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Abstract
Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are
poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by
functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory
sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms.
Acidobacteriota were the second most abundant dsrB-harboring (averaging 13%) phylum after Desulfobacterota in Svalbard
sediments, and represented 4% of dsrB transcripts on average. Meta-analysis of dsrAB datasets also showed Acidobacteriota
dsrAB sequences are prominent in marine sediments worldwide, averaging 15% of all sequences analysed, and represent
most of the previously unclassified dsrAB in marine sediments. We propose two new Acidobacteriota genera, Candidatus
Sulfomarinibacter (class Thermoanaerobaculia, “subdivision 23”) and Ca. Polarisedimenticola (“subdivision 22”), with
distinct genetic properties that may explain their distributions in biogeochemically distinct sediments. Ca. Sulfomarinibacter
encode flexible respiratory routes, with potential for oxygen, nitrous oxide, metal-oxide, tetrathionate, sulfur and sulfite/
sulfate respiration, and possibly sulfur disproportionation. Potential nutrients and energy include cellulose, proteins,
cyanophycin, hydrogen, and acetate. A Ca. Polarisedimenticola MAG encodes various enzymes to degrade proteins, and to
reduce oxygen, nitrate, sulfur/polysulfide and metal-oxides. 16S rRNA gene and transcript profiling of Svalbard sediments
showed Ca. Sulfomarinibacter members were relatively abundant and transcriptionally active in sulfidic fjord sediments,
while Ca. Polarisedimenticola members were more relatively abundant in metal-rich fjord sediments. Overall, we reveal
various physiological features of uncultured marine Acidobacteriota that indicate fundamental roles in seafloor
biogeochemical cycling.

Introduction

Bacteria of the phylum Acidobacteriota (also known as
“Acidobacteria”) are highly diverse and inhabit a vast array
of environments on Earth, yet the properties of various
Acidobacteriota lineages remain poorly understood [1–6].
Knowledge regarding the functions and ecology of
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Acidobacteriota is biased to isolates and genomes obtained
from soils, where they are especially prevalent and often
dominate microbial communities [3, 4]. Soil-derived
Acidobacteriota are generally known as aerobic hetero-
trophs that utilize various carbohydrates including poly-
saccharides like chitin or cellulose [3, 7, 8]. Some
Acidobacteriota known from other environments have
unique physiological properties, such as the ability to
reduce iron [9], perform phototrophy [9, 10], or exhibit
thermophilic lifestyles [11]. Members of Acidobacteriota
subdivisions 1 and 3 from peatland and permafrost soils
have the potential to dissimilate inorganic and/or organic
sulfur compounds [2, 12]. In comparison to terrestrial
Acidobacteriota, very little is known about Acidobacteriota
in marine systems.

Acidobacteriota 16S rRNA genes or genomes are fre-
quently detected in marine environments including ocean
waters, marine sponges, hydrothermal vents, or sediments
[13–17]. Studies of 16S rRNA genes in marine sediments
showed that Acidobacteriota are widespread and reach rela-
tive abundances in amplicon libraries of up to 23% [18–23].
This suggests they play important roles in microbial com-
munity functioning and biogeochemical processes, although
our knowledge regarding their specific roles in sediments
remains limited. A recent stable isotope probing study showed
some Acidobacteriota in deep-sea sediments are capable of
fixing nitrogen [24]. Acidobacteriota were also shown to be
active under sulfidic conditions in 18O–H2O incubations with
estuarine sediment, by stable isotope-labeling of their 16S
rRNA and dissimilatory sulfite reductase (dsrB) genes [6].
One novel Acidobacteriota metagenome-assembled genome
(MAG) (Ca. Guanabacteria) encoded genes for the CO
dehydrogenase/CO-methylating acetyl-CoA synthase com-
plex and heterodisulfide reductases, indicating a possible
anaerobic lifestyle [25].

Marine sediments are a massive global habitat for
microorganisms [26], with average cell densities of micro-
organisms up to 109 cells per cm3 in surface sediments of
organic-rich sediments [27]. Substantial amounts of organic
matter are processed in marine sediments, which makes
them a critical component of marine and global biogeo-
chemical cycles [28]. Marine sediments are often stratified
with respect to redox states, whereby oxygen is typically
depleted within millimeters to centimetres below the surface
at sites where organic inputs are relatively high [29]. Vast
expanses of sediments are therefore anoxic, and many
microorganisms survive via anaerobic lifestyles, such as
fermentation, or respiration of nitrate, metals, sulfate or
CO2. Sulfate is abundant in sediments and is used by sulfite/
sulfate-reducing microorganisms (SRMs) as an electron
acceptor for anaerobic respiration. Sulfate reduction is
estimated to facilitate ~29% of organic matter degradation
in marine sediments globally [26, 28]. The sulfur-cycle is

therefore a major driver of microbial life and biogeochem-
ical cycling in the seafloor, and therefore understanding the
microorganisms that catalyze sulfur cycling is of great
importance.

Because sulfate reduction is a major process in marine
sediments, the activities, distributions, and diversity of
SRMs have been relatively well studied [28, 30, 31].
Members of the Desulfobacterota (formerly “Deltaproteo-
bacteria”) are known as abundant SRMs in marine sedi-
ments, playing key roles in anaerobic food webs by utilizing
fermentation products released by primary degraders of
organic matter [32–34]. They are also represented by var-
ious isolates, and many have been subject to genomic and
physiological studies [35]. Surveys of functional marker
genes for sulfite/sulfate reducers in marine sediments, i.e.,
of dsrAB, have repeatedly shown that dsrAB from the
phylum Desulfobacterota are typically the dominant dsrAB-
harboring group in marine sediments, but importantly, that
several other lineages of uncultivated dsrAB-harboring
organisms are also abundant and prevalent [36]. Recently,
some dsrAB sequences in marine sediments have been
inferred to belong to Acidobacteriota [6, 37], although
nothing is known about the metabolic properties, genomes,
or the sulfur-dissimilating pathways of the organisms that
harbor these genes. Identifying and understanding these
undescribed dsrAB-harboring microorganisms is therefore
critical for understanding the microbial groups that drive
sulfur cycling in marine sediments.

In this study, we aimed to gain insights into the meta-
bolic potential of uncultured Acidobacteriota lineages in
marine sediments, as well as their diversity and distribu-
tions. We therefore recovered metagenome-assembled
genomes (MAGs) from abundant Acidobacteriota popula-
tions present in marine fjord sediments of Svalbard, and
predicted their metabolic features. Focus was placed on
MAGs from the class Thermoanaerobaculia of the Acid-
obacteriota, which represent a newly described lineage of
dsrAB-harboring organisms that may be important sulfur
cycling bacteria in marine sediments. These analyses were
complemented with comparative genomics, incubation
experiments, transcript analyses, and analyses of Acid-
obacteriota distributions in Svalbard sediments and publicly
available datasets, together revealing they may play various
roles in sedimentary biogeochemical cycles, and that they
are a prominent group of sulfur-dissimilating organisms.

Materials and methods

Sample collection

Marine sediments were collected from Smeerenburgfjorden,
Kongsfjorden and Van Keulenfjorden, of Svalbard,
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Norway, in July 2016 and/or June 2017 with the vessel “MS
Farm”. Extensive biogeochemical data for these sites is
available from previous studies [38–42]. Maps of sample
locations are presented in Michaud et al. [41]. From
Smeerenburgfjorden, individual core samples were taken
from three stations: station GK (79°38.49N, 11°20.96E),
station J (79°42.83N, 11°05.10E), and station GN (79°
45.01N, 11°05.99E), with the station J cores being taken in
both 2016 and 2017. Duplicate core samples from Van
Keulenfjorden were taken from sites AC (77°32.260′N, 15°
39.434′E) and AB (77°35.249′N, 15°05.121′E). A sample
was also taken from Kongsfjorden station F (78°55.075′N,
12°15.929′E) [43]. For molecular biological analyses,
samples were taken with HAPS [44] or Rumohr corers [45].
Details of core subsampling procedures are provided in the
Supplementary Information.

