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Abstract

Background: Cytotoxic T cell (CTL) cross-reactivity is believed to play a pivotal role in generating immune responses but the
extent and mechanisms of CTL cross-reactivity remain largely unknown. Several studies suggest that CTL clones can
recognize highly diverse peptides, some sharing no obvious sequence identity. The emerging realization in the field is that T
cell receptors (TcR) recognize multiple distinct ligands.

Principal Findings: First, we analyzed peptide scans of the HIV epitope SLFNTVATL (SFL9) and found that TCR specificity is
position dependent and that biochemically similar amino acid substitutions do not drastically affect recognition. Inspired by
this, we developed a general model of TCR peptide recognition using amino acid similarity matrices and found that such a
model was able to predict the cross-reactivity of a diverse set of CTL epitopes. With this model, we were able to
demonstrate that seemingly distinct T cell epitopes, i.e., ones with low sequence identity, are in fact more biochemically
similar than expected. Additionally, an analysis of HIV immunogenicity data with our model showed that CTLs have the
tendency to respond mostly to peptides that do not resemble self-antigens.

Conclusions: T cell cross-reactivity can thus, to an extent greater than earlier appreciated, be explained by amino acid
similarity. The results presented in this paper will help resolving some of the long-lasting discussions in the field of T cell
cross-reactivity.
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Introduction

Each T cell expresses thousands of T cell receptors (TCR) of a

single specificity that allows inspection of peptide fragments bound

by major histocompatibility complex molecules (MHC) on the

surface of other cells. Peptides originate as the product of

intracellular protein turnover, and both foreign and self-peptides

are able to form peptide:MHC complexes (pMHC). Presentation

of peptides for which the inspecting CTLs have not been tolerized,

triggers a cytotoxic response. Although much has been learned

about peptide processing and MHC presentation [1,2] it is still

largely unknown why roughly half of all natural foreign pMHC

are ignored [3,4]. The processing and MHC binding of naturally

processed foreign peptides is a primary requirement for the

initiation of a cellular immune response. However, the availability

of a suitable TCR further determines if a peptide is immunogenic.

The structural mechanism of T cell recognition is a highly debated

subject in the immunological literature and a consensus view of the

promiscuous peptide recognition has not yet been reached (see

e.g., [5]). The core problem is that T cells seem to combine high

specificity with the ability to recognize a surprisingly large number

of dissimilar antigens. Two terms are often used to describe this

nature of T cell recognition. Poly-specificity is used to

emphasize TCR’s ability to recognize multiple distinct/unrelated

pMHC ligands with high specificity (with little or no tolerance to

substitutions of the ligands) [6,7]. Cross-reactivity is a term that

was originally used to indicate unexpected reactivity to targets that

differed from those used to initially define the T cell clone [8].

Several studies suggest that T cells can recognize seemingly

dissimilar epitopes (for a summary see [6]), while other studies

have established that substitutions affect peptide recognition in a

predictable and additive manner [9] suggesting that the majority

of cross-reactive pMHC complexes share structural similarities.

One outstanding question in T cell biology is therefore whether T

cell cross-reactivity is mostly a stochastic phenomenon induced by

unpredictable structural constraints or, whether we can predict

which peptides should be cross-reactive. Previous studies of cross-

reactivity have focused on limited data covering a single or a few T

cell clones. Here, we investigate a simple model of T cell cross-

reactivity and perform a large-scale analysis spanning both a broad

set of experimental settings, heterogeneous pathogens, MHC

molecules and T cell clones. We use this benchmark to investigate

whether cross-reactivity is either generally predictable or mostly

random. Finally, we test whether the degree of host mimicry is

negatively correlated with immunogenicity. By analyzing a large

set of known HLA-A2 restricted HIV epitopes, we investigate if
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potential HIV epitopes with high similarity to self are able to

trigger detectable immune responses. Our results suggest that

amino acid similarity, rather than identity, is a predictive measure

of cross-reactivity.

Results

Visualizing TCR recognition sensitivity toward single
mutations

We analyzed public data on CTL sensitivity and created a

visualization of how CTLs react to single amino acid substitutions.

