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Background: Immune checkpoint inhibitor (ICI) therapy is a promising treatment for cancer. However, the response rate to ICI 
therapy in hepatocellular carcinoma (HCC) patients is low (approximately 30%). Thus, an approach to predict whether a patient will 
benefit from ICI therapy is required. This study aimed to design a classifier based on circulating indicators to identify patients suitable 
for ICI therapy.
Methods: This retrospective study included HCC patients who received immune checkpoint inhibitor therapy between March 2017 
and September 2023 at Nanjing Drum Tower Hospital and Jinling Hospital. The levels of the 17 serum biomarkers and baseline 
patients’ characters were assessed to discern meaningful circulating indicators related with survival benefits using random forest. 
A prognostic model was then constructed to predict survival of patients after treatment.
Results: A total of 369 patients (mean age 56, median follow-up duration 373 days,) were enrolled in this study. Among the 17 
circulating biomarkers, 11 were carefully selected to construct a classifier. Receiver operating characteristic (ROC) analysis yielded an 
area under the curve (AUC) of 0.724. Notably, patients classified into the low-risk group exhibited a more positive prognosis (P = 
0.0079; HR, 0.43; 95% CI 0.21–0.87). To enhance efficacy, we incorporated 11 clinical features. The extended model incorporated 12 
circulating indicators and 5 clinical features. The AUC of the refined classifier improved to 0.752. Patients in the low-risk group 
demonstrated superior overall survival compared with those in the high-risk group (P = 0.026; HR 0.39; 95% CI 0.11–1.37).
Conclusion: Circulating biomarkers are useful in predicting therapeutic outcomes and can help in making clinical decisions regarding 
the use of ICI therapy.
Keywords: hepatocellular carcinoma, predictive model, immunotherapy, machine learning

Introduction
Liver cancer is the sixth most diagnosed cancer globally, accounting for over 800,000 deaths in 2020, constituting 8.3% 
of all cancer-related deaths. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancers, making it the 
predominant subtype.1 More than 80% of patients were diagnosed in an unresectable state, resulting in poor prognosis 
with conventional treatment and rapid progression of the tumor.2,3

Immune checkpoint inhibitor (ICI) therapy is designed to target immune checkpoints, such as programmed cell death 
protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1), with the aim of activating the immune system to 
selectively eliminate cancer cells.4 While several ICI drugs have shown efficacy in cancer treatment, the objective 
response rate in HCC remains relatively low, at around 30%.5 One of the primary challenges in ICI treatment lies in 
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recognizing patients who would benefit from it.6,7 Currently, PD-L1 expression serves as a biomarker for predicting ICI 
treatment outcomes in certain cancer types, such as melanoma and non-small cell lung cancer.8,9 However, a significant 
correlation between PD-L1 level and result of ICI treatment in HCC is lacking.10,11 Recent studies have highlighted the 
potential predictive value of C-reactive protein (CRP) and alpha-fetoprotein (AFP) in determining the prognosis of HCC 
patients following atezolizumab and bevacizumab treatment.12 Additionally, several clinical studies have shown that 
inflammation-related circulating biomarkers are closely associated with non-response to liver cancer immunotherapy and 
prognosis, including the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and serum amyloid 
A. However, no validated biomarkers are found to be able to evaluate whether an HCC patient would benefit from 
immunotherapy. Therefore, further research is needed to explore the use of biomarkers to predict ICI treatment outcomes 
in HCC patients.

The Random Forest is an ensemble learning method that operates by constructing a multitude of decision trees during 
training and outputting the mode of the classes or the mean prediction of the individual trees. It generates each tree from 
a random sample of features and data points, which introduces diversity among the trees, making the model robust and 
insensitive to outliers. Therefore, we established a random forest model to generate a risk score from common circulating 
indicators in HCC, which was used to predict the outcomes of patients with HCC after immunotherapy.