Microcosm incubations with tetrathionate additions

To examine tetrathionate reductase gene expression, a
sediment incubation experiment was performed. A sediment
slurry was prepared inside an anoxic glove box (nitrogen
atmosphere containing 2% hydrogen and 10% CO2), from
samples collected in 2017 from 5 to 10 cmbsf at Station J,
Smeerenburgfjorden. Sediments had been stored at 4 °C for
6 months prior to the experiment. Anoxic artificial seawater
[46] containing 28 mM sulfate was well-mixed with a 2:1
ratio with sediment. Autoclaved serum bottles (250 ml) that
were left in the anoxic glove box overnight prior to the
experiment to remove traces of oxygen, were filled with 30
ml of sediment slurry. All microcosms received a small
amount of organic material to boost heterotrophic activity,
i.e., yeast extract (0.22 mgml−1) (Oxoid). All experiments
were set up in triplicates. The experimental treatments
included additions of: (i) tetrathionate (500 µM final), or (ii)
“no substrate” controls. All microcosms were sealed with
autoclaved butyl rubber stoppers. The experiment was
incubated at 4 °C for 8 days, and samples were taken at the
start of the experiments, day 1 and day 8. Additional tet-
rathionate (to make 500 µM additional) was spiked into the
microcosms on day 5. Subsampling was done inside the
anoxic glove box with microcosms placed on ice-pads to
reduce warming of the samples. Samples (250 µl) were
taken for DNA/RNA-based analyses, kept on the ice-pads in
the anoxic glove box and transferred immediately to dry-ice
outside the glove box, and stored at −80 °C.

Nucleic acid extractions and reverse transcription

For amplicon-based analyses, DNA and RNA was extracted
from the sediment core samples (~500 µl) and microcosm
samples (~250 µl) using the RNeasy PowerSoil Total RNA
Kit (Qiagen) according to the manufacturer’s instructions.

Additionally, a phenol/chloroform based extraction method
[47], was used to extract total nucleic acids from sediment
samples from station J sampled in July 2016 (Supplemen-
tary Information). Eluted nucleic acids were stored in
molecular biology grade water at −80 °C. Aliquots for
DNA-based analyses were used as eluted, while aliquots for
RNA-based analyses were DNase-treated using the TURBO
DNA-free kit (Thermo Fisher), followed by reverse tran-
scription of the RNA to cDNA using the RevertAid First
Strand cDNA Synthesis Kit (Thermo Fisher) according to
the manufacturer’s instructions. To test if any DNA
remained in the RNA samples after the DNase digestion
step, control samples were processed as above except the
RevertAid M-MuLV Reverse Transcriptase was excluded.
These controls were checked for DNA by PCR using 16S
rRNA gene targeting primers (described below).

Sediment samples from 2016 were used for metagenome
sequencing. DNA was extracted by the Vienna group from
3 to 5 mL of sediment from varying depths or microcosms
derived from station J, Smeerenburgfjorden, and 18 cen-
timeters below seafloor (cmbsf) from station AC of Van
Keulenfjorden (Supplementary Table 1) using the DNeasy
PowerSoil Kit (Qiagen) according to the manufacturer’s
protocol. DNA was also extracted by the Knoxville group
from 2 g of sample spanning 0–5 cmbsf from site AB of
Van Keulenfjorden and site F of Kongsfjorden (Supple-
mentary Table 1), using the RNeasy PowerSoil Kit (Qiagen)
with DNA elution following the manufacturer’s protocol.

Metagenome sequencing and genome binning

DNA libraries were prepared from individual samples
(detailed in Supplementary Information) and sequenced
using 2 × 150 bp paired-end mode with a HiSeq 3000
(Illumina) instrument at the Biomedical Sequencing Facility
(BSF), Vienna. Metagenomic libraries were generated from
the combined extracts from the first 5 cm (spanning 0–5 cm
downcore) in sites AB and F in the Center for Environ-
mental Biotechnology, Knoxville, using HiSeq (Illumina),
2 × 250 bp in paired-end mode [43]. Sequencing output
summaries are provided in Supplementary Table 1.

Sequence reads were quality filtered, trimmed, and nor-
malized as described in the Supplementary Information.
Processed reads from each sample were assembled sepa-
rately using IDBA-UD (version 1.1.1) [48] with default
settings and the following options: --min_contig 500
--pre_correction. Reads from site F (Kongsfjorden) were
assembled via metaSPAdes (version 3.11) [49] with kmer
sizes set to 21, 33, 55, 77, 99, and 127 to find the best
assembly. All other samples were assembled using metaS-
PAdes on the KBase server [50] with the default parameters
and following options: minimum contig length of 1000 bp,
and kmer sizes of 21, 33, and 55. All samples were also
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assembled using Megahit [51] on the KBase server using
default parameters. KBase Narratives are available/search-
able from user “jbuongio”.

Coverage profiles of assembled unbinned contigs were
acquired by mapping trimmed reads (not normalized) to
assemblies using BWA [52] and SAMtools [53]. Contigs
from each assembly were then binned into MAGs using
MetaBat2 (using each binning strategy) (version 2.12.1)
[54], CONCOCT (version 0.4.1) [55], and MaxBin2 (ver-
sion 2.2.4) [56]. MAG collections derived from each bin-
ning strategy, from all respective assemblies, were then
aggregated using DasTool (version 1.1.0) (Supplementary
Fig. 1A) [57]. Finally, all MAGs were dereplicated using
dRep (version 1.4.3) [58], with the options: an average
nucleotide identity (ANI) of 98% was used as cutoff to
dereplicate MAGs from the secondary ANI comparison
[59], and MAGs >50% complete and <10% contamination
were retained. Estimations of completeness and degree of
contamination of MAGs were obtained by CheckM (version
1.0.7) [60]. Read mapping to compare relative abundances
of read recruitment to MAGs was performed using
BBMap [61], with the default settings and “minid” of 0.99
for the minimum identity threshold. Taxonomic affiliations
of MAGs were determined with GTDB-Tk [62]. ANI
comparisons of MAGs were obtained using
JSpeciesWS server based on BLASTN (“ANIb”) [63] and
ANIcalculator [64].

Gene annotations and in silico analyses of inferred
proteins

Calling of genes and automatic annotations were obtained
using the RAST server with default settings and the
“classic” annotation pipeline [65]. Functions of predicted
proteins of interest were manually checked after searches
with BLASTP [66] against the NCBI-nr and SWISS-
PROT databases [67] (>25% identity), and the Conserved
Domain Database (CDD) [68] (default expect value of
0.01). Functions were together manually assessed by
considering various features including: (i) proteins had
>25% amino acid identity to biochemically characterized
proteins present in SWISS-PROT databases, (ii) con-
sidering if functional domains were detected by CDD, (iii)
if genes for proteins being examined were present in gene
clusters with functionally related proteins (e.g., of same
enzymatic complex and/or biochemical pathways
[69, 70]), (iv) after being evaluated using literature sear-
ches and the MetaCyc database [71], and (v) in certain
cases, phylogenetic comparisons between related protein
sequences (described below). Methods for further anno-
tations and protein sequence analyses and for gene content
comparisons among MAGs are described in the Supple-
mentary Information.

MiSeq amplicon sequencing and sequence analyses

For amplification of bacterial and archaeal 16S rRNA genes
or transcripts (cDNA) from Smeerenburgfjorden sediments,
the primers 515F (5′-GTGYCAGCMGCCGCGGTAA-3′)
[72] and 806R (5′-GGACTACNVGGGTWTCTAAT-3′)
[73] including a 5′-head sequence for 2-step PCR barcod-
ing [74], were used (further details in Supplementary
Information). Triplicate PCRs were performed in the first-
step PCR, and then pooled before the second barcoding
PCR. Slight variants of these PCR primers 515F and 806R
[75] for 16S rRNA genes were used in amplicon sequencing
profiling of sediments from Van Keulenfjorden in a previous
study, although a standard “one-step PCR” approach was
used [40]. Amplicon pools were extracted from the raw
sequencing data using the FASTQ workflow in BaseSpace
(Illumina) with default parameters. Demultiplexing was
performed with the python package demultiplex (Laros JFJ,
github.com/jfjlaros/demultiplex) allowing one mismatch for
barcodes and two mismatches for linkers and primers.
DADA2 [76] was used for demultiplexing amplicon
sequencing variants using a previously described standard
protocol [77]. FASTQ reads 1 and 2 were trimmed at 220 nt
and 150 nt, respectively, with allowed expected errors of 2.
Taxonomy was assigned to 16S rRNA gene/transcript
sequences based on SILVA taxonomy (release 138) using
the naïve Bayesian classification method as implemented in
mothur [78]. Amplicon sequence datasets were analysed
with the Rhea pipeline [79] implemented in R (https://www.
r-project.org/).

