyces parvulus. It binds DNA and inhibits RNA synthesis. Actinomycin D is
reported to be embryotoxic and teratogenic in mice, chicks and hamsters [124]. There is
poor literature about the use of actinomycin-D during human pregnancies. However, a
clubfoot occurred in a newborn after exposure to actinomycin-D during the second and
third trimesters [125].

Bleomycin is an antitumor antibiotic isolated from the bacterium Streptomyces verticil-
lus, with high molecular weight and very low plasma protein binding. Bleomycin generates
free radicals which cause DNA strand breaks and inhibits the ligase enzyme that repairs
DNA strand breaks. Bleomycin is indicated for the treatment of Hodgkin’s lymphoma
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and ovarian cancer (in BEP regimens). No congenital malformations were detected in
newborns from women with lymphoma treated with bleomycin during all three trimesters
of pregnancy [54]. However, some studies describe the occurrence of malformations after
the exposure to bleomycin during the first trimester (floating thumb malformation) and
during the second and third trimester (plagiocephaly and syndactyly) [31].

3.5. Topoisomerase Inhibitor

Topoisomerase inhibitors interfere with the action of topoisomerases, which are en-
zymes involved in cellular division and DNA replication.

3.5.1. Topoisomerase I Inhibitors: Irinotecan

Irinotecan is a topoisomerase I inhibitor, which binds to the DNA-topoisomerase I
complex, preventing the resealing of the DNA. It may be used alone or in combination
with additional chemotherapy or targeted therapy. Irinotecan is converted to SN38, its
active metabolite. Irinotecan and SN38 have molecular weights which allow transplacental
passage, but currently, no data have been published about the transplacental passage
of irinotecan in animal or human models. Irinotecan adopted during pregnancy for the
treatment of colorectal cancer and ovarian cancer after the first trimester doesn’t seem to
be associated with congenital malformations. Taylor et al. reported the birth of a healthy
child from a 34-years-old woman affected by ovarian Krukenberg tumor, who underwent
chemotherapy with 5-fluorouracil, folinic acid and irinotecan from the second trimester
until the 36th week of pregnancy [55]. Moreover, the absence of abnormalities was found
in an infant born from a 33-years-old mother affected by metastatic colon adenocarcinoma,
who received irinotecan and 5-Fluorouracil from the 23th to the 28th week of gestational
age [56].

3.5.2. Topoisomerase II Inhibitors: Etoposide

Etoposide binds to topoisomerase II and DNA, preventing the resealing of DNA breaks
with consequent inhibition of DNA replication and cell death. No data are available about
its transplacental passage neither in animals or humans, but in their study, Yamauchi et al.
demonstrated that the injection of etoposide to pregnant mice induced placental apoptosis
and severe intrauterine growth restriction [126]. Etoposide has been used in several cases
of ovarian cancer that occurred during pregnancy, in association with bleomycin and
cisplatin after the first trimester [127]. No case of congenital malformation occurred,
except for the case of a child born prematurely at the 28th week of pregnancy from a
mother affected by an endodermal sinus tumor. At 16 months after delivery, the infant
developed significant ventriculomegaly with cerebral atrophy, of which etiology remains
unclear [57]. Etoposide has been adopted also for the management of hemophagocytic
lymphohistiocytosis during pregnancy, a rare and severe syndrome that requires the
adoption of etoposide for the cases refractory to corticosteroids [128]. However, further
studies are required to identify its appropriate dosage and the correlation between dose
and side effects (such as myelosuppression) on the fetus [129].

3.6. Antimitotic Agents

Antimitotic agents stop mitosis in the phase M of the cell cycle; the polymerization of
microtubules is prevented by plant alkaloids, whereas their depolymerization is inhibited
by taxanes.

