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Background: Atrial fibrillation (AF) is a commonly encountered cardiac

arrhythmia associated with morbidity and substantial healthcare costs. While

patients with cardiovascular disease experience the greatest risk of new-

onset AF, no risk model has been developed to predict AF occurrence

in this population. We hypothesized that a patient-specific model could

be delivered using cardiovascular magnetic resonance (CMR) disease

phenotyping, contextual patient health information, and machine learning.

Methods: Nine thousand four hundred forty-eight patients referred for CMR

imaging were enrolled and followed over a 5-year period. Seven thousand,

six hundred thirty-nine had no prior history of AF and were eligible to train

and validate machine learning algorithms. Random survival forests (RSFs)

were used to predict new-onset AF and compared to Cox proportional-

hazard (CPH) models. The best performing features were identified from 115

variables sourced from three data domains: (i) CMR-based disease phenotype,

(ii) patient health questionnaire, and (iii) electronic health records.We evaluated

discriminative performance of optimized models using C-index and time-

dependent AUC (tAUC).

Results: A RSF-basedmodel of 20 variables (CIROC-AF-20) delivered an overall

C-index of 0.78 for the prediction of new-onset AF with respective tAUCs of

0.80, 0.79, and 0.78 at 1-, 2- and 3-years. This outperformed a novel CPH-

based model and historic AF risk scores. At 1-year of follow-up, validation

cohort patients classified as high-risk of future AF by CIROC-AF-20 went on

to experience a 17.3% incidence of new-onset AF, being 24.7-fold higher risk

than low risk patients.
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Conclusions: Using phenotypic data available at time of CMR imaging we

developed and validated the first described risk model for the prediction of

new-onset AF in patients with cardiovascular disease. Complementary value

was provided by variables from patient-reported measures of health and the

electronic health record, illustrating the value ofmulti-domain phenotypic data

for the prediction of AF.

KEYWORDS

machine learning, atrial fibrillation, risk prediction, random survival forest, Cox

proportional-hazard models

Introduction

Atrial Fibrillation (AF) is the most common arrhythmia

encountered in clinical practice, affecting over 30 million

patients worldwide (1, 2). Beyond the age of 40, ∼26% of men

and 23% of women will develop AF (3, 4), a diagnosis associated

with elevated risk of cardioembolic stroke (5), reduced quality of

life (4), and higher risk of heart failure (HF) related events (6–9).

Targeted efforts to develop and validate AF risk scores have been

described (6, 8, 10–12) leveraging data from healthy populations

without cardiovascular disease. The Framingham Heart Study

(6), Atherosclerosis Risk in Communities (ARIC) Study (12),

and Cohorts for Heart and Aging Research in Genomic

Epidemiology (CHARGE)-AF consortium (8) each constructed

riskmodels withmodest predictive accuracy. The C2HEST score

demonstrated superior performance through broader inclusion

of patient phenotypic features (11). However, while patients

with established cardiovascular disease experiencing greatest

incident risk of AF (4), no risk model has been developed in

this population.

The prediction of cardiac outcomes in diseased referral

populations is anticipated to require a central emphasis

on patient-specific disease phenotypes followed by their

contextualization to patient demographics, comorbid states,

current pharmacologic care, and cardiovascular symptoms. In

this study we tested the predictive utility of multi-domain

data resources being routinely captured at time of diagnostic

testing for the prediction of time to future AF in patients with

cardiovascular disease. This was tested in 7,639 consecutive

patients referred to cardiovascular magnetic resonance (CMR)

at two tertiary care referral institution. Collective data resources

were provided to machine learning based modeling for the

Abbreviations: AF, Atrial Fibrillation; AUC, Area Under the Receiver

Operator Characteristic Curve; CIROC, Cardiovascular Imaging Registry

of Calgary; CPH, Cox Proportional-Hazards; CV, Cross Validation; EHR,

Electronic Health Record; NND, Number Needed to Diagnose; NNP,

Number Needed to Predict; RSF, Random Survival Forest; SCD, Sudden

Cardiac Death; VHD, Valvular Heart Disease.

patient-specific prediction of time to future AF. Prediction

performance using machine learning was then compared to

traditional statistical modeling using a Cox proportional-hazard

models and published AF risk models.

Materials and methods

Dataset available for risk modeling

Data from 9,448 unique patients was available from

the Cardiovascular Imaging Registry of Calgary (CIROC,

NCT04367220), a prospective clinical outcomes study of the

Libin Cardiovascular Institute. Patients referred for CMR at two

tertiary care centers were engaged at time of diagnostic testing

to provide informed consent and complete a standardized

patient health questionnaire. All imaging studies were triaged,

protocolled, and interpreted using EHR-integrated software

(cardioDITM, Cohesic Inc, Calgary) for the standardized

collection of qualitative and quantitative phenotypic markers.