Primers DSR-1762Fmix and DSR-2107Rmix, including a
5′-head sequence for barcoding, were used for amplification
of dsrB-genes or -transcripts (cDNA) [80] (further details in
Supplementary Information). Triplicate PCRs were performed
in the first-step PCR, and then pooled before the second
barcoding PCR. Raw reads were then processed as previously
described [74, 80], into dsrB operational taxonomic units
(OTUs) with >99% identity. Classification of amplicon-
derived DsrB sequences was performed using a combined
phylogenetic and naïve Bayesian classification approach as
previously described [80].

Methods for analyses of publicly available 16S rRNA
gene and dsrAB sequence datasets are described in the
Supplementary Information.

Quantitative reverse-transcription PCR

RT-qPCR assays targeting the octaheme cytochrome tetra-
thionate reductase (otr) and dsrB genes of MAG AM3-C were
performed using the newly-designed primers TetraC-C-F (5′-
CACCACGACCTGTCTCGG-3′) and TetraC-C-R (5′-CCC
CCTGGAGTTCTTGGT-3′), and Acido-dsrB-F (5′-GGAGA
ACTATGGGAAGTGGG-3′) and Acido-dsrB-R (5′-GTTG
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AGGCAGCACGCGTA-3′). Primers 1329-B-F (5′-AACC
TTTGGGCGATTTCTCG-3′) and 1329-B-R (5′-GAGAGA
GTGGCAACGTGAAC-3′) targeting the DNA-directed RNA
polymerase alpha subunit gene of MAG AM3-C were used to
examine expression of a housekeeping gene. Details of RT-
qPCR assay conditions are presented in the Supplementary
Information. Relative-fold changes of target gene transcripts
were calculated relative to the housekeeping gene of the alpha
subunit of DNA-directed RNA polymerase by the 2–ΔCt cal-
culation as described by Schmittgen and Livak [81].

Phylogenetic analyses

A phylogenomic maximum-likelihood tree was created
using the IQ-TREE web-server with automatic substitution
model selection and ultrafast bootstrapping (1000×) [82]
using an alignment of concatenated protein sequences
derived from single copy marker genes retrieved from
CheckM [60]. The tree was visualized with iTol [83]. Phy-
logenetic analysis of 16S rRNA was performed in ARB [84]
using the SILVA database release 138 [85], and dsrAB
sequences were also analysed using ARB using previously
described database [36, 80] (Supplementary Information).
Phylogenetic analyses of all other protein sequences were
performed using the IQ-TREE web-server with automatic
substitution model selection and ultrafast bootstrapping
(1000×) [82]. For the Complex-Iron-Sulfur-Molybdoenzyme
(CISM) tree, query protein sequences were added to a pre-
vious alignment of CISM protein sequences [86], using
MAFFT using the “add full length sequences” option (--add)
[87]. All other protein sequence alignments were made de
novo with MUSCLE [88] within Mega6 [89].

Sequence and MAG accessions

Metagenomic sequence reads from Van Keulenfjorden and
Kongsfjorden samples are available under NCBI-Genbank
Bioproject PRJNA493859. Metagenomic sequence reads,
and 16S rRNA gene and dsrB sequence reads from
Smeerenburgfjorden samples are available under NCBI-
Genbank Bioproject PRJNA623111. MAGs are available
under NCBI-Genbank Bioproject PRJNA623111, with
Biosample accessions SAMN15691661-SAMN15691666.

Results

Recovery of novel Acidobacteriota genomes from
marine sediments

Metagenomic sequencing and genome binning was per-
formed from DNA extracted and sequenced from sediments
originating from three fjords from Svalbard, Norway

(Supplementary Table 1). Our genome binning strategy
based on multiple assemblies and multiple binning algo-
rithms recovered more MAGs with higher completeness, as
compared to applying multiple binning approaches based on
single assembly approaches (Supplementary Fig. 1A, B).
From the dereplicated MAGs (n= 97), four represented
populations of the phylum Acidobacteriota and were chosen
for in-depth analyses.

Phylogenomic analyses showed three MAGs (AM1,
AM2, and AM3-A) affiliated with GTDB family “FEB-10”
of the class Thermoanaerobaculia (“subdivision 23”)
(Fig. 1). We included two additional MAGs in our analyses,
i.e., AM3-B and AM3-C, that were highly similar to the
AM3-A MAG (>98% ANI), but were classified as redun-
dant during MAG dereplication. We studied them in further
detail because: (i) the AM3 MAGs represent the most
abundant Thermoanaerobaculia species based on sequence
coverage (Supplementary Table 2), (ii) they encoded
enzymes of interest not present in MAG AM3-A (Fig. 2A),
and (iii) were more complete than MAG AM3-A (Table 1).
Comparisons of ANI values suggested the Thermo-
anaerobaculia MAGs represent three distinct species (<95%
ANI) (Supplementary Table 3) [90], all from a novel genus
for which we propose the name Candidatus Sulfomar-
inibacter (Supplementary Table 4). The MAG AM3-C
represents the type species Ca. Sulfomarinibacter kjeldsenii
(Supplementary Table 4). MAG AM4 represents the type
species of another novel genus affiliated with the GTDB
class “Mor1” (“subdivision 22”) (Fig. 1), and for which we
propose the name Ca. Polarisedimenticola svalbardensis
(Table 1 and Supplementary Table 4).

Marine Acidobacteriota encode the full dissimilatory
sulfate reduction pathway

Together, the gene content of the Ca. Sulfomarinibacter
suggests they encode a complete canonical dissimilatory
sulfate reduction pathway (Fig. 2A, B and Supplementary
Table 5). This includes enzymes required for sulfate acti-
vation to APS (Sat) and reduction of APS to sulfite (AprAB,
QmoABC), and further reduction of sulfite to sulfide
(DsrAB, DsrC, DsrMKJOP, and DsrN) (Fig. 2A, B and
Supplementary Table 5). Acidobacteriota dsr were also
found on scaffolds (up to 20 kb) that were not binned into
MAGs, yet had highly similar genes and therefore derive
from closely related populations, e.g., >99% dsrB nucleo-
tide identity (Fig. 3 and Supplementary Table 5). The
unbinned acidobacteriotal contig “ThM_scaffold_807”
harbored all dsr on one contig (Fig. 3). The predicted DsrC
had two conserved cysteine residues critical for respiratory
functioning (Supplementary Fig. 2) [91]. Similar to Acid-
obacteriota MAGs from peatlands and permafrost [2, 12],
the marine Acidobacteriota encoded both DsrL and DsrD
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proteins. DsrL acts as a NAD(P)H:acceptor oxidoreductase
for DsrAB [92], while the function of DsrD has not been
proven, it is possibly a transcriptional regulator [93]. The
DsrL sequences were phylogenetically related to group
“DsrL-2” from Desulfurella amilsiiI (38% amino acid
identity), peatland Acidobacteriota and other subsurface
bacteria, and were phylogenetically distinct from group
“DsrL-1” of sulfur-oxidizing aerobes (Supplementary
Fig. 3A) [94]. The DsrL had conserved YRR-motifs in the
NAD(P)H substrate-binding domains that are present in the
DsrL-2 group, and absent in DsrL-1 of sulfur-oxidizing
aerobes (Supplementary Fig. 3B) [94].

