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Abstract: A large number of studies have used electromyography (EMG) to measure the paraspinal
muscle activity of adolescents with idiopathic scoliosis. However, investigations on the features of
these muscles are very limited even though the information is useful for evaluating the effectiveness
of various types of interventions, such as scoliosis-specific exercises. The aim of this cross-sectional
study is to investigate the characteristics of participants with imbalanced muscle activity and the
relationships among 13 features (physical features and EMG signal value). A total of 106 participants
(69% with scoliosis; 78% female; 9–30 years old) are involved in this study. Their basic profile
information is obtained, and the surface EMG signals of the upper trapezius, latissimus dorsi, and
erector spinae (thoracic and erector spinae) lumbar muscles are tested in the static (sitting) and
dynamic (prone extension position) conditions. Then, two machine learning approaches and an
importance analysis are used. About 30% of the participants in this study find that balancing
their paraspinal muscle activity during sitting is challenging. The most interesting finding is that
the dynamic asymmetry of the erector spinae (lumbar) group of muscles is an important (third in
importance) predictor of scoliosis aside from the angle of trunk rotation and height of the subject.

Keywords: muscle activity; random forest; support vector machines; importance analysis; asymmetry

1. Introduction

Scoliosis is a three-dimensional spinal deformity usually associated with intervertebral
rotation [1]. Among the different types of scoliosis, adolescent idiopathic scoliosis (AIS)
is most common and estimated to affect 2–3% of the general population [2]. Scoliosis can
also affect the physical and mental health of patients [3–5]. During the past few decades,
different factors that affect the prevalence of scoliosis have been identified, such as gender,
age, skeletal maturity, body mass index, family history, and ethnicity [6–12]. For instance,
the probability of severe AIS was 5 to 10 times more prevalent among females than males [8].
A notable characteristic of females with scoliosis was that their height was higher than that
of average females at the age of 11–15 [11]. Moreover, there was a higher prevalence of
scoliosis when the age was older than 15 years (after puberty) [12].

At the same time, more factors are being revealed. Recently, Chen et al. [13] suggested
that imbalanced growth between the thoracic vertebral column and the sternum is also an
important causative factor for the pathogenesis of scoliosis. However, these factors have not
been examined concurrently in previous studies in the literature, and their correlation with
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scoliosis has not been ranked. This then leads to the question of whether a selected variable
is really relevant and useful for conducting classifications and making predictions in
scoliosis classification studies. In addition, although guidelines have been well established
for good practices in controlling spinal curvature, the selection of treatment type is often
subjective and based on the experience of clinicians [14]. The evaluation of treatment
effectiveness mainly relies on X-rays [15]. Clinicians are now looking for more effective
prognostication and evaluation methods to provide a better treatment outcome [16,17].

Electromyography (EMG) has been well used to evaluate and record the electrical
activity of skeletal muscles in a number of studies [18–21]. It is also popular in studies
of paraspinal muscles for scoliotic patients. Over two decades ago, Avikainen et al. [22]
recorded the EMG signals of the paraspinal muscles of girls with AIS versus time and
compared them with those without the condition. Their results showed that the integrated
EMG signals of the left lumbar muscles are higher than those of the right lumbar muscles
at the start and during the early stages of muscle contraction for those with AIS. However,
they did not observe any differences in the maximal integrated EMG activity. More recently,
Chwała et al. [23] examined the differences in the EMG readings of the paraspinal muscles
during symmetric loading and asymmetrical stretching exercises in girls with idiopathic
scoliosis. They found a significant difference in the muscle activation patterns between the
two types of physiotherapy exercises. Stetkarova et al. [24] used needle EMG instead of
surface EMG (sEMG) to investigate the changes in the paraspinal muscles of AIS patients,
and found higher amplitudes of the motor unit potentials on the convex side of the scoliosis
curve. They also conducted a muscle biopsy and found predominantly type I muscle
fibers in the curve convexity. The type I muscle fibers show higher fatigue resistance
and lower contractile speed as opposed to the type II muscle fibers [25]. Moreover, it
is also found that AIS progresses more rapidly depending on the Cobb angle, which is
significantly correlated with the increased proportion of type I fibers on the convex side
of the scoliotic curve [24,26]. The changes might cause the asymmetry of muscle activity.
However, these findings lead to the question of whether asymmetric paraspinal muscles
cause the emergence of AIS or vice versa. The studies also have limitations. Although many
have focused on female participants since a higher percentage of patients with scoliosis are
female [22–24], nevertheless, the gender bias inhibits the generalizability of the results. In
addition, most of these studies have only focused on no more than 12 participants or even
as few as 10 participants [19,20,22,24]. The results again would be difficult to generalize.