Electronic health data was abstracted from the institutional data

warehouse to provide patient-related laboratory, pharmacy, 12-

lead ECG, Holter, and ICD-10 coded diagnostic and procedural

data, as shown in Figure 1. Patients enrolled between February

2015 and November 2019 subsequently completing a minimum

follow-up of 120 days were considered for model development

and validation.

For the purposes of the described prediction model, all

patients with a prior history of AF were excluded followed

by the exclusion of patients with complex congenital heart

disease (given their unique data model). Of 9,448 unique

Registry patients, 7,802 met inclusion criteria with 7,639 having

completed 120 days of clinical follow-up.

Data element generation and collection

Patient reported health data

A standardized patient reported health (PRH) questionnaire

was used to collect baseline demographic information,
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FIGURE 1

Central Illustration providing an overview of the multi-domain data collection and modeling process.

FIGURE 2

Top 20 variables for prediction of new-onset atrial fibrillation ranked by mean permutation importance calculated over 100 bootstrap samples of

training data within each fold of cross-validation. VHD: valvular heart disease defined as ≥ moderate mitral or aortic valve insu�ciency or

stenosis. COPD: Chronic Obstructive Pulmonary Disease. EHR, Electronic Health Records; CMR, Cardiac Magnetic Resonance; PRH, Patient

Reported Health (Questionnaires).

inclusive of ethnicity, education level, employment

status, comorbid cardiac and non-cardiac diseases,

alcohol consumption, smoking history, patient-reported

shortness of breath based upon the New-York Heart

Association (NYHA) classification, and QoL using the

EQ-5D tool (13).
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TABLE 1 Baseline Clinical Demographics in patient with and without the primary outcome of incident atrial fibrillation.

Baseline characteristics Total cohort

(N = 7,639)

Event –

(N = 7,325)

Event +

(N = 314)

p-value

Age (years) 52.2± 15.7 51.8± 15.7 62.1± 12.9 <0.001

Male, n (%) 4,520 (59.2) 4,301 (58.9) 219 (69.7) <0.001

BSA (m2) 1.9± 0.2 1.9± 0.2 2.0± 0.3 0.002

BMI (kg/m2) 28.1± 6.2 28.0± 6.2 28.8± 6.7 0.024

SBP (mmHg) 116.4± 17.4 116.3± 17.4 117.0± 18.2 0.532

DBP (mmHg) 68.7± 12.3 68.7± 12.2 67.4± 13.1 0.076

NYHA class III or IV, n (%) 1,127 (14.8) 1,071 (14.6) 56 (17.8) 0.136

Previous angioplasty, n (%) 666 (8.7) 624 (8.5) 42 (13.4) 0.004

Previous bypass, n (%) 196 (2.6) 186 (2.5) 10 (3.2) 0.599

Smoker, n (%) 1,230 (16.1) 1,173 (16.0) 57 (18.2) 0.352

Alcohol consumption (>2 drinks per day), n (%) 203 (2.6) 197 (2.7) 6 (1.9) 0.509

Caffeine consumption (>2 drinks per day), n (%) 952 (12.5) 899 (12.3) 53 (16.9) 0.020

Comorbiditiesa

Diabetes, n (%) 928 (12.1) 867 (11.8) 61 (19.4) <0.001

Hypertension, n (%) 2,531 (33.1) 2,378 (32.5) 153 (48.7) <0.001

Hyperlipidemia, n (%) 1,225 (16.0) 1,150 (15.7) 75 (23.9) <0.001

COPD, n (%) 201 (2.6) 183 (2.5) 18 (5.7) <0.001

Hypothyroidism, n (%) 582 (7.6) 565 (7.7) 17 (5.4) 0.163

Hyperthyroidism, n (%) 104 (1.4) 99 (1.4) 5 (1.6) 0.911

Medication use

ACE-I or ARB, n (%) 3,498 (45.8) 3,309 (45.2) 189 (60.2) <0.001

Antiarrhythmicsb , n (%) 116 (1.5) 94 (1.3) 22 (7.0) <0.001

Anti-coagulantb , n (%) 673 (8.8) 619 (8.5) 54 (17.2) <0.001

Beta blocker, n (%) 3,397 (44.5) 3,202 (43.7) 195 (62.1) <0.001

Calcium channel blocker,n (%) 995 (13.0) 933 (12.7) 62 (19.7) 0.006

Digoxin, n (%) 92 (1.2) 83 (1.1) 9 (2.9) 0.013

Oral hypoglycemic, n (%) 981 (12.8) 915 (12.5) 66 (21.0) <0.001

Statin, n (%) 2,768 (36.2) 2,602 (35.5) 166 (52.9) <0.001

Loop diuretic, n (%) 855 (11.2) 782 (10.7) 73 (23.2) <0.001

Potassium sparing diuretic, n (%) 966 (12.6) 907 (12.4) 59 (18.8) 0.001

Thiazide diuretic, n (%) 631 (8.3) 580 (7.9) 51(16.2) <0.001

BSA, body surface area; BMI, Body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; NYHA, New York Heart Association; COPD, chronic obstructive pulmonary