The DsrAB sequences from the novel Acidobacteriota
MAGs and unbinned metagenomic contigs are phylogen-
etically affiliated with the “Uncultured family-level lineage
9” within the “Environmental supercluster 1”, which is part
of the “reductive, bacterial-type DsrAB branch” in the
DsrAB tree [36] (Fig. 4). Sequences of “lineage 9” are
primarily derived from marine sediments [36]. This lineage
is closely related to the “Uncultured family-level lineage 8”
that harbors DsrAB sequences from peatland- and
permafrost-derived Acidobacteriota of subdivisions 1 and 3
[2, 12]. We also identified several “lineage 9” dsrA and/or
dsrB sequences in Acidobacteriota MAGs from public
databases that derived from marine or groundwater

environments (Fig. 4). Herein, we refer to this clade as the
“Thermoanaerobaculia Dsr lineage”.

Marine Acidobacteriota use tetrathionate and
potentially also other sulfur-cycle intermediates

Several Ca. Sulfomarinibacter MAGs encoded c-type
cytochromes annotated as octaheme tetrathionate reductases
(Otr), which was supported by phylogenetic analysis
(Supplementary Fig. 4) [95]. The Otr were predicted to be
periplasmic and may enable respiration with tetrathionate, a
sulfur compound of intermediate oxidation state (“sulfur-
cycle intermediate” (SCI)) [31] (Fig. 2B). To provide sup-
port that the Otr catalyses tetrathionate reduction and that
this occurs within in situ-like conditions, we conducted
anoxic microcosm experiments with Svalbard sediments
with additions of tetrathionate (500 µM) versus controls
without any additions (all contained 28 mM sulfate). We
hypothesized that additions of tetrathionate, which has a
relatively high redox potential (+198 ± 4 mV versus stan-
dard hydrogen electrode (SHE)) [96], would trigger
increased expression of otr because it is a favorable electron
acceptor over sulfate. We thus examined expression of otr
and dsrB of Ca. Sulfomarinibacter MAG AM3-C by RT-
qPCR analysis of reverse-transcribed mRNA, from multiple

Fig. 1 Phylogenomic analysis reveals novel Acidobacteriota taxa in
marine sediments. Maximum-likelihood tree of concatenated protein
sequences from MAGs and genomes. Single marker genes were
retrieved with CheckM. Highlighted in blue are MAGs obtained in this
study. Highlighted in purple are dsrAB-containing MAGs obtained
from the NCBI database from the class Thermoanaerobaculia. The
genus Ca. Acidiflorens is represented by the most complete MAG
(GCA_003166525.1) from the corresponding study [12]. Our

phylogenomic analysis showed that one MAG that was previously
assigned to Ca. Aminicenantes (GCA_004524955.1), recovered from
the Bothnian Sea [146], is affiliated with the newly proposed family
Ca. Sulfomarinibacteraceae. Black dots indicate dsrAB-containing
genomes/MAGs. Bootstrap values with >90% are indicated with filled
black circles on nodes. Nitrospina gracilis 3/211 (GCA 000341545.2)
was used as an outgroup. The scale bar represents 10% sequence
divergence.
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Fig. 2 Diverse sulfur-dissimilating potentials predicted among
Ca. Sulfomarinibacter and Ca. Polarisedimenticola MAGs.
A Presence–absence of genes for sulfur-dissimilating enzymes, and
metabolic models of (B) Ca. Sulfomarinibacter kjeldsenii MAG AM3-
C, and (C) Ca. Polarisedimenticola svalbardensis MAG AM4 suggest
different fundamental niches of the two species in marine sediments.
GH glycoside hydrolase, RDH reductive dehalogenase homologous
enzyme, Ack acetate kinase, Pta phosphotransacetylase, PFL pyrivate-

fomate lyase, FDH formate dehydrogenase, Hdr heterodisulfide
reductase, NUO NADH dehydrogenase, Otr Tetrathionate reductase,
NosZ nitrous oxide reductase, Sat sulfate adenylyltransferase, Apr
adenylylsulfate reductase, Qmo quinone-interacting membrane oxi-
doreductase complex, Dsr dissimilatory sulfate reductase, Nap Peri-
plasmic nitrate reductase, Psr poylsulfide reductase, Sdh
Sulfhydrogenase complex, and TusA sulfur-carrier protein.
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times points after tetrathionate additions. Relative expres-
sion levels of these transcripts were determined in com-
parison to the housekeeping gene for DNA-directed RNA
polymerase alpha subunit, in order to account for potential
changes in cell numbers over time. This showed that tran-
scription of otr was upregulated (1.8-fold) in response to
tetrathionate at day 1 versus controls (although not sig-
nificantly), and was significantly upregulated (p < 0.0488)
36-fold at day 8. Additionally, the transcription of dsrB
appeared lower at both days in tetrathionate-amended
microcosms versus controls (0.48–0.63-fold), although not
significantly (Fig. 5).

“YTD gene clusters” encoding sulfur-trafficking rhodo-
nase-like proteins [97] were identified among Ca. Sulfo-
marinibacter MAGs. Genes for YedE-related permease-like
proteins, a DsrE2-like protein, a rhodonase-domain con-
taining sulfur-carrier TusA, and two conserved hypothetical
proteins, were present in the YTD gene clusters (Supple-
mentary Table 5). The TusA sulfurtransferase had con-
served Cys‐Pro‐X‐Pro sulfane sulfur‐binding domains
(Supplementary Fig. 5A). The TusA were phylogenetically
most closely related to various TusA from anaerobic
Desulfobacterota that are capable of reducing and/or dis-
proportionating inorganic sulfur compounds such as ele-
mental sulfur, sulfite, and/or thiosulfate (Supplementary
Fig. 5B). Together, this suggested Ca. Sulfomarinibacter are
capable of internal trafficking of sulfur, and may use it to
reduce and/or disproportionate inorganic sulfur compounds
of intermediate redox states.

The marine Acidobacteriota MAGs encoded several
Complex-Iron-Sulfur-Molybdoenzyme (CISM) enzymes
that may catalyse redox reactions of sulfur compounds. The
Ca. Sulfomarinibacter MAG AM3-A encoded a putative
tetrathionate reductase (TtrA) (Supplementary Fig. 6), and
also had an adjacent TtrB (FeS protein) encoded. A ttrC
encoding a membrane anchor was missing, but the ttrAB
were situated on the end of the contig and therefore ttrC
may have been present in DNA that either was not
sequenced or on a contig that was not binned. The Ttr
complex may provide an additional means to reduce
tetrathionate.

Ca. P. svalbardensis MAG AM4 had genes for a CISM
subunit A enzyme that phylogenetically affiliated with the
polysulfide/thiosulfate reductase clade (“Psr”) (Supple-
mentary Fig. 6). Subunits for PsrABC were encoded in a
gene cluster, where the terminal reductase PsrA had a TAT-
leader peptide for export from the cytoplasm, PsrB had FeS
domains for electron transfer between PsrA and PsrC, and
the PsrC subunit was predicted to be membrane-bound.
This suggested a periplasm location and that the complex
may play a role in respiration of sulfur/polysulfide or
thiosulfate. Selenite reductases (SrrA) also phylogenetically
affiliate with the polysulfide/thiosulfate reductase clade, butTa
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conserved rhodonase-like proteins encoded in the gene
neighborhood of SrrA are thought to be indicative of
selenite-reducing organisms [98], but were absent near
psrABC in Ca. P. svalbardensis MAG AM4.

Ca. P. svalbardensis MAG AM4 also harbored a gene
cluster encoding four subunits of a sulfhydrogenase com-
plex (Fig. 2A, B and Supplementary Table 5). Similar to the
characterized sulfhydrogenase from Pyrococcus furiosus,
this included two NiFe hydrogenase subunits, as well as two
subunits of anaerobic sulfite reductases [99–101]. These
complexes can use elemental sulfur or polysulfides as
electron sinks when available [101], or act in reverse as
hydrogen-evolving hydrogenases during fermentative
growth [102].