In terms of the analysis method, data-driven scientific research and artificial intelli-
gence (AI) have greatly improved clinical studies on scoliosis treatment. Electronic health
records and wearable devices provide the means for researchers to develop sophisticated
machine learning (ML) algorithms, which can be used to quickly advance treatment. Some
researchers have even applied different ML technologies to classify spinal curvatures and
facilitate early diagnosis. For example, convolutional neural networks (CNNs) are a deep
learning algorithm and highly accurate (98.3%) in classifying different treatments for scol-
iosis based on posteroanterior radiographs [27]. Still, challenges remain as most of these
approaches are only based on X-ray images. Yang et al. [28] used deep learning algorithms
on 3240 images taken of the bare back of male and female patients to identify the presence
of a scoliosis curvature. They found that the accuracy of the algorithms exceeds that of
human diagnoses; however, the algorithms can only identify scoliosis curvatures that are
more than 20 degrees. Nevertheless, their approach can directly reduce radiation exposure
to X-rays of potential patients and medical costs, and is time efficient.

The aim of this study is to investigate the characteristics of participants with imbal-
anced muscle activity and the relationship between physical features and EMG signals.
This study involves more than 100 participants, including participants with and without
scoliosis of both genders. The prediction of scoliosis is made possible by using random
forests and support vector machines (SVMs). Furthermore, an importance analysis is
conducted by using random forests because this method is inclusive and can deal with
small sample sets [29]. An importance analysis can identify important causative factors to
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accurately detect scoliosis. The findings can further facilitate investigations on the features
of paraspinal muscles that have a key role in diagnosing AIS and increasing the likelihood
of their future application for examining the pathogenesis of scoliosis and exploring the
application of ML methods in scoliosis-related studies.

2. Materials and Methods
2.1. Participants

In total, 106 participants were consecutively and randomly recruited (69% scoliotic;
78% female; 9 to 30 years old) when they visited the University of Hong Kong-Shenzhen
Hospital to undergo X-ray examinations in June to August 2020. Any subject with other
conditions, such as physical, neurological, or mental disorders, that would affect their back
muscles was excluded. The youngest participant was 9 years old, and the oldest participant
was 30 years old. Their basic information is listed in Table 1. The experiment was approved
by the Human Participants Ethics Sub-Committee of the Hong Kong Polytechnic University
(Reference Number: HSEARS20201114001). Written informed consent was obtained from
all of the participants or their parents/guardians after they were provided details of the
study both orally and in the written format.

Table 1. Participant information.

No. of
Participants

No. of Male
Participants

No. of Female
Participants Age/Years Old Height/m Weight/kg ATR/◦ Cobb

Angle/◦

Participants with
scoliosis

Single-curve
scoliosis 39 12 27 14.51 ± 3.34 1.62 ± 0.09 46.68 ± 11.39 6.74 ± 4.35 21.97 ± 10.11

Double-curve
scoliosis 34 2 32 15.00 ± 4.51 1.62 ± 0.07 47.04 ± 9.27 8.50 ± 3.61 27.59 ± 9.94

All 73 14 59 14.63 ± 3.82 1.61 ± 0.09 46.55 ± 10.46 7.35 ± 4.12 23.72 ± 10.65

Participants without scoliosis 33 10 23 14.36 ± 4.78 1.57 ± 0.12 44.85 ± 10.14 2.79 ± 3.23 1.03 ± 2.03

All 106 24 82 14.44 ± 4.11 1.60 ± 1.01 45.68 ± 10.45 6.12 ± 4.38 17.48 ± 13.61

2.2. Experimental Design

Prior to the EMG component of the study, all of the participants underwent a clinical
neurological examination and radiological assessment of their coronal Cobb angle in
standing position, which is shown in Table 1. The measurement of the Cobb angle is shown
in Figure 1 [30]. The first step was to identify the most tilted vertebra above and below the
apex of the curve. Then, the Cobb angle was measured between the tangents of the upper
and lower endplates of the upper and lower vertebra, respectively [31]. This measurement
was conducted by a physician or physiotherapist.