Material and Methods
Experimental Design
The workflow of this study is illustrated in Figure 1. We measured the levels of certain circulating markers in the blood of 
patients before and after immunotherapy, and overall survival (OS) time was used to describe the outcomes of patients 
receiving immunotherapy. Subsequently, patients were randomly allocated to training and testing groups at a ratio of 7 3, 
with 258 and 111 patients in the training and test groups, respectively. Using the robust Random Survival Forest 
methodology, we identified biomarkers intricately linked to prognosis from the measured blood indicators. The selected 
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Figure 1 Workflow chart of the machine learning method to predict outcomes of HCC patients receiving ICI treatment.
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biomarkers play a pivotal role in calculating a personalized risk score for each patient. Subsequently, this risk score was 
instrumental in constructing a predictive model to predict the prognosis after immunotherapy. To assess the accuracy of 
the model, we conducted 10-fold cross-validation within the training group and computed the concordance index 
(C-index) and AUC. Finally, the efficacy of the model was illustrated through survival analysis, providing 
a comprehensive evaluation of its predictive capabilities in delineating post-immunotherapy prognosis for individual 
patients.

Patients
We included 369 patients who received anti-PD-1 or anti-PD-L1 in this study. Patients who met the following criteria 
were included in this study: Diagnosed with hepatocellular carcinoma; received at least two cycles of immunotherapy; 
aged 18 or above; Eastern Cooperative Oncology Group Performance Status (ECOG PS) of 0–2; had imaging assess-
ments before and after immunotherapy; and have sufficient liver and kidney function. Patients who met any of the 
following criteria were excluded: having other primary cancer comorbidities; receiving less than two cycles of 
immunotherapy; lacking Computed Tomography (CT) and/or Magnetic Resonance Imaging (MRI); lacking baseline 
clinical pathological data; and having no follow-up data.

Data Collection
The following serum data were collected at baseline and during treatment: AFP, carbohydrate antigen 19–9 (CA 19–9), 
D-Dimer, granulocytes, hemoglobin (HGB), Platelets, leukocytes, lymphocytes, CRP, CD8+ T Cells, CD4+ T Cells, NK, 
bilirubin, albumin, lactate dehydrogenase (LDH), protein induced by vitamin K absence (PIVKA-II) and international 
normalized ratio (INR). Clinical features were collected as following: age, sex, stage, liver metastasis, lymph node 
metastasis, other metastasis, tumor thrombus grade, surgery, radio therapy, liver cirrhosis and ICI therapy used.

Predictive Model Construction
We constructed a random forest model using the randomForestSRC package in R. Initially, we included all indicators in 
the model (ntree = 1000; node size = 3; mtry = 10; nsplit = 10) and calculated the minimal depth for each indicator. 
A reduced minimum depth suggested that the feature was positioned closer to the root, making it more important. 
Therefore, we defined importance as the reciprocal of the minimal depth and selected indicators with importance values 
greater than the mean of all indicators to construct the random forest. We then constructed the model again, using the 
training cohort and validated it using the test cohort, which were two mutually independent cohorts.

Statistical Analysis
Statistical analyses were performed using the R programming language. For assessing differences in indicators between 
the two cohorts, the Wilcoxon rank-sum test was applied for continuous variables, whereas the χ2 test was used for 
categorical variables. The R package survival ROC facilitated calculation of the ROC curve. The criterion for 
differentiating between the high-risk and low-risk groups was established through the application of Youden’s method 
to the ROC curve for 1-year outcomes. The ROC curves were generated utilizing the R packages survival and survminer. 
Differences in biomarker level between the two groups were evaluated using the Wilcoxon rank-sum test. Notably, for 
circulating features with a substantial number of missing values, we treated missing status as a distinct category in our 
analysis.13

Result
Profile of Patient Data
From March 2017 to September 2023, 369 hepatocellular carcinoma patients who received first-line anti-PD-1 or anti-PD 
-L1 treatment at Nanjing Drum Tower Hospital and Jinling Hospital were included in this study. The baseline 
characteristics were summarized in Table 1. Mean age of 57(15.4) were female and 309(83.7) were male; The median 
age of the patients was 56; Most of the patients were in stage 3(n=233, 63.1%); 79.9%(295) of the patients have multiple 
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Table 1 Summary of Patient Characters