Marine Acidobacteriota may respire additional
electron acceptors including metals

All MAGs had gene clusters encoding multi-heme c-type
cytochromes with predicted periplasmic or extracellular
locations, as well as associated predicted β-barrel proteins

(Fig. 2A, B, and Supplementary Table 5). In known metal-
reducing and/or -oxidizing bacteria, extracellular, and
periplasmic cytochromes can insert into outer-membrane
traversing β-barrel proteins, and transfer electrons through
the complexes to/from metals [103, 104]. These gene
clusters were syntenous among the MAGs and Thermo-
anaerobaculum aquaticum (Supplementary Fig. 7A), a
related hot spring-derived isolate that can anaerobically
reduce iron- and manganese-oxides [11]. We therefore
propose these cytochromes are likely candidates for facil-
itating the reduction of metal-oxides by Thermo-
anaerobaculum aquaticum, because no other predicted
extracellular cytochromes are encoded by its genome. It is
therefore probable that the similar cytochromes encoded by
our marine MAGs may also perform this function.

The Ca. P. svalbardensis MAG AM4 encoded two
additional cytochrome-c proteins with similarity to metal-
reducing outer-membrane cytochromes (OmcS) from
known metal-reducing bacteria, i.e., various Desulfur-
omonadia (formerly Desulfuromonadales) such as Geo-
bacter and Geopsychrobacter spp. (Supplementary Table 6)

Fig. 3 Gene organization of the dsr gene cluster in Acidobacteriota.
Scaffold names in blue were retrieved from this study. Scaffold names
in purple were derived from best BLASTP hits to sequences from this
study. Ca. Sulfotelmatomonas gaucii SbA5 was retrieved from

Hausmann et al. [2]. Green: dsr, dark red: other genes, and orange:
hypothetical genes. Shaded blue lines indicate degree of sequence
similarity as determined by tBLASTx within EasyFig [148], which
depicts sequence identity similarities among protein sequences.
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[105, 106]. These cytochromes had six heme-binding sites
like characterized OmcS, and were also clustered among
genes for predicted periplasmic cytochromes and β-barrel
proteins (Supplementary Fig. 7B). They could therefore also
potentially exchange electrons with metal-oxides (or other
insoluble substrates such as humic-like substances, or other
cells) (Fig. 2B, C).

The marine Acidobacteriota MAGs also encoded the
potential to reduce various other electron acceptors. Both
groups have potential for oxygen reduction through cyto-
chromes (Fig. 2B, C), although we speculate Ca. Sulfo-
marinibacter may reduce oxygen as a defense mechanism,
because they otherwise encode various features of strict
anaerobes (Supplementary Information). Ca. Sulfomar-
inibacter also encode type-II nitrous oxide reductases
(Fig. 2B and Supplementary Fig. 8) and reductive dehalo-
genases (Fig. 2B and Supplementary Fig. 9), suggesting
nitrous oxide and organohalides could be reduced by these
enzymes, respectively. Ca. P. svalbardensis encodes peri-
plasmic nitrate reductases, although no other genes for
enzymes for other steps of denitirification (Fig. 2C and
Supplementary Table 5). A putative arsenate reductase is

Fig. 4 DsrAB uncultured family-level lineage 9 in the DsrAB tree
represents members of the Acidobacteriota class Thermo-
anaerobaculia (subdivision 23). Blue leaves in the DsrAB tree
represent MAGs or contigs identified in this study. Red leaves repre-
sent the most abundant acidobacteriotal amplicon-derived DsrB
sequences identified in this study. Purple leaves represent sequences

from MAGs retrieved from public databases. The DsrAB sequences
were added to the consensus tree from Müller et al. [36] in ARB. SD,
pertaining to “subdivisions” of Acidobacteriota. Numbers in par-
entheses are Genbank accessions. The scale bar represents 10%
sequence divergence.

Fig. 5 Box plots depicting the expression of otr and dsrB relative to
a housekeeping gene (DNA-directed RNA polymerase, alpha
subunit) from Ca. Sulfomarinibacter kjeldsenii MAG AM3-C
during microcosm experiments with amendments of tetrathionate
versus no-amendment controls. Relative expression was determined
by rt-qPCR. Expression of otr was significantly higher at day 8 (p=
0.0488) as determined using a two-tailed T-test, and is indicated by an
asterisk. Center lines indicate medians; box limits indicate 25th and
75th percentiles as determined by R software; and whiskers extend 1.5
times the interquartile range from the 25th and 75th percentiles.
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also encoded by Ca. P. svalbardensis (Supplementary Fig. 6
and Supplementary Table 4).

Additional energy conserving mechanisms among
marine Acidobacteriota

Electron-bifurcating heterodisulfide reductase complexes
were only encoded in Ca. Sulfomarinibacter MAGs
(Fig. 2B and Supplementary Table 5). These complexes
enable flavin-based redox balancing and formation of low-
potential electron carriers (i.e., ferredoxin and/or flavo-
doxin), and are common among strict anaerobes [107, 108].
A high-molecular-weight cytochrome c3-type protein with a
predicted periplasmic location was encoded in Ca. Sulfo-
marinibacter MAG AM1 (Supplementary Table 5). These
typically act as periplasmic redox hubs to link electron
flows between the periplasm and cytoplasm in SRM [109].
All Acidobacteriota MAGs recovered in this study encoded
NADH-ubiquinone oxidoreductase (Nuo) complexes
required for energy conservation via respiration (Fig. 2B, C
and Supplementary Table 5). Genes for additional sodium-
dependent Nuo complexes were also present (Fig. 2B and
Supplementary Table 5). Apart from the potential for
respiration, some Acidobacteriota MAGs from both Ca.
Sulfomarinibacter and Ca. P. svalbardensis MAG AM4
encoded acetate kinase and phosphate acetyltransferase for
fermentation via acetogenesis, or which may act in reverse
to facilitate acetate consumption (Fig. 2B, C and Supple-
mentary Table 5).

Marine Acidobacteriota use diverse nutrient and
electron sources

The Ca. Sulfomarinibacter AM3 MAGs encoded predicted
cellulase A enzymes with signal peptides for export from
the cytoplasm (Fig. 2B). They were phylogenetically
affiliated with cellulase A from various anaerobic degraders
of cellulose and/or plant-derived polysaccharides (Supple-
mentary Fig. 10). A cellobiose phosphorylase was encoded
in Ca. S. kjeldsenii MAG AM3-C, and had relatively high
amino acid identity (63%) to a characterized cellobiose
phosphorylase from Thermotoga neapolitana [110]. These
enzymes catalyse phosphorolysis of cellobiose to ɑ-D-
glucose 1-phosphate (G1P) and D-glucose, thereby saving
an ATP before entering glycolysis, and are typically used
by anaerobic cellulose-degraders [111]. This suggests these
organisms have the capacity to anaerobically degrade cel-
lulose, a derivative of cellulose, or a structurally similar
compound. Overall, the marine Ca. Sulfomarinibacter
MAGs encoded few genes for glycoside hydrolases or other
carbohydrate active enzymes, i.e., 0.47–0.75% of protein
encoding genes encoded glycoside hydrolases (further
detailed in Supplementary Information) (Supplementary

Table 7). The Ca. P. svalbardensis MAG AM4 also encoded
few glycoside hydrolases (0.54% of protein encoding
genes), with none predicted to be exported to the extra-
cellular environment, and a single endo-1,4-beta-xylanase
predicted to be periplasmic (Supplementary Table 5).

Genes for cyanophycinases among Ca. Sulfomar-
inibacter MAGs indicated they may utilize the storage
compound cyanophycin as a nutrient (Fig. 2B and Sup-
plementary Table 5). The cyanophycinases had Secretion-
signal peptides (Sec-) for export from the cytoplasm, indi-
cating they act on an external substrate and not an internally
stored compound. Accordingly, no genes for cyanophycin
synthetases were found. An isoaspartyl dipeptidase was
encoded in Ca. S. kjeldsenii MAG AM3-C, which may
enable utilization of the products released by the cyano-
phycinase, i.e., a dipeptide of aspartate and arginine (Sup-
plementary Table 5). The capacity to catabolically degrade
aspartate and arginine was also encoded (Supplementary
Table 5).