The equipment used to obtain the sEMG signals is a wireless EMG sensor system
(Noraxon USA Inc., Scottsdale, AZ, USA), which can transmit data from the electrodes to a
receiver, and thus is a convenient means of obtaining EMG signals in dynamic conditions.
This sensor system has a 4000 Hz EMG sampling rate, real-time synchronization, and low
baseline noise. The used electrodes are disposable self-adhesive Ag/AgCL snap electrodes
(Noraxon USA Inc., Scottsdale, AZ, USA). The myoMUSCLE™ software (Noraxon USA
Inc. Scottsdale, AZ, USA) was used for EMG data analysis.
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In this study, the experimental protocol included three consecutive steps. The first
step was preparation, which was based on the SENIAM instruction. The surface of the
skin of the back of the participants was shaved and cleaned with alcohol to remove any
body oil or sweat, thus ensuring that the skin impedance was low so that EMG signals
could be detected [32]. After that, eight electrodes were attached to the muscle bellies
of the upper trapezius (TRAP) (a), latissimus dorsi (b), erector spinae—thoracic (c), and
erector spinae—lumbar (d) muscles on both sides, which are shown in Figure 2. The
direction of each electrode was in the same direction of the muscle fibers. Following the
recommendations of the use of sEMG for the noninvasive assessment of muscle activity,
the electrodes for all of the participants were positioned on the surface of the skin by the
same researchers in this study [33]. The second step was the participants’ sitting as sitting
was a common posture for everyone. The participants were asked to sit on a wood stool
with knees and ankles at nearly 90◦, and at the same time, the EMG signals were tested
(static condition). The hands lay on the lap. The requirements for sitting were to hold still,
look straightforward, breathe steadily, and relax (as shown in Figure 3). The duration was
10 s for each participant, which exceeded one respiratory cycle. In the third step, the EMG
data were recorded in a dynamic condition. Dynamic movement should require all tested
paraspinal muscles. At the beginning, the participants were instructed to calmly lie in a
prone position on a mat, with their legs straight and arms outstretched in front. Then, they
were to raise both their arms and legs at the same time as high as they could to form a



Int. J. Environ. Res. Public Health 2022, 19, 1177 5 of 12

bowl shape, as shown in Figure 4. This pose was repeated six times to ensure that it was
performed correctly. Additionally, the holding duration was 3 s each time.
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2.3. Machine Learning Approaches

Random forests and SVMs are two powerful ML models used for classification, regres-
sion, and other functions. SVMs were published by Vapnik and Cortes in the year 1995 [34].
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This approach is a robust supervised ML approach that can construct a hyperplane or a set
of hyperplanes for an accurate separation. As for the random forest algorithm, it was pre-
sented by Breiman in the year 2001 [35]. Its basic idea is that there are several randomized
decision trees, and the result is based on the aggregation (majority vote or averaging) of the
result for each tree [36]. Previous studies have predicted the likelihood of scoliosis through
ML methods based on surface topography methods or gait analysis [37,38]. To investigate
the influence of muscle activity on the likelihood of scoliosis, two kinds of classifiers have
been developed based on participant information and EMG signals.

First, raw EMG data had to be processed, which involved filtering and calculating the
root mean square (RMS). The window was 250 m, which was suitable for static and dynamic
conditions [39]. Two filters were applied, including a band pass filter (10 to 500 HZ) to
remove unacceptable artifacts and a notch filter (60 Hz) to eliminate noise [36,40]. The RMS
values for all of the collected data were calculated because the RMS value provides the most
information on the sEMG signal amplitude as it represents the power of the sEMG signals
and can produce analyzable waveforms. Ratios of larger to smaller EMG amplitudes were
then calculated by dividing the RMS of one side by the RMS of the other side. The ratios
should be equal to or greater than one. Then, feature set data were obtained through the
eight EMG ratios and five basic profile variables of the participants (gender, age, height,
weight, and angle of trunk rotation (ATR)). The output is 1 or 0, which represents the
participants with and without scoliosis, respectively. The classifiers were created by using
the Classification Learner app in MATLAB® (version 2017a, MathWorks Inc., Natick, MA,
USA). The flow chart of this part of the study is shown in Figure 5. The random forest and
SVM classifiers were then compared.
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Data from the 106 participants were randomly categorized into two groups: one with
100 participants and another with 6 participants. The first group was used to train the ML
models, and the second was used to validate the models. During the training process, cross-
validation techniques were used to validate the statistical significance of the classification
performance. A five-fold cross validation for these two classifiers was used by splitting the
entire dataset into an 80:20 ratio for the training and the validation sets, respectively.
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2.4. Importance Analysis