Lee et al. [10] analyzed the specificity of CTL responses against

the immunodominant HLA-A2 restricted HIV Gag epitope

SLFNTVATL (SFL9). IFNc production was measured in response

against all 171 single mutant variants of SFL9. Abrogated TCR

responses were mostly due to loss of TCR binding as the majority

of SFL9 variants retained binding to MHC. The cross reactivity

data for the three data sets: G10, T4 and PBMC were converted

into a position-specific-scoring-matrix (PSSM) as described in

Materials and Methods. The recognition motif of the T4 clone (the

PSSM matrix) is visualized in Fig. 1A as a Logo plot [11]. The plot

shows a stack of the possible amino acid mutations on each

position in SLFNTVATL (x-axis). The height of the stack is

reciprocal to the number of tolerated mutations (i.e., it indicates

the degree of T cell recognition specificity at this position, see

Materials and Methods). Few tolerated mutations translate into tall

stacks while many tolerated mutations show up as short stacks

(bars). For example, in position five, only one variant is tolerated

(T5S) and is shown as a tall bar. The remaining variants on

position 5 were unable to bind the TCR even though the binding

to MHC was mostly preserved. On the contrary, in position one,

18 out of 19 variants preserved the TCR recognition. The logo

plot for CTL clone T4 given in Fig. 1A suggests that the central

peptide positions are most important for peptide-TCR binding,

which is in agreement with earlier data [12,13]. The average

Shannon information [14] plot for T4, G10 clones and PBMC is

shown in Fig. 1C. This figure also indicates that positions 2–6 and

8–9 are most important for peptide recognition whereas position

one is consistently of little importance. Position 2 and 9 are the

main positions determining peptide binding to the HLA-A*0201

molecule, see Fig. 1B. Thus, positions 3–6 and 8 were consistently

involved in the primary TCR recognition motif. Moreover, the

sequence motif for T4 clone suggests that tolerated substitutions

tend to be conservative with respect to the original epitope

sequence, SLFNTVATL. Examples are F3Y (both non-polar and

aromatic), T5S (both polar), and V6I (both aliphatic). Similar

observations on tolerated substitutions were made for the other

two CTL clones (data not shown). Taken together, these data

suggest that amino acid similarity could be a major component of

T cell recognition.

How many different ligands can a TCR recognize?
Using the information in the TCR amino acid position specific

scoring matrices, we estimate the number of ligands recognized by

a given T cell clone by assuming that recognizable peptides

contain only those amino acids giving a detectable ELISPOT

response in the Lee et al. [10] study. Non-recognized peptides are

the ones containing at least one prohibited amino acid for which

no response was detected. The number of recognizable peptides

was computed by the following procedure. The degeneracy of a

TCR on a single position was measured as the diversity of amino

acids present at that position defined in terms of the Simpson

index (see Materials and Methods). This diversity measure yields a

value between 1 and 20. Here, 20 means that all amino acids are

used with equal frequency at a position, and 1 means that only a

single amino acid is found. The higher the diversity the more

degenerate the TCR is at this position. In the binding motif of T4

clone (Fig. 1A) the first position diversity is very high, 13.26, as

Figure 1. TCR and MHC binding motifs. (A) Logo plot [11] of recognized single variant peptides for CTL clone T4. The x-axis shows the positions
in SLFNTVATL. The letters stacked on top of each position are the accepted amino acid substitutions. The y-axis gives Shannon information [14] which
is a measure of how conserved a position is. Rigid positions have few but tall letters, while very degenerate positions have many but very short
letters. For example, position 1 was mutated 19 times of which 18 variants preserved TCR binding, only the S1R variant compromised TCR binding
while the MHC binding was preserved (see [38]). The frequency of amino acids occurring in this TCR motif can also be used to estimate the number of
distinct ligands this T cell clone can recognize (see text for details). (B) Sequence motif of HLA-A2 binding peptides (277 HLA-A2 restricted peptides
were extracted from the SYFPEITHI database [15]). (C) The average Shannon information at each position, for the CTL clones: G10 and T4, and PBMC.
doi:10.1371/journal.pone.0001831.g001

T Cell Cross-Reactivity

PLoS ONE | www.plosone.org 2 2008 | Volume 3 | Issue 3 | e1831



expected, because this position is highly degenerate. In the

conserved position five, the Simpson diversity drops to 1.29. The

product of the tolerated amino acid diversity at each position can

provide an estimate of the number of ligands a T cell clone can

recognize. For T4, we estimate a total of 5.6?105 ligands in this

way and this value is in good agreement with previous estimates

[8]. For the G10 clone, we estimate 3.2?106 ligands, suggesting

that this clone is more degenerate. Similarly, one can estimate the

number of ligands that can bind to a MHC molecule. For

example, the HLA-A*0201 molecule (see Fig. 1B for the binding

motif) can bind 4.8?109 distinct peptides [15]. Thus, measured in

this way the CTL binding event is three orders of magnitudes

more specific than that of the MHC.