3.6.1. Plant Alkaloids: Vincristine and Vinblastine

Vincristine and vinblastine are alkaloids derived from the periwinkle plant, metabo-
lized in the liver and excreted mainly by the biliary and intestinal tracts. They show a high
protein bound and they are substrates for PGP and MRP transporters [130]. Transplacental
transfer of vinblastine and vincristine in humans has not been studied yet, but the fetal
concentration was found, respectively, 18.5% and 14% of the maternal concentration in
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baboons and mice [81]. Vinblastine and vincristine are crucial for the treatment of acute
lymphoblastic leukemia (ALL), Hodgkin’s lymphoma and other lymphomas and they are
used mostly in polychemotherapy regimens [130]. There are many case reports regarding
healthy children following therapy with vincristine alone or combined with other drugs
for the treatment of hematological malignancies during all three trimesters. Exposure to
vincristine during the first trimester has been also associated also with the development
of atrial septum defect, bilateral radius and fifth digit absence, hydrocephalus, renal and
cardiac abnormalities and intrauterine death, 46 karyotypes with gaps and a ring chromo-
some [58]. There are various case reports concerning the use of vinblastine even during the
first trimester, mostly in combination with other cytostatic drugs. In most cases, the course
of pregnancy was normal and single-agent vinblastine used as monotherapy appears to be
preferred to polychemotherapy [131]. Mulvihill et al. report children with malformations
that occurred in the first trimester after the exposure to vinblastine alone: a child with
hydrocephalus, a spontaneous miscarriage and another with cleft palate [59]. There is
also a report of an infant delivered at 37 weeks from a mother treated with vincristine
and vinblastine, weighing 1900 g with an atrial septum who eventually died because of
respiratory distress syndrome [132].

3.6.2. Taxanes: Paclitaxel and Docetaxel

Paclitaxel and docetaxel are semisynthetic taxanes, which bind to tubulin, leading
to microtubule stabilization, mitotic arrest and cell death. They exhibit high molecular
weight, high lipo-solubility and are highly protein-bound. Consequently, their distribution
to the tissues is fast, with low plasma levels and slow clearance. Taxanes are widely
metabolized in the liver by the cytochrome P-450 enzymes (CYP2C8 for paclitaxel and
CYP3A4/5 for docetaxel). Although the fetal liver does not express cytochrome P-450
enzymes yet, the maternal liver increases its production during the third trimester, inducing
fetal tolerance to these agents. Furthermore, they are substrates of PGP and MRP, which
limit their transfer and storage into the fetus. In the baboon model docetaxel was not
detected in fetal blood samples and paclitaxel was found in very little plasma concentration
(1.6 ± 0.8) [81]. The therapeutic use of taxanes during pregnancy has been widely described
in pregnant women with breast, cervical and ovarian cancers, with tolerable profiles
especially during the second and third trimesters [133,134]. In their systematic review, Mir
et al. collected updated data about the use of taxanes in 40 pregnant patients, in almost
all cases administered with other cytotoxic agents (anthracyclines, cyclophosphamide and
platinum compounds) [135]. They found only one case of pyloric stenosis possibly related
to taxanes in a neonate born from a woman who had received polychemotherapy with
doxorubicin, cyclophosphamide, paclitaxel and docetaxel [60]. Taxanes show a toxicity
profile more favorable than anthracyclines or etoposide-based regimens, but further clinical
and pharmacokinetic examinations are required for defining their optimal dosing regimen
in pregnant patients [136]. Cardonick et al. collected meconium samples from 23 newborns
whose mothers underwent chemotherapy for cancer and analyzed them for metabolites
of chemotherapeutics through liquid chromatography-high resolution mass spectrometry.
Paclitaxel and its metabolites (3′-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel) were
found in 8 samples, with variability in meconium levels between samples, based on timing,
dosing and individual characteristics [137].

3.7. Targeted Agents

Targeted agents currently adopted for the treatment of several and different types of
cancer vary from monoclonal antibodies (large molecules that require active transporter for
the transplacental passage) to tyrosine kinase (TK) inhibitors (small molecules similar to
chemotherapy that may cross the placenta throughout the pregnancy period). They could
also produce very specific pregnancy-related adverse events secondary to their target effect
against tumor-specific molecular aberrations which still may play a role in fetal develop-
ment [138]. Burotto et al. described the first case of a pregnant woman with metastatic
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melanoma treated with nivolumab and ipilimumab. The patient underwent a cesarean
section giving birth to a healthy newborn, with no clinical signs of melanoma, achieving
disease stability in the PET-CT performed 6 months after delivery [139]. Nevertheless, for
these new agents, such as ipilimumab, nivolumab, pembrolizumab, dabrafenib, trame-
tinib, vemurafenib, erlotinib and gefitinib, not much data are currently available and more
evidence is required for considering their use during pregnancy [61].