Total (n=369) Train (n=258) Test (n=111) P Value

AFP (ng/mL) 394 661.95 81.45 0.01
CA 19–9 (u/mL) 41.3 42.65 39 0.35

D-Dimer (mg/L) 2.11 2.13 1.86 0.99

Granulocytes (10^9/L) 3.12 3.09 3.175 0.56
HGB (g/L) 124 126 118.5 0.2

Platelets (10^9/L) 123.5 127 112 0.11

Leukocytes (10^9/L) 4.65 4.6 4.7 0.7
Lymphocytes (10^6/L) 0.93 0.95 0.92 0.89

CRP (mg/L) 7.2 6.8 12.9 0.12
CD8+ T Cells (10^6/L) 24.3 25.2 10.3 0.15

CD4+ T Cells (10^6/L) 42 43 5.7 0.14

NK (10^6/L) 13.7 13.7 9.6 0.69
Bilirubin (μmol/L) 16.4 16.7 15.3 0.15

Albumin (g/L) 37.7 37.7 37.1 0.37

INR 1.180 1.18 1.135 0.5
LDH (u/L) 219 218.5 219 0.65

PIVKA2(mAU/mL) 1480.59 1368.37 7147.37 0.35

Age 56 55.5 57 0.86
Stage (n, %) 0.07

1 1(0.3) 0 1(0.9)

2 61(16.5) 49(20) 12(10.8)
3 233(63.1) 155(60) 78(70.2)

4 74(20.1) 54(21) 20(18.1)

Liver metastasis (n,%) 0.14
Yes 295(79.9) 212(82.1) 83(74.7)

No 74(20.1) 46(17.9) 28(25.3)

Lymph node metastasis (n, %) 0.94
Yes 129(35) 91(35.2) 38(34.3)

No 240(65) 167(64.8) 73(65.7)

Other metastasis (n, %) 0.78
Yes 52(14.1) 35(13.6) 17(15.4)

No 317(85.9) 223(86.4) 94(84.6)

Tumor Thrombus Grade (n, %) 0.38
0 210(57) 156(60.4) 54(48.6)

1 4(1) 3(1.1) 1(0.9)

2 7(1.9) 4(1.6) 3(2.7)
3 49(13.3) 33(12.8) 16(14.5)

4 97(26.3) 61(23.7) 36(32.4)

Unknown 2(0.5) 1(0.4) 1(0.9)
Sex (n, %) 0.96

Female 309(83.7) 39(15.1) 18(16.3)

Male 57(15.4) 217(84.1) 92(82.8)
Unknown 3(0.9) 2(0.8) 1(0.9)

Surgery (n, %) 0.34

Yes 162(44) 118(45.8) 44(39.6)
No 205(55.5) 138(53.4) 67(60.4)

Unknown 2(0.5) 2(0.8) 0

Radio Therapy (n, %) 0.29
Yes 102(27.6) 76(29.5) 26(23.5)

No 267(72.4) 182(70.5) 85(76.5)

(Continued)
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hepatic tumors; About 57%(210) of the patients did not develop tumor thrombus; Around half of the patients (n=162, 
44%) have undergone surgery and 27.6%(102) of the patients have received radiotherapy; 97(26.3%) patients have 
received TACE treatment. As shown in Table 1, no differences were observed in immune drug therapy, stage, tumor 
thrombus grade, age, sex, surgery, radiotherapy, transcatheter arterial chemoembolization (TACE), liver cirrhosis, liver 
metastases, lymph metastases, and other metastases between the training and test sets. In addition, no significant 
difference was observed in OS between the two groups of patients.