CTL cross-reactivity modeled by peptide similarity
The above calculation suggests that a single T cell receptor can

recognize as many as 106 ligands. How related are these ligands,

and is the cross-reactivity of a T cell clone predictable? A few

studies suggest that cross-reactivity is not completely random

[9,16], while others argue that T cells can recognize unrelated

ligands (see e.g. [17]). Here, we investigate whether TCR peptide

cross-recognition can be predicted by a quantitative model of

peptide similarity using amino acid similarity matrices (SM) as

explained in detail in Materials and Methods. The peptide

similarity score is unity for two identical peptides, and 0 for

peptides of maximum dissimilarity, as defined by the SM. Note,

that this simple model does not differentiate between positions.

Below, the predictions made from this model are tested on several

independent data sets, and compared against the performance of

random predictors.

Predicted cross-reactivity of SLFNTVATL variants
Fig. 2 shows box plots of the level of IFNc response of three

CTL clones in response to stimulation with the 171 variant

peptides of SLFNTVATL (data from Lee et al. [10]). The Pearson

correlation coefficients between their relative SFU and our peptide

similarity score were: 0.40, 0.39, and 0.35 for G10, T4, and

PBMC data, respectively (p,0.0001, Monte Carlo randomization

exact estimate). Since PBMC consist of two clones, where one

clone is dominant [10], the prediction performance on this data set

is similar to the performance on the single clonal data. These

significant correlation coefficients suggest that peptide cross-

reactivity can, to some degree, be estimated from peptide

similarities. Thus the proposed model of peptide similarity is

capable of producing significant predictions of the loss of

recognition due to single amino acid substitutions. Iversen et al.

[18] measured IFNc secretion by T cells specific for SLYNT-

VATL (SYL9), when they are stimulated with naturally occurring

(i.e, patient derived) variants of SYL9. Data consisted of 21

variants of SYL9. Each variant peptide had between 1 and 3

mutations with respect to SYL9. Fig. 2B presents a scatter plot of

the data from Iversen et al. [18] for the T4 clone, where the

peptide similarity is plotted on the y-axis against the relative IFNc
secretion (x-axis). Using the BLOSUM35 matrix to calculate the

peptide similarity score (see Materials and Methods) the Pearson

correlation was 0.65. Similar results were obtained using

BLOSUM matrices 35–90 (data not shown). For the remaining

CTL clones (G10, C-3, C-4, C-22 and C-32) tested by Iversen et

al. [18] correlations were 0.49, 0.47, 0.55, 0.60 and 0.57

respectively (all values are significantly different from zero with

p,0.02 Monte Carlo randomization exact estimate). This model

of peptide similarity (or cross-reactivity) was thus able to explain

around 20240% of the IFNc secretion. Still, a number of SYL9

variants, for which we predict rather high peptide similarity to

SYL9, hardly induce an IFNc response, e.g., A7S, A7V, T5A

mutants given in the upper left corner of Fig. 2. Part of this

discrepancy is due to the fact that our model is not position

specific, and thus underestimates the effect of mutations in the

central positions, which are crucial for T cell recognition (see

Fig. 1A). When more data becomes available, the peptide

similarity model can be extended with a weighting accounting

for the relative importance of the peptide positions.

We were able to achieve similar performances while testing the

model on other peptide scanning data, e.g. La Rosa et al. [19]

(HLA-A2 restricted CMV epitope, data not shown). Thus, our

Figure 2. Predicting cross-reactivity. (A) Box plot of ELISPOT data for the two CTL clones G10 and T4, and PBMC. The x-axis shows the relative
IFNc secretion measured for 171 single mutants of SLFNTVATL (SFL9). Immunogenicity was grouped in four bins with average ELISPOT responses of 0,
0.15, 0.50 and 0.85 of maximal ELISPOT for SFL9. In both figures the y-axis shows the predicted CTL recognition in terms of BLOSUM35 similarity
scores (see Eq. 2). Unfavorable (non-conservative) substitutions (low x) are associated with a low similarity score (low y) whereas conservative
substitutions (high x) in general are associated with higher similarity scores (high y). (B) Observed and predicted recognition of patient derived
SLYNTVATL (SYL9) variants with 0–3 mutations. The axis shows the relative IFNc and peptide similarity scores. Note, that the IFNc response falls to a
half when peptide similarity is around 0.85.
doi:10.1371/journal.pone.0001831.g002
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model was able to predict cross-reactivity of T cell clones

measured in at least two different peptide-scanning library studies.