disease; ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker. aComorbidities were calculated from patient report health questionnaires. bnot for the

treatment of atrial fibrillation. Bold values indicate p-values ≤ 0.05.

CMR imaging-based disease phenotype

CMR imaging was performed on 3-T clinical scanners

(Prisma or Skyra, Siemens Healthcare, Erlangen, Germany)

using standardized protocols inclusive of breath-held cine and

late gadolinium enhancement (LGE) imaging in sequential

short-axis views and 2-,3-, and 4-chamber long axis views.

Quantitative image analyses were performed using commercial

software (cvi42; Circle Cardiovascular Inc., Calgary). Left

ventricular (LV) and right ventricular (RV) volumes and

function were assessed on short axis cine images using semi-

automated contour tracing of the endocardial and epicardial

borders followed by manual adjustment. Maximal left atrial

volume was assessed in the phase immediately prior to mitral

valve opening using the bi-plane area-length method. All

measurements were indexed to body surface area (BSA),

where appropriate, using the Mosteller formula (14). Chamber

volumes, mass and function were coded by z-score comparison

to age and sex-based reference values (15). LGE images

were scored for the presence, distribution, and burden of

fibrosis, as previously described (16, 17). All other disease

features were coded in accordance with guidelines provided

by the SCMR and European Association of Cardiovascular

Imaging (EACVI) or the American Society of Echocardiography

(ASE) (18, 19).
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TABLE 2 Baseline imaging phenotypic features in patient with and without the primary outcome of incident atrial fibrillation.

CMR-imaging variables Total cohort

(N = 7,639)

Event –

(N = 7,325)

Event +

(N = 314)

p-value

Indexed LV EDV (ml/m2) 87.5± 29.4 87.0± 29.0 98.0± 36.6 <0.001

Indexed LV ESV (ml/m2) 41.7± 28.3 41.3± 28.0 49.8± 34.0 <0.001

LV EF (%) 55.4± 13.7 55.6± 13.6 52.8± 16.0 <0.001

Indexed LV Mass (g/m2) 59.8± 19.9 59.4± 19.7 68.1± 23.0 <0.001

Indexed RV EDV (ml/m2) 82.5± 23.3 82.3± 23.0 87.5± 30.1 <0.001

Indexed RV ESV (ml/m2) 38.0± 17.1 37.8± 16.8 42.2± 22.1 <0.001

RV EF (%) 55.1± 9.7 55.2± 9.7 53.5± 11.0 0.003

Indexed LA Volume (ml/m2) 35.9± 14.1 35.5± 13.8 44.3± 18.0 <0.001

Aortic stenosisa , n (%) 124 (1.6) 101 (1.4) 23 (7.3) <0.001

Aortic regurgitationa , n (%) 68 (0.9) 57 (0.8) 11 (3.5) <0.001

Mitral stenosisa , n (%) 11 (0.1) 8 (0.1) 3 (1.0) 0.002

Mitral regurgitationa , n (%) 140 (1.8) 121 (1.7) 19 (6.1) <0.001

LV, left ventricular; RV, right ventricular; EDV, end diastolic volume; ESV, end systolic volume; EF: ejection fraction; LA, left atrial; All indexed values are indexed to body surface area

(Mosteller formula); a≥ =moderate stenosis or insufficiency by imaging. Bold values indicate p-values ≤ 0.05.

Electronic health record-derived data

Electronic health information was abstracted from

the institutional data warehouse, inclusive of laboratory,

pharmacy, 12-lead ECG, Holter, and ICD-10 coded

diagnostic and procedural data. ICD-10 coding was

abstracted from the Discharge Abstract Database (DAD)

and the National Ambulatory Care Reporting System

(NACRS). 12-lead ECG and Holter data were obtained

from archival systems (MUSE and MARS, GE Healthcare

Milwaukee, USA) using custom scripts to extract vendor-

coded detection of AF and identify text-based reporting

of AF through internally validated natural language

processing. Mortality data was obtained from Vital

Statistics Alberta.