Prediction of Immunotherapeutic Outcomes Based on Baseline Circulating Indicators 
Level
We established a machine learning method utilizing a random forest algorithm to predict OS in immunotherapy based on 
the analysis of circulating indicators at baseline. Initially, we assessed and ranked the importance of the 19 baseline 
indicators in the training set using their minimal depth in the algorithm. Subsequently, 11 key markers [HGB, CA 19–9, 
AFP, LDH, albumin, platelets, granulocytes, bilirubin, CRP, lymphocytes, and leukocytes] were selected from a pool of 
19 circulating indicators (Figure 2A). Selected markers were used to construct an OS prediction model. The model 
generated a risk score for each patient, based on the chosen indicators. To validate the predictive performance of the 
model, we conducted ten-fold cross-validation within the training group, achieving a mean C-index of 0.59 (Figure 2B). 
Subsequently, we assessed the accuracy of the model through survival analysis, illustrating its classification performance 
with respect to patient survival status. To further evaluate the discriminatory ability of the model, we plotted an ROC 
curve for the one-year survival rate. Employing Youden’s method, we determined an optimal threshold, thereby 
categorizing the patients into high-risk and low-risk groups (Supplementary Figure 1A). In the training cohort, 176 
patients were categorized into the low-risk group and 80 patients were placed in the high-risk group. A survival analysis 
employing the Kaplan-Meier method revealed a significantly poorer clinical prognosis for patients in the high-risk group 
than for those in the low-risk group (P < 0.0001; HR 0.12; 95% CI 0.07–0.21). The median OS for the high-risk group 
was 582 days (95% CI, 526–734 days), in contrast to 1215 days for the low-risk group (95% CI, 1134–1555 days) 
(Figure 2D).

We applied the model to a test group to assess the accuracy of the model predictions. The C-index for the validation 
set showed an improvement of 0.6, surpassing that of the training cohort (Figure 2B). The ROC curve at one-year mark 

Table 1 (Continued). 

Total (n=369) Train (n=258) Test (n=111) P Value

TACE (n, %) 0.46

Yes 97(26.3) 72(28) 27(24.3)
No 272(73.7) 186(72) 84(75.7)

Liver Cirrhosis (n, %) 0.65

Yes 256(69.5) 179(69.3) 77(69.4)
No 111(30) 77(29.9) 34(30.6)

Unknown 2(0.5) 2(0.8) 0

Immunotherapy drugs (n, %) 0.62
1 221(60) 151(58.5) 70(63)

2 17(4.6) 11(4.2) 6(5.4)

3 26(7) 17(6.5) 9(8.1)
4 9(2.4) 8(3.1) 1(0.9)

5 70(19) 54(21) 16(14.5)

6 10(2.7) 6(2.3) 4(3.6)
7 7(1.9) 4(1.5) 3(2.7)

8 9(2.4) 7(2.7) 2(1.8)

Follow-up duration (median) 373 411.5 313 0.18

Notes: Immunotherapy drugs 1~8 represent 8 different anti-PD1 therapy. P value for continuous variables were 
calculated using the Wilcoxon rank-sum test, and χ2 for categorical variables.
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Figure 2 Performance of the model using baseline biomarker level. (A) The importance of selected circulating biomarkers in the random forest model. Importance refers to 
the reciprocal of the minimal depth, which indicates how much influence the variable has on final decision. (B) C-index of the model for training and test cohorts. (C) 
Receiver operating characteristic curve (ROC) of the model on test cohort; Kaplan–Meier curves for overall survival of “high risk” and “low risk” groups for training (D) and 
test (E) set. The “high risk” and “low risk” groups were defined using cut-off value of risk score optimized by training set, the risk scores stand for risk of event occurrence.
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exhibited satisfactory results, with an AUC value of 0.724 (Figure 2C). In the test cohort, 43 patients were classified as 
high-risk, whereas 68 patients were classified as low-risk. Subsequent observations of survival periods revealed 
significant differences. Survival analysis indicated that patients in the high-risk group had a markedly worse prognosis 
than those in the low-risk group (P = 0.0079; HR, 0.43; 95% CI 0.21–0.87). The median OS for the high-risk and low- 
risk groups was 831 days (95% CI, 635–NA) and 1072 days (95% CI, 996–NA), respectively (Figure 2E).