Analysis of known cross-reactive epitopes
Striking examples of T cell cross-reactivity have been reported

for CTL responses to viruses [17,20]. It was shown that CTLs that

were elicited during a primary viral infection might also respond

when the same mice are re-infected with unrelated viruses. By

mapping the different viral epitopes to which a particular T cell

clone can respond, it was demonstrated that these cross-reactive

epitopes can share very little sequence identity [17,20] leading to

the conclusion that CTLs are extremely non-specific [8,17,20].

Reviewing the literature, we compiled a set of 19 cross-reactive

epitopes in Table 1. These epitopes are restricted to the Kb, Kd,

Db, HLA-A1, HLA-A2, and HLA-B62 MHC alleles. Some of the

epitopes share only a few amino acids; one is even different on all

positions, while others share the majority of the amino acids. We

assumed that the first epitope (x) in a cross-reactive pair (x,y) is the

original epitope for which the cross-reactive CTL clone was first

raised, and that it was observed to respond to y later (see Table 1).

To test whether these cross-reactive epitopes that differ markedly

in their sequence could nevertheless have structurally similar

amino acids on the non-identical positions, we did the following.

First we computed the similarity of the cross-reactive epitopes SO.

Then we constructed an ensemble of random peptides that have

the same identical positions as the cross-reactive epitope pair but

otherwise consist of random amino acids (see Materials and

Methods for details). We then computed the baseline (or the

expected) peptide-similarity as the average random similarity

denoted SE. In 16 out of 19 pairs the observed similarity SO

exceeded the expected baseline similarity SE (see Table 1 and

Fig. 3A, p,0.02, Fisher’s exact test). Fig. 3A shows the observed

(SO) versus the baseline expected similarity (SE) and the solid line

presents the case where SO = SE. This plot demonstrates that cross-

reactive epitopes are significantly more similar than unrelated

peptides with the same level of sequence identity. Thus, in cross-

reacting T cell ligands non-identical positions are significantly

more conservative than random. Fig. 3B shows this more

explicitly. The 19 epitope pairs were split in two groups according

to the level of sequence identity; less than 50% and larger than or equal

to 50% identity. For both groups we compute the percent excess

observed similarity of the cross-reactive constituents defined as

100?(SO2SE)/SE From Fig. 3, we clearly see that for ‘‘seemingly’’

unrelated sequences (identity,50%) the excess observed similarity

(y-axis) is on average 25.8% +/2 10.8%, i.e., when sequence

identity is low, the observed similarity is much higher than the

expected similarity. Conversely, for epitopes sharing more than

half the amino acids, excess similarity drops markedly (2.0% +/2

4.3%) probably because cross-reactivity is maintained by the more

numerous identical positions. The difference in excess observed

similarity between the groups is highly significant (p,0.001, rank

test), which suggests that amino acid identity is a poor measure for

estimating physicochemical similarity, and thus T cell cross-

reactivity. In summary, the above results demonstrate that

biochemical similarity plays a large role in defining CTL cross-

reactivity when sequence identity is low. In such cases, cross-

reactivity is observed for non-identical, but conservative, substitu-

tions preserving structural and/or physiochemical properties

satisfying the idiosyncratic binding constrains of the responding

TCR.

Table 1. Examples of cross-reactive epitopes reported in the literature.

MHC Initial Subsequent Initial Subsequent Overlap Id SO SE Ref.

H2-Kd LCMV NP PV NP YTVKYPNL YTVKFPNM YTVK.PN. 6/8 0.92 0.81 [27]

H2-Kd LCMV NP VV P1 YTVKYPNL YNSLYPNV Y...YPN. 4/8 0.71 0.68 [17]

H2-Kd LCMV NP VV P10 YTVKYPNL STLNFNNL .T....NL 3/8 0.58 0.48 [17]

H2-Kd LCMV NP VV A11R YTVKYPNL AIVNYANL ..V.Y.NL 4/8 0.61 0.58 [28]

H2-Kd LCMV NP VV A11R AVYNFATC AIVNYANL A..N.A.. 3/8 0.61 0.45 [28]

H2-Kd LCMV NP VV A11R ISHNFCNL AIVNYANL ...N..NL 3/8 0.53 0.48 [28]

H2-Kd RSV5 M2-82 RSV M2-71 SYIGSINNI EYALGVVGV .Y....... 1/9 0.46 0.36 [29]

H2-Kd CTL agonist (APL) IGRP206-214 KYNKANWFL VYLKTNVFL .Y.K.N.FL 5/9 0.6 0.64 [30]

H2-Kd Dengue 2 NS3-298 Dengue 3 NS3-299 GYISTRVEM GYISTRVGM GYISTRV.M 8/9 0.9 0.92 [31]

HLA-A2 EBV BMLF1-280 FLU A M1-58 GLCTLVAML GILGFVFTL G....V..L 3/9 0.53 0.47 [32]