Primary clinical outcome

Patients were followed for the primary outcome of

new-onset AF, defined as one or more of the following:

(i) ICD-10 coded admission for AF (I48.0-I48.2, I48.9),

atrial flutter (Aflut: I48.3-I48.4), (ii) any 12-lead ECG

or Holter-based detection of AF, (iii) ICD-10 coded

direct-current (DC) cardioversion (1HZ09) or ablative

procedure (025S3ZZ, 025T3ZZ) for the treatment of AF.

Atrial flutter was included in the primary outcome due

to common co-existence, similar clinical management,

and sequelae. A 2-month blackout period was applied to

ensure outcomes were unrelated to any clinical events

triggered by performance of diagnostic testing. The

primary outcome was described in days from index CMR

test performance.

Statistical analysis

Descriptive statistics are reported as mean ± standard

deviation (SD) for continuous variables with categorical

variables expressed in counts with percentages. Categorical data

were compared using the chi-square test/Fisher’s exact test,

continuous data compared using Mann-Whitney U test for

non-parametric variables and independent t-tests for dependent

variables. Missing data points were excluded from comparison

for respective variables. A total of 115 variables routinely

captured at time of patient encounter by the CIROC Registry

were considered for risk modeling (Supplementary Table 1),

inclusive of imaging-based disease phenotype (n = 33), patient-

reported healthmeasures (n= 48), and EHR abstracted variables

(n = 34). Variables with rare missing data (<15%) were

imputed using Multivariate Imputation via Chained Equations

(MICE) (20).

Variable selection and model
development

Population data was split into training and validation

datasets using 5-fold cross validation. In this process four

training folds were combined (80%) and the remaining fold

(20%) reserved as a hold-out for model validation. We

performed a nested cross-validation for feature selection and

hyperparameter tuning. Due to the relatively rare nature of

new-onset AF, each outer fold was stratified to ensure balanced

event rates across folds. The validation cohorts were used for

Frontiers inCardiovascularMedicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.998558
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Dykstra et al. 10.3389/fcvm.2022.998558

TABLE 3 Historic Cox Proportional Hazard model variables and corresponding variables chosen from the CIROC Registry.

C2HEST Training mean C-index: 0.70 ± 0.01

Original risk factors CIROC variables HR (95% CI) p-values

CAD CAD 0.93 (0.66–1.32) 0.68

COPD COPD 1.31 (0.76–2.26) 0.33

Hypertension Hypertension 1.43 (1.11–1.86) 0.01

Elderly (age>75) Age at scan 1.04 (1.03–1.05) <0.01

Systolic HF LVEF <50% 0.99 (0.98–1.00) 0.05

Thyroid disease (hyperthyroidism) Thyroid disease (hyperthyroidism) 0.71 (0.23–2.21) 0.86

Aronson et al. Training mean C-index: 0.71 ± 0.01

Original risk factors CIROC variables HR (95% CI) p-values

Age Age at Scan 1.05 (1.04–1.06) <0.01

Female gender Gender 0.67 (0.51–0.88) <0.01

BMI BMI 1.02 (1.00–1.04) 0.08

SBP > 160 SBP 0.99 (0.98–1.00) <0.01

Previous MI Previous MI 0.88 (0.63–1.22) 0.43

PAD PAD 0.90 (0.22–3.65) 0.89

Hypertension Hypertension 1.41 (1.08–1.84) 0.01

Previous HF Previous HF 1.30 (0.88–1.92) 0.18

COPD COPD 1.32 (0.76–2.27) 0.32

Inflammatory disease Inflammatory disease 0.75 (0.31–1.83) 0.53

CHARGE-AF Training Mean C-index: 0.72 ± 0.01

Original risk factors CIROC variables HR (95% CI) p-values

Age Age at Scan (years) 1.05 (1.04–1.06) <0.01

Race (Caucasian) Self-Reported Ethnicity (Caucasian) 1.43 (1.05–1.95) 0.02

Height Height (m) 1.57 (0.38–6.40) 0.53

Weight Weight (kg) 1.01 (1.00–1.01) 0.13

SBP SBP (mmHg) 0.99 (0.98–1.00) 0.08

DBP DBP (mmHg) 0.99 (0.98–1.01) 0.33

Current smoker Active Smoker 1.37 (0.98–1.90) 0.06

Hypertensive medication Hypertensive Medication 1.36 (1.03–1.79) 0.03

Diabetes Diabetes 1.20 (0.86–1.68) 0.29

Previous HF Previous HF 1.26 (0.85–1.86) 0.25

Previous MI Previous MI 0.88 (0.63–1.23) 0.46

Overall model performance in the training dataset and adjusted hazards for the primary outcome of new-onset atrial fibrillation shown. CAD, coronary artery disease; COPD, chronic

obstructive pulmonary disease; HF, heart failure; LVEF, left ventricular ejection fraction; BMI, body mass index; SBP, systolic blood pressure; MI, myocardial infarction; PAD, peripheral

artery disease; DBP, diastolic blood pressure. Bold values indicate p-values ≤ 0.05.

estimation of final model performance and generalizability.