Prediction of Immunotherapeutic Outcomes Based on Baseline Circulating Indicators 
Level and Clinical Features
To enhance the efficacy of the model, we incorporated 11 clinical features and developed a parallel model to predict 
patient prognosis by integrating circulating indicators and pertinent clinical features that could influence immunotherapy 
outcomes. In this iteration, we carefully selected 12 circulating indicators — HGB, CA19-9, LDH, Albumin, AFP, 
Platelets, CRP, Bilirubin, Granulocytes, Leukocytes, Lymphocytes, INR — alongside 5 clinical features: age, radio-
therapy, stage, surgery, and tumor thrombus grade to construct the model (Figure 1A). This updated model exhibited 
commendable performance in predicting patient survival using circulating indicators. The average C-index in the training 
group for k-fold cross-validation stood at 0.56, while the C-index in the test group showed a slight improvement, 
reaching 0.63 (Figure 3B). Notably, the ROC curve at the one-year mark in the test group demonstrated a superior 
outcome compared to the model without clinical features, with an AUC of 0.752 (Figure 3C). To further refine the risk 
stratification, we applied Youden’s method to the ROC curve at one year in the training group, deriving a threshold value 
to categorize patients into high-risk and low-risk groups (Supplementary Figure 1B). In the training set, we allocated 42 
and 216 patients to the high-and low-risk groups, respectively. Similarly, in the test cohort, 11 patients were allocated to 
the high-risk group, while 100 patients to the low-risk group. Survival analysis revealed that high-risk patients exhibited 
significantly poorer outcomes compared to the low-risk group in both the training set (P < 0.001; HR 0.08; 95% CI 
0.03–0.19) and the validation set (P = 0.026; HR 0.39; 95% CI 0.11–1.37). The median OS for the high-risk group in the 
training cohort was 342 days (95% CI, 193–553) and 831 days (95% CI, 220–NA) in the validation set. In contrast, the 
median OS for the low-risk group in the training cohort was 1040 days (95% CI 949–1284), and in the validation set, it 
was 1017 days (95% CI 945–1439) (Figure 3D and E).

We proceeded to develop a comparable model for predicting patient prognosis post-immunotherapy, incorporating 
circulating indicator levels post-ICI treatment and relevant clinical features that could impact immunotherapy outcomes. 
In this instance, two models were constructed. The first included 13 circulating markers: HGB, LDH, albumin, 
leukocytes, lymphocytes, CA19-9, AFP, granulocytes, CRP, platelet, INR, PIVKA-II, and bilirubin. In the second 
model, 11 circulating markers (HGB, LDH, albumin, leukocytes, lymphocytes, platelets, granulocytes, AFP, bilirubin, 
CA 19–9 and CRP) along with 6 clinical features (immune drug selection, age, stage, whether received radio therapy, 
whether received surgery and tumor thrombus grade) were selected to build the predictive model. However, the results 
predicted by these two models did not satisfy our expectations. Further investigations and refinement are necessary to 
enhance the predictive accuracy of these models for patient prognosis after immunotherapy. This could involve 
reassessing the feature selection and model parameters, or considering additional factors that may contribute to improved 
performance. (Supplementary Figures 2 and 3).

Differences of Selected Features Between High-Risk and Low-Risk Group
After combining the training and test cohorts into a unified cohort, we evaluated the selected circulating biomarkers 
between the high-risk and low-risk groups.

In the first model, which included 11 circulating biomarkers with potential predictive value for ICI treatment 
outcomes, the levels of six biomarkers showed significant changes between the high- and low-risk groups. 
Specifically, higher levels of HGB and bilirubin were noted in the high-risk group, whereas AFP, granulocyte, leukocyte, 
and platelet levels were elevated in the low-risk group (Supplementary Figure 4).