3.7.1. Rituximab

Rituximab is a chimeric antiCD20 monoclonal antibody used for the treatment of B-
lymphoproliferative diseases (relapsed or refractory, low-grade or follicular, CD20+, B-cell
non-Hodgkin lymphoma, diffuse large B-cell non-Hodgkin lymphoma, CD20+ chronic
lymphocytic leukemia, as a single agent or in combination with chemotherapy) and au-
toimmune disorders (systemic lupus erythematosus, idiopathic thrombocytopenic purpura,
thrombotic thrombocytopenia, multiple sclerosis). In monkey models, Rituximab crosses
the placenta, without teratogenic effects. Transient depletion of peripheral B-cell is ob-
served, but it resolves usually within 6 months after the exposure to Rituximab [140].
Several reports described generally reassuring neonatal outcomes after maternal exposure
to rituximab during pregnancy, often in conjunction with combination chemotherapy, for
the treatment of malignancies or severe nonmalignant hematologic abnormalities [141].
Chakravarty et al. analyzed 231 women exposed to Rituximab during pregnancy for the
treatment of lymphoma or autoimmune diseases. Only the data of 153 of them were avail-
able and they had to be analyzed with caution, considering the concomitant use of other
potentially teratogenic drugs and severe underlying illnesses. They found only two congen-
ital malformations: a cardiac malformation (ventral sept effect, with patent foramen oval
and ductus arteriosus) and a clubfoot in one twin. Moreover, eleven cases of hematologic
abnormalities (peripheral B-cell depletion, neutropenia, lymphopenia, thrombocytopenia
and anemia) were reported, almost all transient, that recovered spontaneously within
weeks or months, except for the case of an infant born from a mother with idiopathic
thrombocytopenic purpura, who had a cerebral hemorrhage. Finally, they described four
cases of neonatal infections: one fever of suspected viral origin, acute hepatitis in a mother
with cytomegalovirus infection, bronchiolitis and acute chorioamnionitis [142]. Several
studies have demonstrated that Rituximab passes the human placenta transiently, inhibiting
neonatal B-Lymphocyte development; however, after the first 6–10 months, B-lymphocytes
levels return to normal, without causing functional deficits or inadequate vaccination IgG
titers in the infants [62,143].

3.7.2. Trastuzumab

Trastuzumab is a humanized IgG1 monoclonal antibody used in epidermal growth
factor receptor 2 (HER-2) positive breast cancer; its major side-effect is cardiotoxicity
(reversible maternal heart failure, which resolves after its discontinuation). It passes
the placenta and has been found in significant concentrations in fetal plasma of baboon
models (85% at 2 h after trastuzumab infusion) [81]. Currently, in humans the use of
trastuzumab during pregnancy is not recommended, because it has been associated with
oligo/anhydramnios and consequent fetal renal insufficiency, which potentially related to
HER-2 and vascular endothelial growth factor (VEGF) inhibition in fetal nephrogenic cells,
with decreased renal blood flow [144]. In their systematic review, Andrikopoulou et al.
synthesized currently available data about the effect of trastuzumab on fetal and maternal
outcomes. Oligo/anhydramnios was found as the most frequent side effect (in 58.1%
of women) especially if administered after the first trimester, as reported in National
Toxicology Program monograph [108]. The transplacental passage of trastuzumab seems
to be minimal during the first trimester, when the placental expression of FC receptor (to
which the placental active transporter of trastuzumab binds) is minimal [63].
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3.7.3. Lapatinib

Lapatinib is a dual inhibitor of the EGFR and HER-2, used as a single agent or in combi-
nation with trastuzumab for the treatment of patients with HER2-positive metastatic breast
cancer. Kelly et al. reported the case of a woman with metastatic HER2 mutated breast
cancer disease, who became accidentally pregnant during the treatment with lapatinib.
Lapatinib was interrupted at the 14th week of gestation, but no pregnancy complications
or fetal malformations were observed [145].

3.7.4. Bevacizumab

Bevacizumab is a recombinant humanized monoclonal immunoglobulin antibody
with two antigen-binding domains that block all active forms of VEGF-A, inhibiting en-
dothelial cell proliferation and angiogenesis in a variety of solid tumors [146]. It shows
an inhibitory effect on pregnancy development in rat models and teratogenic effects in
rabbits [64]. Furthermore, bevacizumab is expected to induce IUGR, due to the inhibition
of VEGF which is crucial for vascular permeability. Consequently, its use during preg-
nancy is controversial because of the potential systemic side effects on the mother and fetal
harm, such as preeclampsia and spontaneous miscarriage, respectively. In the literature,
there are only available studies about its intravitreal injection in women with diabetic
retinopathy and choroidal neovascularization and cases of preeclampsia and miscarriages
are reported [65]. Due to the lack of extensive data, bevacizumab should be used with
extreme caution during pregnancy, until more data become available in humans [66].