An important question in scoliosis classification studies is whether a selected variable
is really important and useful for conducting classifications and making predictions. There
are many attributes that contribute to scoliosis, such as gender, age, and ratio of the
paraspinal muscles. To further understand the feature that has the most influence on the
detection of scoliosis, feature importance is calculated by using a random forest model.
The advantage of random forests is that there is a validation process, which compares the
decision trees. In this paper, 30% of the sample was selected for cross validation in this
importance analysis model. The rest was resampled. The basic idea behind using random
forests is described as follows:

1. There are about 1/3 data left after the training of each decision tree in the random
forest method, called out-of-bag (OOB) data (Breiman, 1996). The OOB data are used
to estimate the trained trees and calculate the data error, which is marked as errOOB1
for each decision tree.

2. Noise is added randomly to interfere with the features of all of the OOB samples. This
OOB data error is calculated and marked as errOOB2.

3. We assume that there are N trees in total, and the importance of a feature is determined
by sum(errOOB2-errOOB1)/N.

In this way, the importance of each feature can be reflected in the OOB data error. If
the OOB data error significantly increases when random noise is added, then this feature
greatly influences the result, which in this case is the occurrence of scoliosis. In other words,
this feature has higher importance. The related calculation process is shown as follows.

Suppose that there are k categories, the Gini index can be calculated as:

Gini(p) =
k

∑
k=1

pk(1− pk) = 1−
k

∑
k=1

p2
k (1)

where pk is the weight of the k-th category.
On the other hand, for feature j, the Gini index at node m can be calculated by using

different Gini index values before and after branching. Assuming that VIMjm denotes the
change value of the Gini index of feature j at node m, GIm denotes the Gini index before
branching, and GIl and GIr denote two new nodes after branching, then:

VIMjm = GIm −GIl −GIr (2)

If feature j appears M times in the decision tree i, the importance of this feature for the
decision tree is:

VIMij = ∑m∈M VIMjm (3)

Then, the importance of feature j is:

VIMj =
1
n ∑n

i=1 VIMij (4)

where n is the number of decision trees in the random forest model.

3. Results

First, to investigate the features for the participants with asymmetric paraspinal
muscles, the participants with calculated ratios larger than two were grouped together,
which is shown in Figure 6. Based on the radiography results, the participants were then
divided into three groups—participants without scoliosis, patients with double-curve
scoliosis, and patients with single-curve scoliosis. Then the characteristics of each group
were observed and analyzed. The number of participants in each group with significant
differences between the left and right muscles is plotted in Figure 7. It can be easily



Int. J. Environ. Res. Public Health 2022, 19, 1177 8 of 12

observed in the figures that the asymmetry of the muscles, for scoliotic and nonscoliotic
participants, is found much more often in the static as opposed to the dynamic condition.
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Second, among the results from the two ML approaches, the random forest classifier
showed a 73% accuracy with the MATLAB Classification Learner, while the SVM classifier
showed a 78% accuracy. The sensitivities were 0.78 and 0.80, respectively, and the speci-
ficities were 0.22 and 0.20, respectively. The 95% confidence intervals were also calculated
for both classifiers, which were 0.14 and 0.13, respectively. However, their accuracy was
50% when the results were calculated by using the data in the second group. To be spe-
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cific, three of the six individuals were correctly diagnosed (whether the participant was a
scoliosis patient).