However, when patients were categorized based on both circulating biomarkers and clinical features, the impact of 
circulating biomarkers diminished. Only 2 of the 12 selected biomarkers demonstrated a significant difference between 
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the high-risk and low-risk groups. Remarkably, the high-risk group showed higher HGB levels, while the group with 
lower risk exhibits elevated platelet levels (Supplementary Figure 5).

Figure 3 Performance of the model using baseline biomarker level and clinical features. (A) The importance of selected circulating biomarkers and clinical features in the 
random forest model. Importance refers to the reciprocal of the minimal depth, which indicates how much influence the variable has on final decision. (B) C-index of the 
model for training and test cohorts. (C)Receiver operating characteristic curve (ROC) of the model on test cohort; Kaplan–Meier curves for overall survival of “high risk” 
and “low risk” groups for training (D) and test (E) set. The “high risk” and “low risk” groups were defined using cut-off value of risk score optimized by training set, the risk 
scores stand for risk of event occurrence.
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This analysis underscores the complex interplay between circulating biomarkers and clinical features in predicting 
outcomes after ICI treatment, highlighting the need for a comprehensive understanding of both factors for an accurate 
prognosis.

Discussion
In the present work, we built an ensemble learning classifier using a random survival forest to identify immunother-
apeutic-related circulating biomarkers to predict the outcomes of ICI therapy in HCC patients. Random survival forests 
have been used in several studies to explore prognostic values.14,15 In the present study, 11 serum indicators were 
selected to build the model and succeed in patients with prolonged survival after ICI treatment. Twelve serum indicators 
and five clinical features were selected to generate the model in the same manner and showed great effectiveness. Our 
findings may assist doctors in identifying patients who may benefit from ICI treatment.

As shown in Supplementary Figures 4 and 5, level of AFP, bilirubin, granulocyte, HGB, leukocyte and platelet are 
significantly different between high-risk and low-risk groups, which means these indicators may have a substantial 
impact on patients’ survival conditions. Among which, AFP and bilirubin are well-known biomarkers that have 
prognostic value to HCC patients.12 however, the impact of HGB, leukocyte and platelet has not been deeply studied. 
In our study, we found that high level of leukocyte and platelet, along with low level of HGB are related to worse 
prognosis. Thus, clinicians need to pay more attention to these indicators to assist in determining whether patients are 
suitable for ICI therapy. Also, our study also suggests further studies to explore the influence these serum indicators have 
on prognosis of patients receiving ICI therapy.

HGB appeared to be the most important indicator provided by the algorithm for predicting the outcomes of patients 
with HCC in response to ICI therapy. Our result shows that low level of HGB may indicate poor survival. HGB levels 
has been confirmed in several study to have an influence on prognosis of different cancer types.16–18 However, little is 
known about whether or how HBG affects the efficacy of immunotherapy. A study showed that serum HGB level is 
correlated with occurrence and survival of bone metastasis in HCC patients.19 Another research demonstrated that 
preoperative anemia (HGB < 90 g/L) is a significant determinant of intra-abdominal bacterial infections for HCC patients 
who went through liver transplantation.20 Anemia is reported to be a common symptom in HCC patients, which is caused 
by blood loss, nutritional deficiencies and insufficient iron stores.21 Together, these studies indicate that HGB level is an 
important factor in HCC progress, but the mechanism behind it is to be discovered.