The Ca. Sulfomarinibacter MAG AM3-C may degrade
extracellular proteins using two predicted secreted pro-
teases, as well as adjacently encoded peptidases predicted to
be membrane-bound (Fig. 2B and Supplementary Table 5).
The Ca. P. svalbardensis MAG AM4 harbored numerous
genes for proteases/peptidases (n= 7) that were predicted to
be secreted, strongly indicating these bacteria use proteins
as nutrients (Fig. 2C and Supplementary Table 5).

Membrane-bound NiFe uptake-hydrogenases were
encoded by both Ca. Sulfomarinibacter and Ca. P. sval-
bardensis MAGs (Fig. 2B, C and Supplementary Table 5).
These may be important for oxidizing environmental
hydrogen. The Ca. Sulfomarinibacter MAGs encoded
“type-1c” NiFe hydrogenases typically found in obligate
anaerobes and that are thought to be oxygen sensitive
(Supplementary Fig. 11) [112]. The Ca. P. svalbardensis
MAG AM4 encoded a “type-1d” NiFe hydrogenase, which
are typically found in aerobes and facultative anaerobes
(Supplementary Fig. 11) [112]. Inspection of best BLASTP
hits from the NCBI-nr database to the Ca. Sulfomar-
inibacter NiFe hydrogenase sequences identified various
sequences previously shown to be expressed in tidal flat
sediments [113]. Formate dehydrogenases encoded among
MAGs of both Ca. Sulfomarinibacter and Ca. P. svalbar-
densis also suggested formate may be used as an electron
donor (Fig. 2B, C and Supplementary Table 5).

Genome comparisons reveal distinct properties
between novel genera and adaptations to marine
environments

To compare unique proteins between Ca. Sulfomarinibacter
and Ca. P. svalbardensis, and therefore potential functional
differences, we performed reciprocal BLASTP analyses of
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protein sequence complements from each genus (Supple-
mentary Table 8, and further detailed in the Supplementary
Information). In this section, we describe unique proteins
encoded in multiple copies (>2 SD above the mean,
excluding hypotheticals/unknowns) among each set of
unique protein sequences. We hypothesized these might be
of special importance for the organisms if they are present
in multiple copies (Supplementary Table 8). The whole list
of unique proteins are provided in Supplementary Table 8.
Among proteins unique to Ca. Sulfomarinibacter were: (i)
various mobile element proteins (transposases), (ii) rubrer-
ythrins that are known to play roles in detoxification path-
ways for reactive oxygen species (e.g., H2O2) in anaerobes
[114], (iii) heterodisulfide reductase subunits (described
above), (iv) sulfatases that may play a role in removing
sulfate groups from organics [115], (v) hydrolases (beta-
lactamase super-family) that may play various roles,
including hydrolyzing antibiotic compounds. Among those
unique to Ca. P. svalbardensis were various: (i) peptidases/
proteases, (ii) toxin-related proteins, (iii) c-type cyto-
chromes, and (iv) tetratricopeptide-repeat-containing pro-
teins that often function in protein–protein interactions
[116]. Overall, these comparisons highlight many differ-
ences in protein content among the two genera, likely
reflecting distinct physiologies and the large phylogenetic
distances between the two genera.

Comparisons of encoded protein content of the marine
Acidobacteriota MAGs with seven dsr-harboring Acid-
obacteriota MAGs from peatland soil [2] suggested the
marine Acidobacteriota encoded unique adaptations to
marine settings (Supplementary Information) (Supplemen-
tary Fig. 12). These included various predicted transporters/
symporters and pumps for ions (e.g., sodium and potas-
sium) and metals/metalloids (e.g., zinc and arsenic) that
were unique to the marine MAGs. Genes for a sodium-
translocating NADH-quinone oxidoreductase complex,
which are used by various marine microorganisms to sup-
port respiration and cellular homeostasis [117], were only
present in marine MAGs. Symporters for the osmolytes
proline, glutamate and glycine, were also only present in
marine MAGs.

Acidobacteriota are prevalent, active, and diverse in
marine sediments

Amplicon sequencing of 16S rRNA genes and transcripts
was performed from cores of Smeerenburgfjorden sedi-
ments (Fig. 6A–D and Supplementary Fig. 13). General
features of these sediments include: (i) high sulfate reduc-
tion rates that peak near 100 nmol SO4

–2 cm−3 d−1 around
5–6 cmbsf and slowly decline with depth, (ii) iron reduction
in the top 5 cm of sediments of station J and GN, (iii) higher
amounts and deeper accumulation of dissolved iron (>250

µM) from dissimilatory iron reduction in sediments of sta-
tion GK, and (iv) free sulfide accumulates below 10 cm in
station J and GN sediments [38, 41, 113]. Overall, the
sequencing results revealed Acidobacteriota had an average
relative abundance of 4.5 ± 2.2% (Fig. 6A and Supple-
mentary Fig. 13). Thermoanaerobaculia-affiliated sequences
were the most dominant of any Acidobacteriota (Fig. 6B),
and reached the most abundant (11%) genus-level clade of
Bacteria at 31 cmbsf in Station J (sampled in 2016). The
same clade was on average the fourth most abundant genus-
level clade in the same core (averaged 4.5 ± 2.8%). 16S
rRNA transcripts of Thermoanaerobaculia-affiliated
sequences were below 0.5% relative abundances in the
surface sediments (0–1 cmbsf) of Smeerenburgfjorden cores
(Fig. 6B). At station GK, Acidobacteriota 16S rRNA tran-
scripts reached 6% relative abundance at 15 cmbsf
(Fig. 6B).

We also examined Acidobacteriota 16S rRNA genes
from metal-rich Van Keulenfjorden sediment cores
(Fig. 6A–D), from a previously published study [40].
Sediments from these cores are characterized by very high
concentrations of dissolved iron (up to >500 µM) and
manganese (>100 µM) that persist over tens of centimeters
of depth, while exhibiting low sulfate reduction rates (<12
nmol SO4

–2 cm−3 d−1) [38, 41]. The sequence analyses
showed Ca. Polarisedimenticolia related sequences were the
most prominent Acidobacteriota, reaching 1.5%, and aver-
aging 1.1 ± 0.21% of communities in four cores (Fig. 6C).
Members of the Thermoanaerobaculia were in much lower
abundances (0.3 ± 0.2% average overall), although they
reached 1.1% in deeper sections of core AB (Fig. 6B).

Mapping of metagenomic reads to the Acidobacteriota
MAGs supported the general distribution trends from 16S
rRNA amplicon analyses, i.e., that Thermoanaerobaculia
were abundant in Smeerenburgfjorden sediments and Ca.
Polarisedimenticolia were more abundant in Van Keu-
lenfjorden sediments (Supplementary Table 2, and further
detailed in Supplementary Information).

Phylogenetic analysis of 16S rRNA genes from Smeer-
enburgfjorden sediments revealed diverse Acidobacteriota
sequences (Supplementary Fig. 14). Examination of the
taxonomy of Acidobacteriota 16S rRNA sequences derived
from marine sediments in the SILVA database also revealed
that Thermoanaerobaculia (subdivision 23) and Ca. Polar-
isedimenticolia (subdivision 22) are among the most pro-
minent Acidobacteriota lineages in marine sediments
(Supplementary Fig. 15, and further detailed in Supple-
mentary Information).