Missing data was imputed using Python Scikit-Learns single

iterative imputer (20) separately in each fold of the cross-

validation process to ensure no data leakage.

Six independent risk models were trained to predict new-

onset AF over 4-years of clinical follow-up. These included two

random survival forest (RSF)-based models, a novel penalized

Cox proportional-hazard (CPH) model using the least absolute

shrinkage and selection operator (LASSO) for variable selection,

and three CPH models based on variables from published AF

risk scores [C2HEST (11), Aronson et al. (10), and CHARGE-AF

(8)]. For CPH models, non-linearities in continuous variables

were modeled using restricted cubic splines (21) and tested to

ensure proportional hazard assumptions were satisfied by way of

regression analysis relating Schoenfeld residuals to time. Clinical

records were reviewed for patients taking anti-arrhythmic
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and anti-coagulant drugs to confirm prescription for non-AF

related conditions.

RSF-based modeling was performed to consider non-linear

interactions between variables and risk contribution to future

events (22), an extension of Random Forest algorithms for

right censored survival data (23). RSF also are fully data driven

and independent of model assumption and can handle high

dimensional data without the need for apriori feature selection

(24). A RSF model was selected for its capacity to deliver an

explainable prioritization of contributory model features in the

form of permutation importance rank, this aimed at allowing for

direct comparison to variables selected by traditional statistical

modeling. First, we trained a RSF using all eligible (n = 115)

CIROC variables (CIROC-AF-115). Second, with desire for a

clinically translatable model, and recognizing that removal of

variables with low predictive value can improve performance

(25), we constructed a parsimonious RSF model using the

20 top performing variables (CIROC-AF-20), as shown in

Figure 2. Variable performance was established by calculating

each variable’s permutation importance over 100 bootstrap

samples from within the nested training cohort and training

an RSF on each bootstrapped sample for the prediction of

new-onset AF. Each variable’s permutation importance was

determined by the out-of-bag sample for each forest and its

average importance calculated across the bootstraps (Figure 2).

To determine optimal hyperparameters for each RSF-based

model we performed an exhaustive grid search using a nested

5-fold CV in the training cohort (Supplementary Table 2). In the

same fashion, the alpha parameter for LASSO was determined

by hyperparameter tuning within the nested folds. Within each

training fold data for LASSO CPH modeling was normalized to

zero mean and unit variance, while categorical variables were

one-hot encoded.

Performance evaluation

Each model’s performance was assessed by discrimination

and calibration measures. For discrimination we calculated

the C-index, describing each model’s ability to correctly rank

event-free survival from patient scores, and the integrated brier

score, which reports a measure of model performance over

all time points. We reported mean C-index and integrated

brier score over the five validation folds. Since C-index is

shift invariant, time-dependent AUC is superior for assessing

temporally sensitive risk predictions (26, 27) and was calculated

at 1-, 2-, and 3-years, as well as mean value over the study

duration. To assess calibration, we plotted the mean difference

between predicted and observed rates of new-onset AF at each

decile of risk for the best performingmodel’s validation set, using

500 bootstrap estimates to generate 95% confidence intervals.

Finally, for each risk model we compared the number needed

to diagnose (NND) and the number needed to predict (NNP)
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at 1-, 2-, and 3-years to permit a comparison of clinical utility

across models. NND estimates the number of patients who must

be evaluated to correctly detect the disease of interest, NNP

the number to correctly predict this disease will occur in the

future (28); the former being insensitive to variation in disease

prevalence. All statistical analysis and modeling were performed

in Python 3.6 and R 3.6.3. Model development and validation

were done in accordance with the TRIPOD reporting guidelines

(Supplementary Table 3).

Results

Study population characteristics

The baseline characteristics of 7,639 patients contributing

to each prediction model are presented in Table 1. The mean

age was 52.2 ± 15.7 years with 40.8% female. The prevalence

of hypertension, diabetes and coronary artery disease was 33,

12, and 11%, respectively. Referral indications are provided in

Supplementary Table 4. Imaging features showed a mean left

ventricular ejection fraction (LVEF) of 55.5 ± 13.7%, right

ventricular ejection fraction (RVEF) of 55.1± 9.7%, indexed left

ventricular mass (LVMi) of 59.8 ± 19.9 g/m2, and indexed left

atrial volume (LAVi) of 35.9± 14.1 ml/m2.