HLA-A2 EBV BMLF1-280 FLU A NP-85 GLCTLVAML KLGEFYNQM .L....... 1/9 0.38 0.28 [20]

HLA-A2 EBV BMLF1-280 EBV LMP2 GLCTLVAML LLWTLVVLL .L.TLV..L 5/9 0.62 0.59 [20]

HLA-A2 EBV BMLF1-280 EBV BRLF1 GLCTLVAML YVLDHLIVV ......... 0/9 0.32 0.22 [20]

HLA-A2 FLU A NA-231 HCV NS3-1073 CVNGSCFTL CVNGVCWTV CVNG.C.T. 6/9 0.83 0.78 [33]

HLA-A2 FLU A M1-58 EBV EBNA3A-596 GILGFVFTL SVRDRLARL ........L 1/9 0.38 0.29 [20]

HLA-A2 HPV 16 E7-11 Coronavirus NS2-52 YMLDLQPET TMLDIQPED .MLD.QPE. 6/9 0.79 0.76 [34]

HLA-A2 HIV ENV GP-120 M. tuberculosis VPTDPNPPEV VLTDGNPPEV V.TD.NPPEV 8/10 0.79 0.8 [35]

HLA-B62 Dengue 2 NS3-71 Dengue 3 NS3-71 DVKKDLISY SVKKDLISY .VKKDLISY 8/9 0.92 0.9 [36]

HLA-A1 Hantaanvirus (Sin) Hantaanvirus (Seoul) ISNQEPLKL ISNQEPMKL ISNQEP.KL 8/9 0.97 0.93 [37]

The columns are as follows: 1) MHC restriction, 2) source pathogen and protein for initial infection, 3) source pathogen and protein for subsequent infection, 4) original
epitope of initial infection, 5) cross-reactive epitope for subsequent infection, 6) sequence overlap between the cross-reactive epitopes, 7) sequence identity (Id), 8)
observed peptide similarity SO and 9) expected peptide similarity SE (for definitions of SO and SE see the main text) 10) reference to the experimental work. Some
infectious agents are indicated with abbreviated names and these are: LCMV: Lymphocytic choriomeningitis virus, PV: Pichinde virus (PV), VV: Vacinia virus, EBV: Epstein-
Barr virus, RSV: Respiratory synthical virus, HCV: Hepatitic C virus, and HPV: Human papiloma virus.
doi:10.1371/journal.pone.0001831.t001
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Non-immunogenic HIV peptides tend to be more similar
to human self-antigens

Another open question in T cell response is why roughly half of

all foreign cell surface-presented antigens fail to raise a T cell

response [3,4,21]. Tolerance to self-antigens could explain this

lack of immunogenicity, in which case the degree of similarity to

self-antigens should predict which foreign antigens are likely to be

non-immunogenic. We examined this effect of self-tolerance on

immunogenecity using our cross-reactivity model. First, a large set

of self-antigens was defined, and secondly, a list of non-self (e.g.,

HIV) antigens was built, labeled as either immunogenic or non-

immunogenic according to experimental evidence (data obtained

from the Los Alamos HIV database, see Materials and Methods).

The expectation was that T cell clones, with high affinity for HIV

peptides similar to self peptide(s), have been tolerized during

thymic education via negative selection [22,23]. Such TCRs

should therefore not be present in the functional T cell repertoire

thus causing tolerance to molecular mimics of self-peptides. We

define a score of cross-reactivity to self as the maximum peptide

similarity between the non-self antigen and the set of all self-

antigens (see Materials and Methods) and test whether non-

immunogenic peptides have a higher cross-reactivity score to self

when compared to immunogenic ones. We downloaded the

human proteome from the NCBI website and identified a set of

230,460 potential HLA-A2 self-antigens (see Materials and

Methods). Next, we downloaded the HIV proteome from the

Los Alamos HIV database and predicted a set of potential HLA-

A2 epitopes. 33 of the 91 predicted HIV candidate epitopes were

annotated as A2 supertype restricted epitopes in the Los Alamos

database of CTL HIV epitopes, while the remaining 54 of the

HIV peptides were never identified as epitopes. Another four

peptides were found to be immunogenic for other HLA alleles

than HLA-A2. Since it would be wrong to tag these epitopes as

‘‘non-immunogenic’’, they were excluded from the data set. The

33 confirmed HLA-A2 epitopes were labeled: confirmed HIV epitopes

and the remaining 54 possible non-immunogenic peptides were

given the label: putative, non-immunogenic HIV peptides. It is possible

that future studies reveal that a number of the putative non-

immunogenic HIV peptides do in fact elicit CTL responses in

HLA-A2+ patients. Nevertheless, this set of HIV peptides should

be enriched in HIV peptides that fail to generate CTL responses.