Analyses of 16S rRNA gene sequences among publically
available datasets derived from diverse locations further
showed members of the Ca. Sulfomarinibacter and Ca.
Polarisedimenticolia are prevalent in marine sediments
worldwide (Fig. 7A, B). Among the 40 16S rRNA gene
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Fig. 6 Acidobacteriota are abundant and transcriptionally active
in sediments of Svalbard. A Relative abundances of phylum Acid-
obacteriota 16S rRNA genes or transcripts. B Relative abundances of
class Thermoanaerobaculia 16S rRNA genes or transcripts. C Relative
abundances of class Ca. Polarisedimenticolia 16S rRNA genes or
transcripts. D Relative abundances of Ca. Sulfomarinibacter
ASV_2257 16S rRNA genes or transcripts. E Relative abundances of

Thermoanaerobaculia dsrB genes or transcripts. Relative abundances
for genes or transcripts are depicted in red or blue, respectively.
Smeerenburgfjorden stations GK, J, and GN were sampled in June
2017, and J16 was sampled in July 2016. Replicate cores from Van
Keulenfjorden stations AB and AC are derived from Buongiorno et al.
[40].
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study datasets where either Ca. Sulfomarinibacter and/or
Ca. Polarisedimenticolia were identified, they averaged
1.6% and 1.2% of sequences, respectively. Notably, Ca.
Sulfomarinibacter sequences were absent from sediments of
abyssal and hadal trenches [114–116], and from sediments
underlying mid-oceanic sites/oceanic gyres [117, 118], i.e.,
sediments with low organic inputs and where oxygen

typically penetrates centimeters to tens-of-centimeters into
sediments [119, 120]. Only Ca. Polarisedimenticolia
sequences were identified at several of these deep water
sites (Fig. 7B). Analyses of sequence data from surface
sediments (0–2 cmbsf) of the North Sea that exhibit dif-
ferent permeability properties [121], revealed Ca. Sulfo-
marinibacter sequences were in very low relative

Fig. 7 Acidobacteriota 16S
rRNA and dsrAB genes are
prevalent in marine sediments
worldwide. Global maps
depicting presence and relative
abundances of: A Ca.
Sulfomarinibacter 16S rRNA
genes; B Ca.
Polarisedimenticola 16S rRNA
genes; C Thermoanaerobaculia
dsrA/B genes. D Relative
abundances of Ca.
Sulfomarinibacter and Ca.
Polarisedimenticola 16S rRNA
genes in sediments from the
North Sea that exhibit a
permeability gradient (Probandt
et al. [136]), and that were
reanalysed in this study.
Relative abundances presented
from clone library-based studies
were calculated from all
sequences belonging to each
study. Relative abundances
presented from amplicon
sequencing-based studies (Short
Read Archives) were derived
from the highest relative
abundance found in any
individual sample per study. As
exception was that an average
relative abundance of
Thermoanaerobaculia dsrB was
calculated from all dsrB
sequences from the
Northwestern Gulf of Mexico
study (23 surface sediment
samples) [147]. List of studies/
datasets used are listed https://
doi.org/10.6084/m9.figshare.
14369657.v1.

3172 M. Flieder et al.

https://doi.org/10.6084/m9.figshare.14369657.v1
https://doi.org/10.6084/m9.figshare.14369657.v1
https://doi.org/10.6084/m9.figshare.14369657.v1


abundances in the most permeable sites (<0.06%), yet
reached a maximum of 0.7% in the impermeable sediments
(Fig. 7D). In contrast, Ca. Polarisedimenticolia reached up
to 2% relative abundances in the permeable sediments
(Fig. 7D). These two groups therefore appear to have con-
trasting tolerances for oxygen.

Acidobacteriota actively express dsrB and are
prominent dsrAB-harboring bacteria in marine
sediments

Sequencing of dsrB genes and transcripts from Smeer-
enburgfjorden sediments revealed that Acidobacteriota
dsrB averaged 13 ± 6.6% of all dsrB (DNA-derived)
sequences, and 4 ± 2% of dsrB-transcripts (cDNA-
derived) (Fig. 6E and Supplementary Fig. 16). Acid-
obacteriota dsrB sequences were the second most abun-
dant group after Desulfobacterota dsrB, which dominated
the sediments and averaged 75 ± 6% in relative abundance
(Supplementary Fig. 16). Acidobacteriota dsrB reached a
maximum of 19% at station GK and 31% at station J. The
most abundant Acidobacteriota dsrB-OTU-17 was 100%
identical (over 321 nucleotides) to dsrB from Ca. Sulfo-
marinibacter AM3-B MAG (Fig. 4). Amplicon-derived
DsrB sequences that affiliated with the DsrB from marine
Acidobacteriota MAGs were phylogenetically diverse and
spread through-out the “Thermoanaerobaculia Dsr clade”
(Fig. 4).

Analyses of publically available dsrAB sequence datasets
(n= 24) revealed sequences of the Thermoanaerobaculia
dsr-lineage were widespread (Fig. 7C) and averaged 15% of
all dsrAB sequences analysed (n= 14,077 classified
sequences). They reached a maximum of 54.3% in hydro-
thermally influenced sediments of the Guaymas Basin
[118]. From all datasets analysed, sequences from the
Thermoanaerobaculia dsr-lineage were the second most
abundant dsrAB amplified from marine sediments after
sequences of the Desulfobacterota.

Description of novel Acidobacteriota Candidatus
taxa

Based on their unique phylogeny, predicted metabolic
properties, CARD-FISH visualized cells of Thermo-
anaerobaculia (thin rods present in three different sites, see
Supplementary Fig. 17) and relatively complete MAGs, we
propose the following new Candidatus taxa of Acid-
obacteriota (Supplementary Table 4):

class Thermoanaerobaculia (subdivision 23)
order Thermoanaerobaculales

fam. nov. Ca Sulfomarinibacteraceae (GTDB
family FEB-10)

gen. nov. Ca. Sulfomarinibacter

sp. nov. Ca. Sulfomarinibacter kjeldsenii sp.
nov. MAG AM3-C

Ca. Sulfomarinibacter sp. MAG AM1
Ca. Sulfomarinibacter sp. MAG AM2

class nov. Ca. Polarisedimenticolia (GTDB class Mor1,
subdivision 22)

ord nov. Ca. Polarisedimenticolales (GTDB
order Mor1)

fam. nov. Ca. Polarisedimenticolaceae (GTDB
family Mor1)

gen. nov. Ca. Polarisedimenticola
sp. nov. Ca. Polarisedimenticola svalbardensis
MAG AM4.

Discussion

This study provides the first insights into the genomes and
metabolic potential of abundant Thermoanaerobaculia from
marine sediments, and new insights into the metabolisms of
Ca. Polarisedimenticolia (Acidobacteriota subdivision 22 or
GTDB class Mor1). Most notably, we revealed that MAGs
from both of the major lineages of Acidobacteriota from
marine sediments have capabilities to dissimilate various
inorganic sulfur compounds.

Genes for the full dissimilatory sulfate reduction
pathway provided the first direct link between genomes of
marine sediment Acidobacteriota and DsrAB sequences of
the previously undescribed “Uncultured family-level
lineage 9” clade (here named “Thermoanaerobaculia Dsr
lineage”). In addition to being abundant and actively
transcribed in Svalbard sediments as shown here, our
analysis of dsrAB sequences from various sediment sites
around the world further revealed Acidobacteriota are the
next most abundant dsr-harboring lineage outside of
Desulfobacterota in marine sediments in general. Toge-
ther, this indicates Acidobacteriota are a widespread and
prominent group of inorganic sulfur-dissimilating micro-
organisms in marine sediments, and therefore likely make
significant contributions to the sulfur-cycle in global
marine sediments.

While enzymes of the dissimilatory sulfate reduction
pathway are widely used for anaerobic reduction of sul-
fite/sulfate [35], some organisms can use them in reverse
for the oxidation of reduced sulfur compounds [122], or
for disproportionation of sulfur compounds [123, 124].
Because no enzymes are currently known that distinguish
these different metabolisms, discerning sulfur metabo-
lisms based on genomic data requires careful interpreta-
tion [123, 124]. For instance, the Ca. Sulfomarinibacter
MAGs encode DsrL, which was previously thought to be
exclusively found in sulfur-oxidizing bacteria [92].
However, recent work showed DsrL can function in a
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reductive manner in biochemical assays [92, 94], and was
highly expressed during reductive sulfur- and thiosulfate-
respiration by Desulfurella amilsii [92, 125]. The DsrL of
Ca. Sulfomarinibacter contained putative NADP(H)-
binding domain structures that may enable coupling of
NADPH as electron donor to sulfite reduction [94], as
well as phylogenetic relatedness with DsrL of Desulfur-
ella amilsii. Together, this indicates the DsrL of Ca.
Sulfomarinibacter has potential to facilitate a reductive
pathway.