Following 17,697 patient-years of follow-up with median

duration of 931 days (IQR 849), 314 patients (4.1%) experienced

new-onset AF (crude incidence rate: 17.7 per 1,000 patient-

years, with 283 diagnosed as atrial fibrillation and 31 diagnosed

as atrial flutter). Patients experiencing AF showed significant

differences in characteristics across all data domains (Table 1).

Patients developing new-onset AF were older, more likely male,

had higher rates of diabetes, hypertension, chronic obstructive

pulmonary disease (COPD), hyperlipidemia, and taking more

cardiovascular medications. Imaging-based phenotype revealed

significantly higher LA and LV volumes, higher LV mass, lower

LVEF and RVEF, and a higher prevalence of moderate-severe

valvular disease (Table 2).

For model development and validation that 7,639 patients

were spilt into 5 folds for cross validation. Each fold contains

1,527–1,528 patients, with 62–63 of them developing future

atrial fibrillation in the following 4 years.

Historical cox proportional hazard AF risk
model performance

Performance measures for CPH-based models trained using

validated risk score variables (8, 10, 11) are listed in Table 3.

Each showed similar discriminative performance with C-index

scores of 0.70 to 0.72 averaged over the training folds. All

models showed age and hypertension to be significant (p< 0.01)

independent predictors. Model performance (mean C-index) for

the C2HEST, Aronson, and CHARGE-AF models in validation

datasets ranged between 0.69 and 0.71, with CHARGE-AF

performing best at 0.71 ± 0.02. Each model showed a similar

IBS of 0.034, indicating good performance and calibration across

all time points. All models showed relatively stable validation

c-indexes across each fold, with the largest difference between

folds being 0.08 c-index. All historic models performed similarly

over 1, 2, and 3 years by time dependent AUC (Table 4). AUC

stability was modest, declining over time (Figure 3A).

LASSO-based cox proportional hazard
model performance

The novel penalized-CPHmodel (CIROC-AF-Cox) reduced

the variable set to 11 non-co-linear variables. CIROC-AF-Cox

provided a mean C-index of 0.75 ± 0.01 over the training folds

andmean validation C-index of 0.74± 0.02 andmean validation

IBS of 0.034± 0.001. It showed similarly stable validation across

each of the 5-folds (Table 4). CIROC-AF-Cox showed time-

dependent AUC values at 1-, 2- and 3-years of 0.75 ± 0.02,

0.75 ± 0.03, 0.73 ± 0.03, and 0.75 ± 0.01, respectively. CIROC-

AF-Cox showed improved stability in AUC values over time vs.

historic models (Figure 3A).

Machine learning based AF risk prediction
model performance

Our novel RSF-based models showed improved

discrimination performance vs. historic CPH-based models,

and vs. our novel CIROC-AF-Cox model. The CIROC-AF-

115 model achieved a mean C-index of 0.77 ± 0.02, with

the parsimonious CIROC-AF-20 model providing similar

performance with mean C-index of 0.78 ± 0.01. Both RSF

models had mean IBS of 0.033 ± 0.001 and showed model

stability on par with the best CPH model (CHARGE-AF)

with a maximum variation of 0.05 c-index between the folds.

RSF models also outperformed CPH based approaches when

assessed by time-dependent AUC. CIROC-AF-115 provided

respective AUCs at 1-, 2- and 3-years of 0.80, 0.80, and 0.77

while CIROC-AF-20 provided respective AUCs of 0.80, 0.79,

and 0.78 (Table 4).RSF Model stability was similar to the

CPH models, declining slightly over the 4 year study time (50

days−1,450 days) (Figure 3A).

CIROC-AF-20 and CIROC-AF-Cox models were compared

to determine how they correctly predicted low, intermediate,

and high risk of incident AF. High risk was considered a

predicted risk>4% per year, chosen as a 10-fold higher rate than

the general population (29). Low risk was considered <1.5%.

As shown in Figure 4, predicted risk estimates appropriately

discriminated the future occurrence of AF. High risk patients
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FIGURE 3

Comparison of discrimination performance for the prediction of new-onset atrial fibrillation. (A) Time-dependent AUC for CPH and RSF models

averaged over the 5-fold validation cohorts, calculated at 15 time points for each model throughout the first 1,450 days. Dotted lines represent

the mean time dependent AUC for each model. (B) Receiver operating characteristic (ROC) curves for each model generated at 1-year, 2-years,

and 3-years.

predicted by CIROC-AF-20 experienced a 24.7-fold higher rate

of AF at 1-year, 14.3-fold at 2-years, and 13.0-fold at 3-years vs.

low-risk patients (p < 0.001 for all).