CA 19–9 is another important indicator for predicting the outcomes of ICI therapy in patients with HCC. 
Traditionally, CA19-9 has not been recognized as a highly sensitive biomarker for HCC. However, it is noteworthy 
that CA19-9 immunoreactivity is detectable in the bile ductules and interlobular bile ducts within non-neoplastic areas 
surrounding HCC.22 In normal individuals, CA19-9 is primarily synthesized by pancreatic and bile duct cells, as well as 
the stomach and colon, and is present in minimal amounts in serum. However, in the presence of a tumor, plasma CA19-9 
levels can be significantly elevated. CA19-9 is commonly acknowledged as a marker for early diagnosis of intrahepatic 
cholangiocarcinoma (ICC).23 Moreover, a high level of CA19-9 in combined hepatocellular-cholangiocarcinoma (cHCC- 
CCA) indicates a poorer prognosis, suggesting the possibility that some patients within our cohort may have cHCC- 
CCA.24 The invasion of cancer tissue can result in bile duct injury, and damage to the epithelial cells of the bile ducts, 
along with cholestasis, can also lead to an increase in the plasma concentration of CA19-9.25 CA 19–9 also serves as 
a marker for acute liver failure, implying that HCC patients with higher CA 19–9 levels may face an increased risk of 
liver failure, ultimately resulting in a worse prognosis.26 Therefore, the reason CA 19–9 is important in our model could 
be some patients in our cohort have combined hepatocellular-cholangiocarcinoma or hepatocellular carcinoma with bile 
duct tumor thrombus, and the invasion of cancer tissue into the bile ducts would lead to an increase in CA19-9 levels. In 
future studies, we would pay more attention to bile duct injury and reduce its impact on the research.

Our results show that patients with high level of AFP are at higher risk. Currently, AFP is the most widely used 
biomarker for the detection of HCC with approximately 70% sensitivity,27 and a higher serum AFP level often indicates 
worse prognosis in HCC patients at all stages.12 Recently, a study involving HCC patients receiving nivolumab or 
pembrolizumab showed that low serum AFP level at the start of ICI treatment leads to a good response as well as 
a significantly longer median PFS and OS.28 One possible reason for this may be that AFP has the ability to affect the 
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microenvironment around the tumor by inhibiting the anti-tumor functions of several immune cells, including dendritic 
cells (DCs), T cells, and natural killer (NK) cells.29,30 Researchers cultured peripheral blood monocytes with AFP and 
observed that DCs differentiation was significantly inhibited. With limited mature DCs and inflammatory mediators 
produced, T Cell activation would also be restrained, resulting in immune escape of HCC tumor cells.31 Also, DCs are 
the main producers of IL-12, and loss of DCs functions leads to an insufficient amount of IL-12, which then suppresses 
the function of NK cells.32 In addition, AFP plays an important role in the tumor VEGF pathway, and VEGF production 
is reported to be reduced when AFP is silenced.33 VEGF can restrain immune cell activity and T-cell infiltration, thus 
reducing ICI effectiveness.34

In addition to HGB, CA 19–9 and AFP, several other biomarkers have demonstrated great potential for identifying 
patients who would benefit from ICI therapy. Researchers have found that albumin combined with bilirubin perform well 
in measuring liver function of patients with HCC and chronic liver disease, as well as classifying patients with different 
prognosis.35,36 Platelets are essential contributors to both innate and adaptive immune responses, and are often 
considered a factor that contribute to tumor growth.37 However, a recent study reported that platelets can inhibit HCC 
growth by releasing P2Y12-dependent CD40L, which indicated that platelets that the association between platelets and 
cancer is complicated.38 CRP as well as AFP were used together to develop a CRAFITY score to predict outcomes of 
HCC patients undergoing ICI therapy, which has been proved valid under different conditions.12,39,40

In our study, the median OS reached 1000 days for low-risk group and 800 days for high-risk group. It seems too high 
for patients with advanced HCC. We believe this is due to the fact that about half of our patients had right censoring, and 
it can be seen from Figure 2D and E that the + representing censoring are concentrated before 500 days, with an even 
denser concentration before 300 days. This could lead to an overestimation of the median survival time. In future studies, 
we will improve the follow-up procedures and research plans to reduce the loss of survival data, ensuring that we can 
obtain more valid data.

This study has some limitations. First, incomplete data may have introduced bias into the results (Supplementary 
Figure 6). Although our findings suggest the potential predictive value of these blood indicators, more comprehensive 
data are required to obtain more accurate results. Second, this was a retrospective study, implying a lack of purposeful 
feature selection. More rigorously planned prospective studies are required to construct accurate models.

Conclusion
In conclusion, we established a random forest model to generate a risk score from common circulating indicators in 
HCC, which was used to predict the outcomes of patients with HCC after ICI therapy.
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