The Ca. Sulfomarinibacter MAGs encoded rhodonase-
like TusA and DsrE2, which act as sulfur-trafficking pro-
teins in reverse-Dsr harboring sulfur-oxidizing bacteria, i.e.,
they help deliver sulfur to DsrABC for oxidation [126].
Interestingly, the “YTD gene clusters” that encode these
enzymes are also common in genomes of anaerobic ele-
mental sulfur-reducing and/or -disproportionating bacteria
that have Dsr, and are suggested to be genetic indicators for
disproportionation potential among these anaerobes [97].
The TusA proteins from Ca. Sulfomarinibacter were most
closely related to TusA from various anaerobic sulfur-
reducing and -disproportionating Desulfobacterota (Sup-
plementary Fig. 5A). This suggested Ca. Sulfomarinibacter
could reduce and/or disproportionate elemental sulfur, or
possibly other sulfur compounds that can be trafficked by
TusA, like thiosulfate [127]. Indeed, the ability to dis-
proportionate sulfur compounds is common among sulfate-
reducing Desulfobacterota [128]. Elemental sulfur is often
the most abundant sulfur-cycle intermediate (SCI) in marine
sediments [129], and was measured in sediments from
Smeerenburgfjorden up to 0.15 wt% of total sulfur [39].
Overall, the gene content of Ca. Sulfomarinibacter MAGs
indicated flexible dissimilatory sulfur metabolisms that may
be dictated by and/or switch under different biogeochemical
and redox conditions.

Results indicated Ca. Sulfomarinibacter likely use the
dissimilatory sulfate reduction pathway in a reductive
direction in most depths of the sediments studied. Firstly,
Acidobacteriota were relatively abundant and expressed
dsrB in deeper (>15–75 cmbsf), strictly anoxic sediment
layers of Smeerenburgfjorden. These sediments depths lack
electron acceptors that could sustain these abundant popu-
lations growing via biological oxidation of sulfides, i.e.,
oxygen, nitrate or oxidized metals [31, 130]. In Station J
sediments, oxygen and nitrate are depleted within
millimeters-to-centimetres of the surface [131, 132], and
sulfide oxidation facilitated by Fe(III) is negligible [41]. An
alternative possibility is that cryptic biogeochemical cycling
could sustain sulfide oxidation, i.e., fast consumption and
production of low concentrations of sulfides and oxidants
[133]. Nevertheless, it remains unproven whether biological
sulfide oxidation occurs in deep sediments that lack mea-
surable concentrations of required oxidants [28]. On the

other hand, the relative abundances of Acidobacteriota
peaked in subsurface zones around 5 cmbsf in Station J
sediments, where sulfate reduction rates also peak [41, 134].
In another study, Acidobacteriota 16S rRNA gene relative
abundances were also highly correlated with sulfate
reduction rates in sediments from Greenland [37]. These
associations therefore point toward an active role in the
reduction and/or disproportionation of sulfur compounds of
various oxidation states by Ca. Sulfomarinibacter in marine
sediments.

Our results also suggested marine Acidobacteriota
have potential to reduce various inorganic sulfur com-
pounds independent of the Dsr pathway. Our
tetrathionate-amended microcosm experiment suggested
Ca. Sulfomarinibacter use tetrathionate as an electron
acceptor via cytochromes because genes for otr increased
expression after tetrathionate was added to microcosms
(Fig. 5). Although some expression of otr was determined
in the control at day 1, possibly as a result of expression
in the starting sediments, expression of otr was nearly
undetectable in controls at day 8, but remained high in
tetrathionate-amended microcosms. Overall, these results
support the roles of these enzymes in tetrathionate
reduction under in situ-like conditions. This is note-
worthy because these enzymes were only previously
shown to perform this function during biochemical assays
[135], i.e., their utilization under in situ-like conditions
was unknown. The ability to utilize SCI, e.g., tetra-
thionate or elemental sulfur/polysulfides/thiosulfate,
could be important in sediment zones where SCI might
be generated from sulfides reacting with available oxi-
dants [41].

The Ca. Sulfomarinibacter MAGs indicated they could
respire oxygen using terminal cbb3- or aa3-type cyto-
chromes, although we speculate these may instead be used
for defense against oxygen. This is because they encoded
many characteristics of obligate anaerobes, and they
appear to prefer subsurface and impermeable sediments
where oxygen is absent or scarce (Supplementary Dis-
cussion). We also hypothesize that the different redox
metabolisms of Ca. Sulfomarinibacter and Ca. Polar-
isedimenticola may explain their different abundances
among Svalbard fjord sediments with different biogeo-
chemical properties (Supplementary Discussion). That is,
the Ca. Sulfomarinibacter may be adapted to low redox
environments, and are thus more abundant in the reduced
(visibly black), sulfidic subsurface sediments of Smeer-
enburgfjorden. In comparison, the Ca. P. svalbardensis
MAG had additional genes to utilize high-potential elec-
tron acceptors such as oxygen, nitrate and oxidized
metals, and these organisms may thus be better adapted to
the more high redox, metal-rich sediments of Van Keu-
lenfjorden (visibly reddish-orange). This was also
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supported by our reanalyses of 16S rRNA genes from a
sediment permeability gradient in the North Sea [136],
which showed Ca. Sulfomarinibacter prefer impermeable
sediments where oxygen penetration is limited, while the
Ca. Polarisedimenticola thrive in permeable sediments
where oxygen is available.

If members of the Ca. Sulfomarinibacter are indeed
SRM, a question arises regarding how they co-exist with
dominant sulfate-reducing Desulfobacterota populations,
as both can apparently use hydrogen, acetate or formate as
substrates. However, we identified genes for use of sev-
eral organic substrates that may enable Ca. Sulfomar-
inibacter to occupy a distinct nutrient niche. Complex
carbohydrates such as cellulose (or structurally similar
compounds) could be used. Carbohydrates are not used by
most known isolated Desulfobacterota SRM [35]. Plant-
derived molecules could stem from terrestrial run-off,
which is a major source of organic carbon to arctic sedi-
ments [137, 138] and to coastal marine systems in general
[139]. Additionally, various marine algae are known to
produce cellulose [140]. The predicted ability to utilize
cyanophycin could also facilitate a unique nutrient niche.
Cyanophycin is a multi-L-arginyl-poly-L-aspartic acid,
commonly produced by cyanobacteria as a storage com-
pound [141, 142]. Indeed, few organisms are known to
use cyanophycin anaerobically [143], and no anaerobes
are known from marine sediments.

Ca. Polarisedimenticola svalbardensis appeared to have
a high propensity for the degradation of proteins, which
was indicated by a suite of predicted secreted peptidases.
A related Mor1 Acidobacteriota genome
(GCA_001664505.1) (Fig. 1) was recovered as a bacterial
co-inhabitant of a cyanobacterial enrichment culture from
seawater, suggesting it used organic material/necromass
from the primary-producing cyanobacterium [144]. Ca.
Polarisedimenticola may therefore contribute to protein
degradation in marine sediments, where proteinaceous
organics comprise a large proportion (~10%) of available
organic matter [145].

In summary, the genome-encoded dissimilatory sulfur
metabolisms, the high abundances and activity of Ca. Sul-
fomarinibacter in the sulfidic zones of Svalbard sediments,
as well as prominence in global marine sediments, suggests
these novel Acidobacteriota of the class Thermo-
anaerobaculia (subdivision 23) are important players in the
biogeochemical sulfur cycles of marine sediments. Our data
also indicated that Ca. Sulfomarinibacter thrive largely via
anaerobic metabolisms with the capability to use various
other electron acceptors with different redox potentials,
including biogeochemically relevant metal-oxides. Addi-
tionally, we show that Ca. Polarisedimenticola svalbar-
densis, a member of a different class of Acidobacteriota
(subdivision 22), has the genetic potential for protein

degradation and for metabolisms driven by high redox
potential electron acceptors such as oxygen, nitrate and
metal-oxides.
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