Time interval-based AUC performance
and calibration

AUC curves for each model generated at 1-, 2-, and 3-

years are shown in Figure 3B. RSF-based models showed

improved discrimination across all time intervals vs.

CIROC-AF-Cox and historic risk models. Calibration plots

describing observed vs. predicted probabilities of new-onset

AF at a 1-, 2-, and 3-years are shown in Figure 5. Both

novel models showed good calibration across all deciles of

predicted risk.

Clinical diagnostic performance

To compare diagnostically relevant performance markers,

NND and NNP were calculated at 1-, 2- and 3-years. RSF

models consistently outperformed CIROC-AF-Cox and all

historic CPH models. RSF based models showed lowest NND

between 1.97 and 2.32, with NNP ranging from 4.73 to

15.73 (Table 5).

Discussion

This study demonstrated the capacity for machine learning

to deliver accurate patient-specific predictions of future AF

occurrence in patients with cardiovascular disease using

routinely reported CMR phenotypic markers contextualized

to patient-reported and EHR-abstracted health information.

Versus historic AF risk models (8, 10, 11) we observed
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FIGURE 4

Kaplan-Meier survival curves and hazard ratios for risk of new-onset atrial fibrillation based on tertiles of predicted risk by (A) CIROC-AF-Cox and

(B) CIROC-AF-20 models. The shaded area indicates a 95% confidence interval. Number at risk indicates the number of patients each model has

predicted to be within each group at a given time. Intermediate risk is an estimated risk of > 1.5% and < 4%, where high risk is patients estimated

at a risk of > 4%. These curves show a single fold’s model performance on the fold’s validation set. The log rank test p-values between each

survival curve are shown in the table and have been adjusted via the Benjamini-Hochberg Procedure.

significant performance gains through expanded access to

multiple data domains and through the use of machine learning-

based methods.

With the exception of two studies focused in critically ill

patients (30, 31), machine learning-based predictions of incident

AF have been restricted to community practice settings using

administrative health record data (32, 33). Despite the limited

translation of these models to cardiovascular disease referral

populations, these studies provided foundational evidence

for machine learning to provide incremental value for the

prediction of incident AF. Hill et al., used administrative health

data from the UK Clinical Practice Research Datalink (CPRD)

to predict future AF occurrence from 18 variables, delivering

an AUC of 0.827 at 10-years vs. 0.725 using the CHARGE-

AF risk score (32). A subsequent study confirmed similar

findings but highlighted that much of the observed value in

this referral population was being provided by conventional

AF risk factors (33). Due to a low annual incidence of AF

in community population settings, both studies required long

term surveillance (e.g., 10-years) to identify patients at a

meaningful risk of incident AF, this significantly limiting future

implementation of cost-effective surveillance strategies. The

alternate consideration of diagnostic testing data to assist in

machine learning-based AF prediction has, to date, focused

on 12-lead ECG data (34). In a single study, a model trained

from ECG vector data in a community referral population

showed potential for the identification of patients at elevated

risk. However, whether such approaches can discriminate risk in

patients with cardiovascular disease (where ECG abnormalities

are more consistently observed) remains unknown. Our study

uniquely focused on the prediction of AF risk in patients

undergoing diagnostic imaging for cardiovascular disease,

demonstrating the complementary value of disease phenotypic

markers, patient-reported health measures, and EHR-abstracted

health information to inform risk modeling. Importantly, all

these data assets were routinely captured by, or automatically

migrated to a central reporting solution. By eliminating any

need for manual data collection or abstraction at time of

diagnostic testing this study offers pragmatic evidence for the

real-world delivery of multi-domain data collection in routine

clinical practice.

As shown in Table 3, many predictors adopted by historical

AF risk models (in primary care populations) failed to

reach significance in patients with cardiovascular disease. Our

machine learning based model objectively chose seven of the

top 10 predictive variables from the imaging-based phenotype

data domain. LA volume ranked first, a marker recognized

as a dominant predictor of AF in both healthy (35–38) and

disease-specific cohorts (29, 39). Left atrioventricular coupling

index (LACI) and its change have also been shown to have an

independent association with new-onset AF in the Multi-Ethnic

Study of Atherosclerosis (MESA) (40). Incrementally, LVEF,

LVEDVi and LV mass were important contributors; the latter

acknowledged by CHARGE-AF (8). Of interest, RV EDVi was

highly ranked, justifying value for multi-chamber phenotyping

using CMR.

The cumulative risk of new-onset AF in our cardiovascular

disease population was 4.1% at a median follow-up of 2.6 years;

representing 17.7 AF events per 1,000 patient-years. This event

confirms a higher incident risk of AF in this referral population

vs. primary care where incident rates are between 4.0 and

6.7 events per 1,000 person-years (6, 8, 12, 29). This unique

risk distribution emphasizes the need for population-specific

risk models.