3.7.5. Imatinib, Nilotinib and Dasatinib

Imatinib is a tyrosine-kinase (TK) inhibitor, a molecularly targeted therapy, which has
become a milestone in the treatment of chronic myeloid leukemia (CML). TKs inhibitors
are active against several TKs, which are signaling molecules that regulate cellular pro-
liferation, differentiation, survival, function and motility. Various tumors overexpress
TKs, leading to uncontrolled mitogenic signals to the neoplastic cells. Animal studies
showed its teratogenicity in rats (causing defects such as exencephaly, encephaloceles, and
deformities of the skull bones) and congenital malformations have been correlated with
its use during human organogenesis [67]. Pye et al. analyzed 12 pregnancies of women
treated with imatinib from the first trimester for CML; three of them underwent elective
termination. They reported 1 stillbirth and 8 live births, all with congenital malformations
(such as craniosynostosis, exomphalos, renal agenesis, skeletal abnormalities, hypoplastic
lungs, pyloric stenosis, hypospadias, cleft palate, polydactyly, hydrocephalus, cerebellar
hypoplasia, cardiac defects, meningocele) [68]. Thus, current recommendations discourage
the adoption of imatinib and other second-generation TKs inhibitors (such as dasatinib
nilotinib) during the first trimester. After the 16th week of pregnancy, their use may be con-
sidered in selected cases. In fact, several studies have described its effectiveness and safety
after the first trimester: no congenital malformations or side effects were found [69,147].
Dasatinib and nilotinib have similar safety profiles during pregnancy as imatinib, however,
they should be limited during pregnancy before more data will be available [148].

3.7.6. Gefitinib and Erlotinib

Gefitinib and erlotinib are epidermal growth factor receptor (EGFR)-TKs inhibitors,
recommended as the first-line therapy for EGFR-mutated lung cancer. Erlotinib is also
approved for the treatment of advanced pancreatic cancer. Gefitinib has been used during
pregnancy only in two cases in the third trimester, without any fetal or maternal side
effects [70]. Erlotinib was adopted without sequelae for the duration of the pregnancy in
only one case of a female patient with stage IV lung adenocarcinoma, with mediastinal,
bone and cerebral metastasis and EGFR mutation. At the time of observation of the study,
the patient was undergoing the 11th month of treatment and the baby was 4 months old
and in good health [149].
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3.7.7. Vemurafenib

Vemurafenib is a BRAF-inhibitor active against BRAF V600E mutation, which is
expressed in approximately 50% of malignant melanoma [150]. In animal studies (rats
and rabbits), vemurafenib crosses the placenta without any teratogenic effects. In the
literature are reported some cases of women treated with vemurafenib during pregnancy
after the first trimester for metastatic melanoma, without any maternal and fetal side
effects [151]. Maleka et al. describe the case of one pregnant patient with metastatic
melanoma who responded immediately to vemurafenib (with the shrinkage of tumor and
normalization of transaminases). The patient had a 3-month progression-free survival and
give birth to a healthy newborn on the 30th week of gestation, 5 weeks after the initiation
of vemurafenib. A restriction of growth was observed at the 24th week of gestation, before
the initiation of the vemurafenib therapy, as a result of malnutrition and catabolic status
associated with the maternal illness. Maybe the toxic effect of vemurafenib treatment
was a contributing factor to the inhibition of growth [152]. Nevertheless, Vemurafenib
may cause toxic epidermal necrolysis (TEN), because it contains a sulfonamide group and
cross-reactivity to sulfonamide compounds has been reported in allergic patients. Thus,
sulfonamide drugs should be avoided in patients with serious hypersensitivity reactions to
vemurafenib and vice versa [153]. De Haan et al. reported the case of a pregnant woman
treated with vemurafenib for metastatic melanoma from the 22nd week of pregnancy, who
developed a mild skin rash after 12 days after commencing vemurafenib. In the next
9 days the rash progressed to TEN and the woman was admitted to the intensive care unit
intubated and sedated. At 26 weeks of gestational age, she spontaneously delivered two
preterm baby boys that were healthy and appropriate for gestational age. 53 days after the
delivery, the mother finally died of intracranial hemorrhage due to metastases, whereas
both children were healthy and developmentally normal at 15 months of age [154].

4. Conclusions

PAC has become a clinical multidisciplinary challenge for gynecologists, hematolo-
gists or oncologists and neonatologists, that manage women with a neoplastic diagnosis
during pregnancy. Chemotherapy can be offered to women with cancer during pregnancy,
although it is not without risk to the fetus. Despite the lack of guidelines about the manage-
ment of PAC, several studies have described the use and the potential fetal and neonatal
adverse events of antineoplastic drugs during pregnancy.
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