Maximal similarity scores were computed between all 87 HIV

peptides (33 immunogens and 54 putative non-immunogens) and

the set of 230,460 predicted HLA-A2 self-epitopes. Fig. 4 shows a

scatter plot of the 33 HIV immunogens (black diamonds) and 54

putative non-immunogens (open circles). The x-axis shows the

predicted antigen presentation score (NetCTL) while the y-axis

shows the estimated maximum similarity to the self-antigens

SSELF(x,y) (see Materials and Methods). Immunogenic peptides

tend to be less self-like, although the difference between

immunogens and non-immunogens is not significant (p = 0.2,

Mann-Whitney). Drawing a horizontal line at y = 0.85 separates

the most self-similar HIV antigens from the rest (the results

presented in Fig. 2B suggest that IFNc response would fall to a half

when the similarity drops to 85%.) For the antigens that have a

self-similarity score above 0.85, most (14/16) are classified as non-

immunogenic HIV antigens i.e. predicted epitopes not confirmed

by experimental evidence (p-value,0.05, Fisher’s exact test). Note,

that the NetCTL score does not correlate with the maximal self-

similarity score (p-value = 0.42, exact estimate) and the above

difference between the immunogenic and non-immunogenic

antigens is therefore not explained by the difference in the

NetCTL scores. Repeating our analysis for HLA-A3 and HLA-B7,

we found similar tendency of more-self-likeness among non-

immunogenic HIV-1 peptides (p,0.3 and p,0.45 respectively).

Summarizing, these results suggest that similarity to self-antigens

plays a role in discriminating immunodominant from cryptic

peptides.

Figure 3. Predicted similarity of pairs of cross-reactive epitopes reported in the literature. (A) The observed similarities SO between 19
cross-reactive epitopes listed in table 1 versus the expected similarities SE (for definitions of SE and SO see the text). The line depicts the diagonal
SO = SE. 16 out of 19 points fall above the diagonal. (B) The relative increase of observed similarity with respect to the expected similarity. There is a
strong inverse relationship between sequence identity and the level of conservation on non-identical positions. Cross-reactive epitopes with low
sequence identity share increasingly conserved amino acids on the remaining positions.
doi:10.1371/journal.pone.0001831.g003
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Discussion

Many studies have suggested that T cells can recognize totally

unrelated peptides and a new term, poly-specificity was coined

to express the high specificity of T cell receptors to unrelated

peptides [6]. The ‘‘unrelatedness’’ of the peptides was defined as

low sequence identity, however, sequence identity might not be

able to account for the total amount of structural similarity that

drives TCR recognition. Here, we demonstrate that this is indeed

the case: T cell receptors recognize biochemically and structurally

related peptides and cross-reactivity is, up to a degree, predictable.

The loss of recognition simply depends on the number and

similarity of non-identical amino acid between cross-reactive

constituents. We find that the majority of the seemingly

‘‘unrelated’’ cross-reactive peptides have a significantly higher

biochemical similarity to each other than what would be expected

from truly ‘‘unrelated’’ peptides. This is especially true for peptides

with very limited identity. To our knowledge this is the first study

that analyzes a large set of cross-reactive peptide-MHC combina-

tions and demonstrates that the cross-reactivity can, up to a certain

extent, be predicted.

Because negative selection of immature thymocytes remove

high affinity TCR specific for self-antigens [7], we expected that

this should leave a ‘‘hole’’ in the T cell repertoire around negative

selecting self-antigens. Hence, if an infected cell presents a nonself

antigen that is highly similar to a negative selecting self-antigen,

then this foreign antigen might not be matched by any available

TCR which could provide an explanation for why around half of

foreign pMHC do not generate a T cell response [3,4,21]. We

tested this hypothesis for HLA-A2 restricted HIV-1 response and

showed that the absence of T cell response to part of the

non-confirmed (i.e. putative non-immunogenic) HLA-A2 restrict-

ed HIV-1 peptides can be explained by their similarity to

self antigens. These results are in agreement with a recent

study by Rolland et al. [24], who showed a trend of more-self-

likeness (measured in terms of number of shared amino

acids) among HIV peptides with no detectable CTL responses in

a large study group. We predict that the correlation found by

Rolland et al. would be stronger if amino acid similarity is taken

into account.

If peptide similarity can be used to describe T cell reactivity,

what would then be the best model to describe similar peptides?