Finally, new-onset AF represents an ideal disease target

for personalized prediction modeling at time of diagnostic
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FIGURE 5

Comparison of model calibration for CIROC-AF-Cox and CIROC-AF-20 for new-onset atrial fibrillation prediction at (A) 1-year, (B) 2-years, and

(C) 3-years. Di�erences between predicted and observed event rates is plotted across each decile of predicted risk. Black points indicate

estimates from validation data sets and error bars indicate the 95% confidence interval from 500 bootstrapped validation data sets.

testing given the availability of validated therapies for reduction

of cardio-embolic risk (41). With our model’s observed

17.8% 1-year incident rate of new-onset AF in patients

classified to be high-risk, actionable justification exists for

the implementation of surveillance programs using Holter or

wearable device-based tools for the prevention of AF-related

cardiovascular events.

Limitations

Several important limitations are recognized for the

current study. Our study was performed at two tertiary care

hospitals within the same healthcare system. The initial study

only validated the model through cross-validation and needs

further hold-out validation and accordingly, external validation
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TABLE 5 Number needed to diagnose (NND) and number needed to predict (NNP) performance indicators for all constructed prediction models of

new-onset atrial fibrillation.

1-Year NND

(mean ± std)

2-Year

NND

(mean ± std)

3-Year NND

(mean ± std)

1 Year

NNP

(mean ± std)

2 YearNNP

(mean ± std)

3 Year

NNP

(mean ± std)

Cox PHmodels

Aronson et al. 2.57± 0.66 2.74± 0.65 3.01± 0.64 17.91± 2.33 11.00± 2.67 6.58± 1.12

C2HEST 2.82± 0.47 2.92± 0.43 3.22± 0.46 21.29± 2.42 12.25± 2.30 7.02± 0.61

CHARGE-AF 2.51± 0.32 2.61± 0.26 2.96± 0.41 21.57± 4.56 10.53± 1.45 6.57± 1.27

CIROC-AF-Cox 2.17± 0.19 2.24± 0.32 2.36± 0.29 16.56± 4.32 8.71± 1.86 5.08± 0.70

Random survival forests

CIROC-AF-115 1.97± 0.16 1.99± 0.08 2.32± 0.19 15.52± 1.04 8.00± 0.36 5.19± 0.53

CIROC-AF-20 2.03± 0.13 2.04± 0.09 2.18± 0.14 15.73± 1.77 7.62± 0.75 4.73± 0.57

NND: number needed to diagnose; the number of patients who need to be examined in order to correctly detect one person with the disease of interest in a study population of persons

with and without the known disease. NNP: Number needed to predict; the number of patients who need to be examined in the patient population in order to correctly predict the diagnosis

of one person.

prior to model implementation beyond our local institution.

Incremental model calibrations through expanded population

exposures are also advisable for all risk models, particularly to

address varying ethnic distributions (42). Of the 7,639 studied

patients, 5,195 (68%) were Caucasian. At time of risk modeling,

the CIROC Registry had prospectively tracked clinical outcomes

for a period of 4 years, and therefore uncertainty remains in

the capacity of the presented model to deliver risk estimation

beyond this period. Our models were trained using CMR-

specific phenotypic variables. Matched echocardiographic data

was not routinely available given high rates of private outpatient

laboratory use, as is commonly encountered in cardiology

practice. Accordingly, direct comparison to similar models

trained from echocardiographic variables was not feasible.

Implementation for other imaging modalities requires unique

variable training and validation, recognizing unique differences

in variable characteristics and referral bias. Similarly, our study

did not include patients with congenital heart disease given

unique anatomic phenotypes and disease profiles to routine

adult cardiovascular disease. Accordingly, the current risk

model is not applicable to this patient population. Finally,

alternate machine learning-based techniques can be exploited

for the prediction of outcomes from complex health data (32)

and are planned for future investigation. In this inaugural

study we did not comprehensively examine the comparative

performance of alternate machine learning methodologies for

survival-based prediction. Future research aimed at optimizing

the presented AF prediction tool using alternate models

is planned.

Conclusions

In this study we demonstrated capacity for multi-domain

patient data collected at time of CMR-based phenotyping to

support machine learning-based prediction of future AF in

patients with cardiovascular disease. As the first described

prediction model of AF risk in a cardiovascular disease

population, our optimized model identified de-novo patients

who experienced a 25-fold higher risk of incident AF over

a 12-month period. This work provides foundational support

for phenotype-based prediction modeling at time of diagnostic

imaging for the delivery of personalized care. Future studies

assessing the impact of AF prediction modeling at time of

diagnostic imaging are warranted.
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