Finally, Figure 8 shows the importance of each feature. Thirteen features, which were
ranked in the order of importance, were ATR, height, dynamic ratio of erector spinae
(lumbar), weight, dynamic ratio of TRAP, static ratio of erector spinae (thoracic), dynamic
ratio of latissimus dorsi, static ratio of latissimus dorsi, static ratio of TRAP, dynamic ratio
of erector spinae (thoracic), age, static ratio of erector spinae (lumbar), and gender.
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4. Discussion

The EMG activity of the paraspinal muscles of 106 participants was tested in this
study. The participants included subjects with and without scoliosis. In addition, the work
was conducted in both static (sitting) and dynamic conditions. First, the characteristics
of the participants with very asymmetrical muscles were investigated. A considerable
percentage of the participants were accustomed to sitting without balancing their bilateral
back muscles evenly, which indicates the difficulty of maintaining a good sitting posture.
In addition, Kwok et al. [41] concluded that sEMG can be used to conduct biofeedback
training for patients with scoliosis. During the training, the postures of the patients were
adjusted to achieve a more balanced sEMG ratio for the TRAP, latissimus dorsi, erector
spinae—thoracic, and erector spinae—lumbar regions between two sides. Regular training
sessions could help them to develop a more balanced posture. Thus, biofeedback training
with the use of sEMG could be a viable method to instilling a balanced sitting or standing
habit. Another notable observation in Figure 7 is that even though the percentage of
the participants without scoliosis was smaller, there were still some participants without
scoliosis who had very imbalanced paraspinal muscles.

Regarding detection of scoliosis with the use of ML approaches, the accuracies of
the random forest and SVM classifiers were 73% and 78%, respectively, both of which are
not ideal. The reasons the accuracies were somewhat lacking were: (1) the sample size
of 100 participants was not large enough to build this kind of classifier [42], and (2) the
set of profile variables used in this study (age, gender, height, weight, ATR, and EMG
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ratios) did not have a strong-enough correlation with the presence of scoliosis. Therefore,
the most important eight features (ATR, height, dynamic ratio of erector spinae (lumbar),
weight, dynamic ratio of TRAP, static ratio of erector spinae (thoracic), dynamic ratio of
latissimus dorsi, static ratio of latissimus dorsi) were selected for building new ML models
to remove the features with low correlation and improve the accuracy. Then, the random
forest classifier showed a 77% accuracy, while the SVM classifier showed a surprising 85%
accuracy. The superior performance of the SVM classifier makes it suitable for this study.

Subsequently, an importance analysis was carried out to determine the variables that
are highly correlated to pathogenesis by using a random forest model. In Figure 8, feature 5,
or the ATR, has the most important role in predicting scoliosis, which agrees with previous
findings in the literature [43]. Measuring the ATR is now a reliable and reproducible method
for scoliosis screening [44]. It can also be observed that height is second in importance,
and weight ranks fourth in the importance analysis for scoliosis prediction. Parents and
doctors need to heed the abnormalities of the height or weight values for children due to
their significance. The standards are found in the study of Tanner and Whitehouse [45].
The most interesting finding is that the dynamic EMG ratios of the erector spinae (lumbar)
muscles are also very important (third in importance). A widely accepted fact is that the
erector spinae muscle group is the most important group of muscles for the stability of the
spine [46]. Moreover, Cheung et al. [19] indicated that larger EMG ratios can be found at
the lower end vertebra of young patients with a progressive spinal curvature. Hence, the
symmetry of the left and right erector spinae (lumbar) muscle activity during movement
can be used as supplementary information for the diagnosis of scoliosis.

5. Conclusions

This paper presented a cross-sectional research to study the characteristics of partici-
pants with imbalanced muscle activity and the relationships among 13 features (physical
features and EMG signal value). The results showed that muscle activities were more easily
imbalanced during sitting than during movement. Moreover, importance analysis ranked
13 features, which were ATR, height, dynamic ratio of erector spinae (lumbar), weight,
dynamic ratio of TRAP, static ratio of erector spinae (thoracic), dynamic ratio of latissimus
dorsi, static ratio of latissimus dorsi, static ratio of TRAP, dynamic ratio of erector spinae
(thoracic), age, static ratio of erector spinae (lumbar), and gender, in descending order by
correlation. According to it, a new SVM classifier using the most important 8 features
showed good accuracy (85%).
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