We have chosen for the simplest model (given by Eq. (2) in

Materials and Methods) because systemic data on cross-reactive

peptides is very limited. An obvious extension of this model would

be to add position dependence, i.e., account for the fact that

central positions play a larger role.

The number of potential antigens exceeds the number of T cells

in the immune system and the ability to recognize multiple ligands

is required to mount at least a few responses to all potential

pathogens [8]. Here, we demonstrate that the number of expected

T cell ligands is not necessarily reduced by restricting T cell

recognition to cover only similar peptides: it is still possible for a T

cell to recognize 1052106 peptides. These estimates of the

complexity of CTL recognition are well within the bounds of

earlier estimates [8]. In summary, the results presented here

quantify, to our knowledge for the first time, that the basis of T cell

recognition is amino acid similarity, defined in terms of

biochemical properties of amino acid side chains.

Materials and Methods

TCR binding motif
Lee et al. [10] analyzed the specificity of CTL responses against

the immunodominant HLA-A2 restricted HIV Gag epitope

SLFNTVATL (SFL9). IFNc production was measured in response

against all 171 single mutant variants of SFL9 for two T cell clones

(G10 and T4), and for purified Peripheral Blood Mononuclear

Cells (PMBCs) using an ELISPOT assay. Purified PBMCs

consisted of just two clones where one was dominant. CTL

responses were reported as the percentage of maximal IFNc (I)

obtained for the reference ELISPOT of SFL9 and discretized in

five intervals: ]0;30], ]31;70], ]70;100[and 100%. We replaced

each interval by the interval midpoint, translating the original data

to the real values: 0.00, 0.15, 0.50, 0.85 and 1.00 respectively. We

defined a measure of the ‘‘relative frequency of recognition’’, fi,a,

for a variant carrying mutation a on position i, as the response of

the variant, divided by the total of all variants on the same position

as:

fi,a~
Ii,aP20

k~1 Ii,k

Simpson index
To measure the diversity at position i in an alignment, we define

D(i) = 1/S(i), where S(i) = S20
a = 1(pi,a)

2 is the Simpson index. Here,

pi,a is the probability that a particular amino acids occurs at

position i in the alignment where S20
a = 1pi,a = 1. In all cases

pi,a = fi,a (see above definition). If position i is fully conserved, then

D(i) = 1, if all amino acids occur with equal frequency i.e. pi,a = 1/

20, then D(i) = 20.

Figure 4. HIV self-similarity and immunogenicity. The NetCTL
antigen presentation score (x-axis) and maximal self-similarity (y-axis).
Confirmed HIV epitopes are shown as black diamonds and predicted,
non-immunogenic HIV peptides are shown as open circles. The 0.85
self-similarity line described in the text divides the y-axis. The region
above the line is clearly dominated by non-immunogenic antigens
where 88% (14/16) are non-immunogenic compared to the expected
frequency of 62% (54/87). This difference is significant (p,0.05, Fisher’s
exact test). Peptide similarity was calculated using the BLOSUM35
matrix.
doi:10.1371/journal.pone.0001831.g004
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Peptide similarity score
The un-normalized peptide similarity score A(x,y) between

reference epitope: x = {x1, L, xN} and peptide: y = {y1, L, yN} of the

same length N is defined as the sum of substitution scores along the

sequences expressed by the relation:

A x,yð Þ~
XN

i~1

W xi,yið Þ, ð1Þ

W(xi, yi) is the amino acid substitution matrix, e.g., BLOSUM35,

providing a measure of how conservative substitutions are. The

peptide-similarity score for the reference peptide x spans the

interval: Ix = [Ax
min; Ax

max] where the length of the interval

|I| = Amax2Amin depends on references peptide x and matrix W.

Two different intervals (Ix, Iy?x) are not comparable per se. Thus,

we define the normalized peptide similarity using the relation

S x,yð Þ~ A x,yð Þ{Ax
min

Ax
max{Ax

min

: ð2Þ

This equation constitutes the model of peptide similarity used

throughout subsequent analysis. S(x,y) measures how much

peptide y resembles x in terms of the number and magnitude of

conservative substitutions. Ax
max is the auto-peptide-similarity

score of x. Thus, Ax
max = A(x,x). If peptide y is a mimic of x then

S(x,y) should be close to 1. The other extreme value (Ax
min) is found

by comparing x with a peptide x̄, where on each position the

amino acid in x̄ corresponds to the substitution in x with the

smallest value i.e. the least likely substitution. In this way

0#S(x,y)#1 for all peptides y. The peptide-similarity score is

asymmetric i.e. S(a,b)?S(b,a) despite W being symmetric. The

reason is that the extreme values (Amin,Amax) cannot be guarantied

to be identical for any pair of peptides (a,b). Reference peptides x

which are dominated by amino acids like tryptophan that hardly

ever substitute, will have few highly similar peptides (y) which

satisfy the condition: S(x,y) < 1. In contrast, reference peptides

which are enriched in amino acids that are more likely to

substitute (given the matrix W) have a greater number of highly

similar peptides. This property is captured by the asymmetry of S.

Expected baseline similarity between primary epitopes
and presumably unrelated peptides

The observed similarity SO of pairs of experimentally verified

cross-reactive epitopes (x,y) is to be compared to unrelated peptides

(zi) which retain the sequence identity of (x,y) but have an otherwise

random amino acid on non-identical positions. The procedure

to compute the ‘‘unrelated’’ or ‘‘baseline’’ expected similarity

is best illustrated by an example: The HLA-A2 epitopes

x = GLCTLVAML and y = GILGFVFTL from EBV and influen-

za-A share 3 identical positions: G1, V6 and L9. We first compute

the observed similarity SO = S(x,y) between epitopes x and y using

Eq. (2). Then we generate a set of N = 10.000 random peptides, z1,

z2, L, zN, with the same identical positions, i.e. we have

zi = G......V...L where a dot can be any amino acids avoiding

identity with x at that position. The expected similarity between the

primary (original) epitope (x) and the unrelated but semi-identical

artificial peptides z is then defined as the average similarity to the

ensemble of unrelated peptides as: SE~ 1
N

PN
i~1 S x,zið Þ.

Non-immunogenic HIV-peptides (HLA-A2)
The HIV-1 HXB2 sequence for Env, Pol, Vpu, Rev, Tat, Vif,

Vpr, p17, p24 and p2p7p1p6 and the HIV-1 clade B consensus

sequence for Nef (due to a stop codon in HXB2-Nef) were

downloaded from the Los Alamos database (www.hiv.lanl.gov).

There was also one stop codon in HXB2 sequence for TAT,

however, no TAT peptides were predicted to be HLA-A2 epitopes

and thus the stop codon did not interfere with our results. Out of

3,063 HIV nonamers, 91 were predicted to be HLA-A2 epitopes

using NetCTL version 1.2 [25,26] and default selection threshold

(0.75). NetCTL predicts the level of antigen presentation by

combining three separate predictions of: proteasomal cleavage,

TAP affinity and MHC biding. Four out of the 91 predicted HIV

epitopes were found to be immunogenic for other supertypes than

HLA-A2 and were filtered out. These were: QLQARILAV,

RILAVERYL (class II, DPW4.2), TLYCVHQRI (HLA-A11) and

SINNETPGI (HLA-A25). Of the remaining 91-4 = 87 peptides,

33 were confirmed HLA-A2 epitopes by cross-referencing the

records of the LANL CTL epitope summary table (downloaded

December 2006). Thus, the epitope prediction resulted in the

identification of 87 possible HLA-A2 restricted HIV epitopes

where 33 (38%) were confirmed and 54 (62%) were not.

Human HLA-A2 restricted self-antigens
The human proteome was downloaded from the NCBI website

(www.ncbi.nlm.nih.gov/Genomes/date: 29 march 2006) and

contained 34.460 protein sequences. The removal of proteins

containing the words: predicted, hypothetic or isoform in the protein

description label lead to a final core human proteome of 14,034

human protein sequences. We predicted A2 self-antigens using

NetCTL version 1.2 [25,26] for all these protein sequences (default

epitope selection threshold). Repeats were removed, along with a

small set of self-peptides, which contained the unknown amino

acid (X). The final set consisted of 230,460 predicted human HLA-

A2 restricted self-antigens each of length 9.

HIV self-similarity (HLA-A2)
The maximal similarity between predicted HIV antigens (x) and

the set of human 230,460 self-antigens (y) was defined as the self-

similarity score Sself(x) = max(S(x,y)) for HIV peptide x. Self-similarity

scores were obtained for all confirmed HIV epitopes and putative

HIV antigens. Because no identical matches were found between

HIV epitopes and self-antigens, self-similarity scores were always

S(x,y),1. Confirmed HIV epitopes and putative non-immunogenic

HIV peptides were ranked on maximum self-similarity, and the

combined ranking was split in two parts: a) The peptides with a self-

similarity score greater than 0.85 and b) and peptide with a self-

similarity score below 0.85. We used Fisher’s exact test to compute

the significance of the difference in the frequency of putative HIV

epitopes in the top versus the bottom.
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